Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns
Abstract
:1. Introduction
2. Results
2.1. Soil Chemical Properties
2.1.1. Effect of Cropping System on Organic Matter, N, P, and K Contents of the Soil
2.1.2. Correlations among Soil Nutrients and Plant Growth and Essential Oil Production
2.2. Early Bolting Rate of A. sinensis
2.3. Chlorophyll Content
2.4. A. sinensis Root Biomass and V. faba Biomass Yield
2.5. Ferulic Acid Content
2.6. Essential Oil Content, Yield, and Composition
2.7. Competition Indices under Different Intercropping Patterns
3. Discussion
3.1. Early Bolting Rate of A. sinensis
3.2. Dry Root Biomass of A. sinensis
3.3. Ferulic Acid Content
3.4. Essential Oil Content, Yield, and Composition
3.5. Competition Indices
4. Materials and Methods
4.1. Plant Material
4.2. Field Trial
4.3. Evaluation of the Early Bolting Rate of A. sinensis
(total number of A. sinensis plants in the plot) × 100%
4.4. Determination of V. faba Biomass Yield and A. sinensis Biomass Yield
4.5. Chlorophyll Content Analysis
4.6. Soil Sampling and Analysis
4.7. Essential Oil Extraction
4.8. Essential Oil Composition Analysis
4.8.1. Sample Preparation
4.8.2. LC-MS/MS Analysis
4.9. Ferulic Acid Analysis
4.9.1. Sample Preparation
4.9.2. HPLC Analysis
4.10. Competition Indices
4.10.1. Land Equivalent Ratio (LER)
4.10.2. Aggressivity (A)
4.10.3. Crowding Coefficient (RCC)
4.10.4. Competitive Ratio (CR)
4.11. Statistical Analysis
5. Conclusions
- (1)
- Intercropping significantly reduces the early bolting rate of A. sinensis.
- (2)
- The AS/VF (3:1) intercropping pattern results in an optimal yield and the highest ferulic acid content of A. sinensis, highest biomass yield of V. faba, and highest land equivalent ratio (LER), thus, the AS/VF (3:1) intercropping pattern without fertilization is the most productive with high quality. These data indicate that intercropping can serve as an alternative for reducing the use of chemical fertilizers and can also decrease the early bolting rate of A. sinensis, thus, enabling its sustainable production.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarke, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem. 2004, 11, 1479–1500. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.Y.; Guo, Y.H.; Ma, Y.L.; Wang, Y.L.; Liang, Y.Z.; Chen, B.M.; Shao, S.J.; Wang, X.M.; Jin, H.; Lian, R.L.; et al. Angelica Sinensis; Chinese Medicine Press: Beijing, China, 2001. [Google Scholar]
- Su, Z.Y.; Khor, T.O.; Shu, L.M.; Lee, J.H.; Saw, C.L.L.; Wu, T.Y.; Huang, Y.; Suh, N.; Yang, C.S.; Conney, A.H.; et al. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix Angelica sinensis via promoter CpG demethylation. Chem. Res. Toxicol. 2013, 26, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Tsai, N.M.; Chen, Y.L.; Lee, C.C.; Lin, P.C.; Cheng, Y.L.; Chang, W.L.; Lin, S.Z.; Harn, H.J. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J. Neurochem. 2006, 99, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.C.; Kumaran, A.; Hwang, L.S. Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis. Food Chem. 2009, 114, 246–252. [Google Scholar] [CrossRef]
- Yang, X.B.; Zhao, Y.; Lv, Y. In vivo macrophage activation and physicochemical property of the different polysaccharide fractions purified from Angelica sinensis (Oliv.) Diels. Carbohydr. Polym. 2008, 71, 372–379. [Google Scholar] [CrossRef]
- Wang, Z.X.; Xiao, Y.Y.; Ou, L.J. Research Progress of Angelica. J. Med. Pharm. Chin. Minor. 2013, 9, 64–66. [Google Scholar]
