A Mixture of Kaempferol-3-O-sambubioside and Kaempferol-3-O-sophoroside from Malvaviscus arboreus Prevents Ethanol-Induced Gastric Inflammation, Oxidative Stress, and Histologic Changes
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis
2.2. Effect of MaSS on Stomach Weight
2.3. Effect of MaSS on the Ulcerated Stomach
2.4. Histological Analysis
2.5. Cell Count of Each of the Stomach Strata
2.6. Effect of MaSS on IL-6, IL-10, and Catalase
2.7. Damage Scores in Gastric Lesions Induced with Ethanol
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extract Preparation
4.2. High-Performance Liquid Chromatography (HPLC) Analysis of the MaSS Mixture
4.3. Gastric Lesions-Induced by Ethanol
Animals
4.4. Treatments
4.5. Gastric Ulcers Murine-Model
4.5.1. Determination of the Ulcerated Area
4.5.2. Determination of the Microscopic Edema
4.5.3. Determination of the Cell Count
4.5.4. Quantification of CytokinesIL-6, and IL-10 by ELISA, and Catalase Activity
4.5.5. Histology of Stomach with Gastric Ulcers
4.5.6. Score of Damage
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Lira-Mota, K.S.; Nunes-Dias, G.E.; Ferreira-Pinto, M.E.; Luiz-Ferreira, A.; Souza-Brito, A.R.M.; Hiruma-Lima, C.A.; Barbosa-Filho, J.M.; Batista, L.M. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beber, A.P.; de Souza, P.; Boeing, T.; Somensi, L.B.; Mariano, L.N.B.; Cury, B.J.; Burci, L.M.; da Silva, C.B.; Simionatto, E.; de Andrade, S.F.; et al. Constituents of leaves from Bauhinia curvula Benth. exert gastroprotective activity in rodents: Role of quercitrin and kaempferol. Inflammopharmacology 2018, 26, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Di Carlo, G.; Mascolo, N.; Capasso, F.; Autore, G. Antiulcer effect of flavonoids. Role of endogenous PAF. Phytother. Res. 1994, 8, 179–181. [Google Scholar] [CrossRef]
- Rozza, A.L.; Meira De Faria, F.; Souza-Brito, A.R.; Pellizzon, C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, S.; Taléns-Visconti, R.; Rius-Pérez, S.; Finamor, I.; Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 2017, 104, 75–103. [Google Scholar]
- Oates, P.J.; Hakkinen, J.P. Studies on the mechanism of ethanol-induced gastric damage in rats. Gastroenterology 1988, 94, 10–21. [Google Scholar] [CrossRef]
- Franke, A.; Teyssen, S.; Singer, M.V. Alcohol-related diseases of the esophagus and stomach. Dig. Dis. 2006, 23, 204–213. [Google Scholar] [CrossRef]
- Guth, P.H.; Paulsen, G.; Nagata, H. Histologic and Microcirculatory Changes in Alcohol-Induced Gastric Lesions in the Rat: Effect of Prostaglandin Cytoprotection. Gastroenterology 1984, 87, 1083–1090. [Google Scholar] [CrossRef]
- Barragán-Solís, A. The Practice of Self-Care by Phytotherapy in a Group of Mexican Families. Arch. Med. Fam. 2006, 8, 155–162. [Google Scholar]
- Malfertheiner, P.; Chan, F.K.L.; McColl, K.E.L. Peptic ulcer disease. Lancet 2009, 374, 1449–1461. [Google Scholar] [CrossRef]
- Heinrich, M.; Rimpler, H.; Barrera, N.A. Indigenous phytotherapy of gastrointestinal disorders in a lowland Mixe community (Oaxaca, Mexico): Ethnopharmacologic evaluation. J. Ethnopharmacol. 1992, 36, 63–80. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2014; Volume 8, Flowers; pp. 405–408. [Google Scholar]