- Ma, R.G.; Wang, Q.; Chen, X.L.; Sun, K.; Zhang, L.L. Advance in research of Angelica sinensis. Chin. Trad. Herb. Drugs 2002, 33, 280–282. [Google Scholar]
- Han, J. Study on Key Techniques of Standardized Cultivation of Angelica sinensis. Master’s Thesis, College of Agriculture, Gansu Agricultural University, Lanzhou, China, 2018. [Google Scholar]
- Jin, Y.; Jin, L.; Zheng, A.H.; Li, O.; Fan, J.; Li, S.J.; Zhang, Y.; Ma, J.K. Effects of different cultivation mode on yield and ferulic acid content in Angelica sinensis. J. Tradit. Chin. Vet. Med. 2019, 38, 59–60. [Google Scholar]
- Xiao, W.J. Study of Influence Mechanism of Organic Fertilizer and Reduced Chemical Fertilizer on Angelica sinensis Medicinal Formation Cultivation. Master’s Thesis, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar]
- Zhao, Y. Effects of Fertilization on Production and Quality of Angelica sinensis. Master’s Thesis, College of Agriculture Gansu Agricultural University, Lanzhou, China, 2010. [Google Scholar]
- Afshar, R.K.; Jovini, M.A.; Chaichi, M.R.; Hashemi, M. Grain sorghum response to arbuscular mycorrhiza and phosphorus fertilizer under deficit irrigation. Agron. J. 2014, 106, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; Li, G.Y.; Pan, S.Z. Research Progress of Early Bolting of Angelica sinensis. Mod. Agric. Sci. Technol. 2016, 20, 52–53. [Google Scholar]
- Banik, P.; Sasmal, T.; Ghosal, P.K.; Bagchi, D.K. Evaluation of mustard (Brassic compestris var. toria) and legume intercropping under 1:1 and 2:1 row-replacement series systems. J. Agron. Crop Sci. 2000, 185, 9–14. [Google Scholar] [CrossRef]
- Songa, J.M.; Jiang, N.; Schulthess, F.; Omwega, C. The role of intercropping different cereal species in controlling lepidopteran stemborers on maize in Kenya. J. Appl. Entomol. 2007, 131, 40–49. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; Von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Marc, C.; Justice, N.; Ken, E.G. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for small holder farmers in central Mozambique. Field Crops Res. 2012, 136, 12–22. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A. Barley-pea intercropping Effects on land productivity, carbon and nitrogen transformations. Field Crops Res. 2014, 166, 18–25. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E. Effects of intercropping on yield weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and V. faba (Vicia faba L.). Field Crops Res. 2014, 169, 21–29. [Google Scholar] [CrossRef]
- Monti, M.; Pellicanò, A.; Santonoceto, C.; Preiti, G.; Pristeri, A. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Res. 2016, 196, 379–388. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Liu, X.R.; Jin, Y.M.; Liu, R.Q.; Han, J.R.; Pu, Y.L.; Li, P.C.; Zhao, R.; He, Y.B. The influence of shading on the early bolting of Angelica sinensis. Chin. J. Chin. Med. Mater. 2003, 26, 854–855. [Google Scholar]
- Xu, J.Z.; Liu, X.R.; Jin, Y.M.; Wang, M.; Zhao, L. Study on the prevention and treatment of early bolting of Angelica sinensis in Gansu province. Chin. J. Chin. Med. Mater. 1999, 24, 660–662. [Google Scholar]
- Weisany, W.; Raei, Y.; Pertot, I. Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Ind. Crops Prod. 2015, 77, 295–306. [Google Scholar] [CrossRef]
- Fallah, S.; Rostaei, M.; Lorigooini, Z.; Surki, A.A. Chemical compositions of essential oil and antioxidant activity of dragonhead (Dracocephalum moldavica) in sole crop and dragonhead V. faba (Glycine max) intercropping system under organic manure and chemical fertilizers. Ind. Crops Prod. 2018, 115, 158–165. [Google Scholar] [CrossRef]