- Abdelhafez, O.H.; Fawzy, M.A.; Fahim, J.R.; Desoukey, S.Y.; Krischke, M.; Mueller, M.J.; Abdelmohsen, U.R. Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats. PLoS ONE 2018, 13, e0202362. [Google Scholar] [CrossRef]
- Bork, R.M.; Schmitz, M.L.; Weimann, C.; Kist, M.; Heinrich, M. Nahua Indian medicinal plants (Mexico): Inhibitory activity on NF-κB as an anti-inflammatory model and antibacterial effects. Phytomedicine 1996, 3, 263–269. [Google Scholar] [CrossRef]
- Boughalleb, N.; Débbabi, N.; Ben Jannet, H.; Mighri, Z.; El Mahjoub, M. Antifungal activity of volatile components extracted from leaves, stems and flowers of four plants growing in Tunisia. Phytopathol. Mediterr. 2005, 44, 307–312. [Google Scholar]
- Carballeira, N.M.; Cruz, C. 5,9-Nonadecadienoic acids in Malvaviscus arboreus and Allamanda cathartica. Phytochemistry 1998, 49, 1253–1256. [Google Scholar] [CrossRef]
- Hubbell, S.; Howard, J.J.; Wiemer, D.F. Chemical leaf repellency to an attine ant: Seasonal distribution among potential host plant species. Ecology 1984, 65, 1067–1076. [Google Scholar] [CrossRef]
- Selvaraj, J.; Mohakar, P.; Rajopadhye, S.; Subramanian, A.; Chowdhary, A. Evaluation of antibacterial activity of two indian medicinal plants on Escherichia coli and Staphylococcus aureus. In Proceedings of the MICRCON 2010, Kolkata, India, 24–28 November 2010; pp. 2–6. [Google Scholar]
- Yasunaka, K.; Abe, F.; Nagayama, A.; Okabe, H.; Lozada-Pérez, L.; López-Villafranco, E.; Estrada-Muñiz, E.; Aguilar, A.; Reyes-Chilpa, R. Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J. Ethnopharmacol. 2004, 97, 293–299. [Google Scholar] [CrossRef]
- Yeasmin, Z.; Tanvir, S.; Sharmin, T.; Bin Rashid, R.; Sikder, A.A.; Rashid, M.A. Bioactivities of Malvaviscus arboreus var. drummondii and Phyllanthus reticulatus Poir. Dhaka Univ. J. Pharm. Sci. 2014, 13, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Campos-Vidal, Y.; Herrera-Ruiz, M.; Trejo-Tapia, G.; Gonzalez-Cortazar, M.; Jiménez-Aparicio, A.R.; Zamilpa, A. Gastroprotective activity of kaempferol glycosides from Malvaviscus arboreus Cav. J. Ethnopharmacol. 2021, 268, 2–9. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K.; Fausto, N.; Mitchell, R.N. Robbins Patología Humana, 8th ed.; Saunders an Elsevier Imprint: Amsterdam, The Netherlands, 2008; pp. 512–528. [Google Scholar]
- Sistani-Karampour, N.; Arzi, A.; Rezaie, A.; Pashmforoosh, M.; Kordi, F. Gastroprotective Effect of Zingerone on Ethanol-Induced Gastric Ulcers in Rats. Medicina 2019, 55, 64. [Google Scholar] [CrossRef] [Green Version]
- Sowndhararajan, K.; Paul, S.; Kwon, G.S.; Hwang, C.W.; Kang, S.C. Protective effect of polyamine extract of salt-stressed and sprouted soybean seeds against ethanol-induced gastric ulcer in rats. Food Sci. Biotechnol. 2014, 23, 711–716. [Google Scholar] [CrossRef]
- Wu, G.; Meininger, C.J.; McNeal, C.J.; Bazer, F.W.; Rhoads, J.M. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. Adv. Exp. Med. Biol. 2021, 1332, 167–187. [Google Scholar] [PubMed]