- Rostaei, M.; Fallah, S.; Lorigooini, Z.; Surki, A.A. The effect of organic manure and chemical fertilizer on essential oil, chemical compositions and antioxidant activity of dill (Anethum graveolens) in sole and intercropped with V. faba (Glycine max). Ind. Crops Prod. 2018, 119, 18–26. [Google Scholar] [CrossRef]
- Amani, M.M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with V. faba. Ind. Crops Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Machiani, M.A.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with V. faba (Vicia faba L.). J. Clean. Prod. 2018, 171, 529–537. [Google Scholar] [CrossRef]
- Huang, W.H.; Song, C.Q. Chemical and pharmacological study headway of Danggui. Chin. J. Chin. Med. Mater. 2001, 26, 147–155. [Google Scholar]
- Wang, H.Y.; Chen, S.X.; Xu, H.Z. Study on chemical composition of Angelica sinensis. Chin. J. Chin. Med. Mater. 1998, 23, 167–168. [Google Scholar]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.; Damalas, C. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Carrubba, A.; Torre, R.; Saiano, F.; Aiello, P. Sustainable production of fennel and dill by intercropping. Agron. Sustain. Dev. 2008, 28, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Yilmaz, S.; Özel, A.; Atak, M.; Erayman, M. Effects of seeding rates on competition indices of barley and vetch intercropping systems in the eastern Mediterranean. Turk. J. Agric. For. 2014, 39, 135–143. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Ghosh, P.K. Growth yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
- Lin, H.M.; Wu, Y.A.; Cao, Z.F.; Lv, S.L.; Mao, X.J. Influence of sun shade cultivation on premature bolting in Angelica sinensis and growth environment factors. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 79–83. [Google Scholar]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M.; Maggi, F.; Morshedloo, M.R. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Pandey, V.; Patel, A.; Patra, D.D. Integrated nutrient regimes ameliorate crop productivity, nutritive value, antioxidant activity and volatiles in basil (Ocimum basilicum L.). Ind. Crops Prod. 2016, 87, 124–131. [Google Scholar] [CrossRef]
- Pandey, V.; Patra, D.D. Crop productivity, aroma profile and antioxidant activity in Pelargonium graveolens under integrated supply of various organic and chemical fertilizers. Ind. Crops Prod. 2015, 67, 257–263. [Google Scholar] [CrossRef]
- Midya, A.; Bhattascharjee, K.; Ghose, S.S.; Banik, P. Deferred seeding of black gram (Phaseolus mungo L.) in rice (Oryza sativa L.) field on yield advantages and smothering of weeds. J. Agron. Crop Sci. 2005, 191, 195–201. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Rengel, Z.; Zhang, F.S. Calcium: Magnesium and microelement uptake as affected by phosphorus sources and interspecific root interaction between wheat and chickpea. Plant Soil. 2004, 261, 29–37. [Google Scholar] [CrossRef]
- Zhang, F.S.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Fukai, S.; Trenbath, B.R. Processes determining intercrop productivity and yields of component crops. Field Crops Res. 1993, 34, 247–271. [Google Scholar] [CrossRef]
- Weisany, W.; Raei, Y.; Ghassemi-Golezani, K. Funneliformis mosseae alters seed essential oil content and composition of dill in intercropping with common bean. Ind. Crops Prod. 2016, 79, 29–38. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.Z.; Lin, J.; Zhang, L.; Yang, S.L. Comparison of the contents of ferulic acid in Angelica sinensis Oliv. from different regions. Chin. Pharm. J. 2003, 38, 838. [Google Scholar]