- Takeuchi, K.; Ohuchi, T.; Kato, S.; Okabe, S. Cytoprotective Action of L-Arginine against HCl-Induced Gastric Injury in Rats: Involvement of Nitric Oxide? Jpn. J. Pharmacol. 1993, 61, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Khazaei, M.; Abbasabadei, Z.; Feyzmahdavi, M.; Mohseni, G.R. Protective effect of Tragopogon graminifolius DC against ethanol induced gastric ulcer. Iran. Red Crescent Med. J. 2013, 15, 813–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsen, K.; Søreide, J.A.; Kvaløy, J.T.; Glomsaker, T.; Søreide, K. Epidemiology of perforated peptic ulcer: Age- and genderadjusted analysis of incidence and mortality. World J. Gastroenterol. 2013, 19, 347–354. [Google Scholar] [CrossRef]
- Lu, P.J.; Hsu, P.I.; Chen, C.H.; Hsiao, M.; Chang, W.C.; Tseng, H.H.; Lin, K.H.; Chuah, S.K.; Chen, H.C. Gastric juice acidity in upper gastrointestinal diseases. World J. Gastroenterol. 2010, 16, 5496–5501. [Google Scholar] [CrossRef]
- Paré, W.P. Organ weights in rats with activity-stress ulcers. Bull. Psychon. Soc. 1977, 9, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Paula, A.C.B.; Gracioso, J.C.; Toma, W.; Bezerra, R.; Saad, M.A.J.; De Lucca, I.M.S.; Carneiro, E.M.; Souza-Brito, A.R.M. Is gastric ulceration different in normal and malnourished rats? Br. J. Nutr. 2005, 93, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Saluja, R.; Kanneganti, S.; Chinta, S.; Dikshit, M. Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell. Mol. Biol. 2007, 53, 84–93. [Google Scholar]
- Yao, J. Tiao He Yi Wei granule, a traditional Chinese medicine, against ethanol-induced gastric ulcer in mice. Evid.-Based Complement. Alternat. Med. 2015, 2015, 647283. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, K.K. Comparative Evaluation of the Anti-ulcer Activity of Curcumin and Omeprazole during the Acute Phase of Gastric Ulcer—Efficacy of Curcumin in Gastric Ulcer Prevention against Omeprazole. Food Nutr. Sci. 2011, 2, 628–640. [Google Scholar] [CrossRef] [Green Version]
- Bobe, G.; Albert, P.S.; Sansbury, L.B.; Lanza, E.; Schatzkin, A.; Colburn, N.H.; Cross, A.J. Interleukin-6 as a potential indicator for prevention of high-risk adenoma recurrence by dietary flavonols in the polyp prevention trial. Cancer Prev. Res. 2010, 3, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Kalia, N.; Bardhan, K.D.; Reed, M.W.; Jacob, S.; Brown, N.J. L-Aarginine protects and exacerbates ethanol-induced rat gastric mucosal injury. J. Gastroenterol. Hepatol. 2000, 15, 915–924. [Google Scholar] [CrossRef]
- Santarelli, L.; Bracci, M.; Mocchegiani, E. In Vitro and In Vivo effects of mercuric chloride on thymic endocrine activity, NK and NKT cell cytotoxicity, cytokine profiles (IL-2, IFN-γ, IL-6): Role of the nitric oxide-l-arginine pathway. Int. Immunopharmacol. 2006, 6, 376–389. [Google Scholar] [CrossRef]
- Morimoto, Y.; Shimohara, K.; Oshima, S.; Sukamoto, T. Effects of the New Anti-Ulcer Agent KB-5492 on Experimental Gastric Mucosal Lesions and Gastric Mucosal Defensive Factors, as Compared to Those of Teprenone and Cimetidine. Jpn. J. Pharmacol. 1991, 57, 495–505. [Google Scholar] [CrossRef]
- Schnackenberg, C.; Tucker, B.; Granger, J. Role of nitric oxide in the renal and arterial pressure responses to chronic aldosterone excess. FASEB J. 1997, 11, R197–R202. [Google Scholar]