- Lu, G.H.; Chan, K.; Leung, K.; Chan, C.L.; Zhao, Z.Z.; Jiang, Z.H. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J. Chromatogr. A. 2005, 1068, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Liang, Y.; Wu, H.; Yuan, D.L. The analysis of Radix Angelicae Sinensis (Danggui). J. Chromatogr. A. 2009, 1216, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Wang, H.; Tang, Y.P.; Guo, J.M.; Qian, D.W.; Ding, A.W.; Duan, J.A. The quantitative comparative ananlysis for main bio-active components in Angelicae sinensis, Ligusticum chuanxiong, and the herb pair Gui-Xiong. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2439–2453. [Google Scholar] [CrossRef]
- Fan, Q.; Xia, P.F.; Liu, X.; Gu, J.H.; Wu, X.Y.; Zhao, L. Simultaneous quantification of two major active components in Radix Angelicae sinensis by high-performance liquid chromatography with an internal standard correction method. Instrum. Sci. Technol. 2012, 40, 416–428. [Google Scholar] [CrossRef]
- Giacomelli, N.; Yang, Y.P.; Huber, F.K.; Ankli, A.; Weckerle, C.S. Angelica sinensis (Oliv.) Diels: Influence of value chain on quality criteria and marker compounds ferulic acid and Z-Ligustilide. Medicines 2017, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.W.; Huang, Q.Q.; Chao, S.J.; Yu, J.; Xu, S.R.; Wang, F.; Shang, X.F.; Zhu, Y. Determination of ferulic acid in Angelica sinensis by temperature-controlled hydrophobic ionic liquids-based ultrasound/heating-assisted extraction coupled with high performance liquid chromatography. Molecules 2020, 25, 3356. [Google Scholar] [CrossRef]
- Wang, Q.G.; Qiao, C.Y.; Gu, H.M. Factors influencing the formation of plant secondary metabolites. J. Anhui Agric. Sci. 2007, 35, 11376–11377. [Google Scholar]
- Rong, S.H.; Lin, H.; Gao, N. Determination of main active components in Angelica sinensis from different habitats. Contemp. Med. 2011, 17, 140–141. [Google Scholar] [CrossRef]
- Vafadar-Yengeje, L.; Amini, R.; Nasab, A.D.M. Chemical compositions and yield of essential oil of Moldavian balm (Dracocephalum moldavica L.) in intercropping with V. faba (Vicia faba L.) under different fertilizers application. J. Clean. Prod. 2019, 239, 118033. [Google Scholar] [CrossRef]
- Agena, E.A. Effect of Some Environmental and Soil Factors on Growth and Oil Production of Chamomile (Matricaria chamomilla L.). Ph.D. Thesis, Faculty of Agriculture, Ain Shams University, Cairo, Egypt, 1994. [Google Scholar]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Maffei, M.; Mucciarelli, M. Essential oil yield in peppermint/V. faba strip intercropping. Field Crops Res. 2003, 84, 229–240. [Google Scholar] [CrossRef]
- Croteau, R.; Burbott, A.J.; Loomis, W.D. Biosynthesis of mono and sesquiterpenes in peppermint from glucose-14C and 14CO2. Phytochemistry 1972, 11, 2459–2467. [Google Scholar] [CrossRef]
- Wu, M.J.; Sun, X.J.; Dai, Y.H.; Guo, F.Q.; Huang, L.F.; Liang, Y.Z. Determination of constitutes of essential oil from Angelica sinensis by gas-chromatography-mass spectrometry. J. Cent. South. Univ. Technol. 2005, 12, 430–436. [Google Scholar] [CrossRef]
- Tabanca, N.; Wedge, D.E.; Wang, X.N.; Demirci, B.; Baser, K.H.C.; Zhou, L.G.; Cutler, S.J. Chemical composition and antifungal activity of Angelica sinensis essential oil against three Colletotrichum species. Nat. Prod. Commun. 2008, 3, 1073–1078. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.Y.; Jiang, R.; Luo, J.; Wang, Q.W. Determination of ligustilide in essential oil of Angelica sinensis (Oliv.) Diels by RP-HPLC. Mil. Med. Univ. 2009, 3, 853–855. [Google Scholar]
- Gui, Q.D.; Zheng, J. Simultaneous determination of eight components in Angelica sinensis based on UHPLC-ESI-MS/MS method for quality evaluation. Biomed. Chromatogr. 2018, 33, e4326. [Google Scholar] [CrossRef]
- Zhou, C.X.; Zou, J.K.; Chen, Y.Z.; Zhao, Y. Determination of Ligustilide in Angelica sinensis essential oil by GC-MS. J. Pharm. Sci. 2002, 22, 290–292. [Google Scholar]
- Chen, X.P.; Li, W.; Xiao, X.F.; Zhang, L.L.; Liu, C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med. 2013, 11, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Lu, R.K. The Analytical Methods for Soil and Agricultural Chemistry; Agricultural Technology Publication of China: Beijing, China, 2000; pp. 146–195. [Google Scholar]
- Fetene, M. Intra-and inter-specific competition between seedlings of Acacia etbaica and a perennial grass (Hyparrhenia hirta). J. Arid. Environ. 2003, 55, 441–451. [Google Scholar] [CrossRef]
- Wahla, I.H.; Ahmad, R.; Ehsanullah Ahmad, A.; Jabbar, A. Competitive functions of components crops in some barley based intercropping systems. Int. J. Agric. Biol. 2009, 11, 69–71. [Google Scholar] [CrossRef]
- Willey, R.W. Intercropping–its importance and research needs: Part 1. Competition and yield advantages. Field Crops Abstr. 1979, 32, 1–13. [Google Scholar]
Year | Treatments | Organic Matter (g/kg) | Available N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|
2018 | AS | 16.67 ± 2.18 a | 61.58 ± 5.73 b | 19.19 ± 1.44 b | 100.67 ± 2.08 a |
AS/VF (3:1) | 18.54 ± 2.91 a | 74.17 ± 3.95 ab | 22.78 ± 0.34 a | 104.33 ± 8.02 a | |
AS/VF (2:2) | 19.32 ± 3.11 a | 75.17 ± 3.47 a | 20.44 ± 1.05 ab | 103.00 ± 6.24 a | |
AS/VF (1:3) | 16.30 ± 1.88 a | 71.60 ± 11.97 ab | 21.04 ± 2.66 ab | 118.00 ± 22.91 a | |
2019 | AS | 16.43 ± 3.82 a | 61.25 ± 9.24 a | 18.85 ± 2.91 a | 100.33 ± 6.5 a |
AS/VF (3:1) | 17.96 ± 5.52 a | 73.50 ± 20.46 a | 22.92 ± 3.27 a | 103.67 ± 15.31 a | |
AS/VF (2:2) | 18.63 ± 4.22 a | 73.50 ± 6.37 a | 19.11 ± 3.17 a | 102.00 ± 7.94 a | |
AS/VF (1:3) | 17.46 ± 3.81 a | 72.27 ± 12.91 a | 20.35 ± 3.73 a | 117.33 ± 23.8 a | |
Intercropping | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Year | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Intercropping × Year | p = 0.9552 | p = 0.9968 | p = 0.9669 | p = 1.0000 |
Year | Treatments | Early Bolting Rate (%) |
---|---|---|
2018 | AS | 36.78 ± 0.48 a |
AS/VF (3:1) | 17.37 ± 0.56 d | |
AS/VF (2:2) | 22.58 ± 1.01 c | |
AS/VF (1:3) | 26.03 ± 0.26 b | |
2019 | AS | 35.48 ± 0.54 a |
AS/VF (3:1) | 16.32 ± 1.23 d | |
AS/VF (2:2) | 20.72 ± 0.56 c | |
AS/VF (1:3) | 24.70 ± 1.22 b | |
Intercropping | p < 0.05 | |
Year | p < 0.05 | |
Intercropping × Year | p = 0.8448 |
Year | Treatments | Chlorophyll Contents | Biomass Yield(kg/hm2) | ||
---|---|---|---|---|---|
A. sinensis | V. faba | A. sinensis | V. faba | ||
2018 | AS | 34.24 ± 0.57 a | 5024.8 ± 34.6 a | ||
VF | 30.15 ± 2.55 c | 4319.6 ± 167.0 d | |||
AS/VF (3:1) | 30.56 ± 2.97 a | 50.33 ± 1.22 a | 4196.5 ± 34.8 b | 10763.5 ± 542.9 a | |
AS/VF (2:2) | 29.86 ± 2.41 a | 42.13 ± 2.13 b | 2520.4 ± 72.4 c | 7465.6 ± 232.1 b | |
AS/VF (1:3) | 28.26 ± 2.01 a | 30.19 ± 2.43 c | 525.0 ± 9.0 d | 4510.2 ± 435.3 c | |
2019 | AS | 36.89 ± 1.26 a | 5116.5 ± 145.5 a | ||
VF | 33.54 ± 1.68 c | 4433.3 ± 146.8 d | |||
AS/VF (3:1) | 32.78 ± 1.56 a | 49.68 ± 1.56 a | 4284.0 ± 150.5 b | 11110.8 ± 516.5 a | |
AS/VF (2:2) | 31.69 ± 0.99 a | 41.38 ± 1.33 b | 2618.9 ± 81.0 c | 7633.3 ± 148.4 b | |
AS/VF (1:3) | 30.77 ± 1.33 a | 29.66 ± 1.89 c | 638.5 ± 19.9 d | 4625.9 ± 25.0 c | |
Intercropping | p > 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | |
Year | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Intercropping × Year | p = 0.9986 | p = 0.112 | p = 0.9678 | p = 0.9918 |
Year | Treatments | Ferulic Acid Content (%) | Essential Oil Content (%) | Essential Oil Yield (kg/hm2) |
---|---|---|---|---|
2018 | AS | 0.139 ± 0.0020 ab | 0.946 ± 0.0083 a | 47.70 ± 1.43 a |
AS/VF (3:1) | 0.160 ± 0.0039 a | 0.9267 ± 0.0058 a | 40.34 ± 1.65 b | |
AS/VF (2:2) | 0.121 ± 0.0018 ab | 0.961 ± 0.0031 a | 23.36 ± 0.81 c | |
AS/VF (1:3) | 0.101 ± 0.0053 b | 0.502 ± 0.0018 b | 2.63 ± 0.12 d | |
2019 | AS | 0.1332 ± 0.002 ab | 0.916 ± 0.086 a | 46.89 ± 1.28 a |
AS/VF (3:1) | 0.145 ± 0.0018 a | 0.884 ± 0.063 a | 39.04 ± 1.20 b | |
AS/VF (2:2) | 0.115 ± 0.0018 ab | 0.923 ± 0.031 a | 23.20 ± 1.39 c | |
AS/VF (1:3) | 0.0959 ± 0.0053 b | 0.452 ± 0.017 b | 2.88 ± 0.10 d | |
Intercropping | p < 0.05 | p < 0.05 | p < 0.05 | |
Year | p > 0.05 | p > 0.05 | p > 0.05 | |
Intercropping × Year | p = 0.9699 | p = 0.9843 | p = 0.9678 |
Year | Treatments | Ligustilide (%) | Senkyunolide A (%) | Senkyunolide I (%) | Senkyunolide H (%) | Btylphthaide (%) | Butylidenephalide (%) | Levistolide A (%) |
---|---|---|---|---|---|---|---|---|
2018 | AS | 15.07 ± 2.80 a | 0.48 ± 0.089 a | 0.21 ± 0.061 ab | 0.042 ± 0.0011 ab | 0.036 ± 0.0087 a | 0.16 ± 0.023 a | 0.035 ± 0.0048 b |
AS/VF(3:1) | 12.38 ± 1.27 a | 0.30 ± 0.013 a | 0.15 ± 0.018 b | 0.027 ± 0.0021 b | 0.019 ± 0.0033 a | 0.12 ± 0.017 ab | 0.032 ± 0.0014 b | |
AS/VF(2:2) | 15.25 ± 1.27 a | 0.406 ± 0.077 a | 0.20 ± 0.033 ab | 0.037 ± 0.0029 b | 0.036 ± 0.0011 a | 0.067 ± 0.026 b | 0.057 ± 0.0077 a | |
AS/VF(1:3) | 15.10 ± 3.78 a | 0.376 ± 0.031 a | 0.25 ± 0.063 a | 0.056 ± 0.0011 a | 0.034 ± 0.0017 a | 0.14 ± 0.039 ab | 0.050 ± 0.0013 a | |
2019 | AS | 14.46 ± 3.40 a | 0.46 ± 0.075 a | 0.22 ± 0.077 ab | 0.045 ± 0.0016 ab | 0.043 ± 0.002 a | 0.16 ± 0.031 a | 0.038 ± 0.0060 b |
AS/VF(3:1) | 13.04 ± 2.26 a | 0.33 ± 0.019 a | 0.14 ± 0.028 b | 0.026 ± 0.0033 b | 0.023 ± 0.0074 a | 0.11 ± 0.026 ab | 0.035 ± 0.0067 b | |
AS/VF(2:2) | 15.58 ± 1.84 a | 0.396 ± 0.094 a | 0.19 ± 0.038 ab | 0.036 ± 0.0039 b | 0.039 ± 0.0016 a | 0.064 ± 0.031 b | 0.054 ± 0.0013 a | |
AS/VF(1:3) | 14.44 ± 4.5 a | 0.409 ± 0.037 a | 0.25 ± 0.094 a | 0.054 ± 0.0015 a | 0.032 ± 0.0019 a | 0.12 ± 0.039 ab | 0.047 ± 0.0016 a | |
Intercroping | p > 0.05 | p > 0.05 | p < 0.05 | p < 0.05 | p > 0.05 | p < 0.05 | p < 0.05 | |
Year | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Intercropping × Year | p = 0.9689 | p = 0.9914 | p = 0.9925 | p = 0.9715 | p = 0.9245 | p = 0.9782 | p = 0.8958 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Li, J.; Xiao, Y.; Zhou, G. Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns. Plants 2022, 11, 2950. https://doi.org/10.3390/plants11212950
Yang L, Li J, Xiao Y, Zhou G. Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns. Plants. 2022; 11(21):2950. https://doi.org/10.3390/plants11212950
Chicago/Turabian StyleYang, Lucun, Jingjing Li, Yuanming Xiao, and Guoying Zhou. 2022. "Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns" Plants 11, no. 21: 2950. https://doi.org/10.3390/plants11212950
APA StyleYang, L., Li, J., Xiao, Y., & Zhou, G. (2022). Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns. Plants, 11(21), 2950. https://doi.org/10.3390/plants11212950