- Noor, S.; Philip, K. Prevention of Acute Gastric Mucosal Lesions by R. Hasseltii in Rats. J. Anim. Vet. Adv. 2006, 5, 161–164. [Google Scholar]
- Yeşilada, E.; Gürbüz, I.; Ergun, E. Effects of Cistus laurifolius L. flowers on gastric and duodenal lesions. J. Ethnopharmacol. 1997, 55, 201–211. [Google Scholar] [CrossRef]
- Jiménez, D.; Martin, M.J.; Pozo, D.; Alarcón, C.; Esteban, J.; Bruseghini, L.; Esteras, A.; Motilva, V. Mechanisms involved in protection afforded by L-arginine in ibuprofen-induced gastric damage: Role of nitric oxide and prostaglandins. Dig. Dis. Sci. 2002, 47, 44–53. [Google Scholar] [CrossRef]
- Khan, H.A. Computer-assisted visualization and quantitation of experimental gastric lesions in rats. J. Pharmacol. Toxicol. Methods 2004, 49, 89–95. [Google Scholar] [CrossRef]
- Wang, S.; Bao, Y.-R.; Diao, Y.P.; Meng, X.S.; Kang, T.G. Evaluation of gastric ulcer model based on gray-scale image analysis. Afr. J. Microbiol. Res. 2011, 5, 1285–1290. [Google Scholar] [CrossRef]
Treatments (mg/kg) | Number of Cells | ||
---|---|---|---|
Mucosa | Muscularis Mucosae | Submucosa | |
Healthy | 90.0 ± 5.1 * | 54.6 ± 2.3 * | 48.6 ± 1.1 * |
Veh | 30.0 ± 2.1# | 35.6 ± 3.0 | 29.0 ± 2.0 |
L-Arg (300) | 144.3 ± 7.1 * | 65.3 ± 2.5 * | 84.6 ± 6.5 * |
MaSS | |||
30 | 47.6 ± 5 | 48.6 ± 7.7 | 69.3 ± 3.7 * |
90 | 90.3 ± 8 * | 79.0 ± 7.0 * | 54.6 ± 3.5 * |
120 | 48.6 ± 6 | 52.6 ± 4.1 | 58.6 ± 4.9 * |
180 | 67.0 ± 5 * | 53.0 ± 5.1 | 45.6± 1.5 * |
Treatments (mg/kg) | Scores of Damage Variables |
---|---|
Healthy | 0 |
Veh | 30 |
L-Arg (300) | 2 |
MaSS | |
30 | 11 |
90 | 2 |
120 | 7 |
180 | 5 |
Scores | ||||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Variable of Histologic Damage | ||||
Number of cells (300 × 300 px) | ||||
Mucosa | 85 or more | 72 to 84 | 47 to 71 | 46 or less |
Muscular of Mucosae | 52 or more | 47 to 51 | 36 to 46 | 35 or less |
Submucosa | 68 or more | 56 to 67 | 32 to 55 | 31 or less |
Microscopic edema (µm) | ||||
Mucosa | 27 or less | 28 to 34 | 35 to 48 | 49 or more |
Muscular of Mucosae | 4 or less | 5 | 6 to 8 | 9 or more |
Submucosa | 21 or less | 22 to 25 | 26 to 32 | 33 or more |
Cytokines (pg/g protein) | ||||
IL-6 | 279 or less | 280 to 472 | 473 to 858 | 859 or more |
IL-10 | 392 or more | 271 to 391 | 29 to 270 | 28 or less |
Other variables | ||||
Relative Weight Stomach (%) | 0.49 or less | 0.50 to 0.57 | 0.58 to 0.72 | 0.73 or more |
Gastric Ulcer (%) | 11 or less | 22 to 12 | 46 to 23 | 47 or more |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Vidal, Y.; Zamilpa, A.; Jiménez-Ferrer, E.; Jiménez-Aparicio, A.R.; Camacho-Díaz, B.H.; Trejo-Tapia, G.; Tapia-Maruri, D.; Monterrosas-Brisson, N.; Herrera-Ruiz, M. A Mixture of Kaempferol-3-O-sambubioside and Kaempferol-3-O-sophoroside from Malvaviscus arboreus Prevents Ethanol-Induced Gastric Inflammation, Oxidative Stress, and Histologic Changes. Plants 2022, 11, 2951. https://doi.org/10.3390/plants11212951
Campos-Vidal Y, Zamilpa A, Jiménez-Ferrer E, Jiménez-Aparicio AR, Camacho-Díaz BH, Trejo-Tapia G, Tapia-Maruri D, Monterrosas-Brisson N, Herrera-Ruiz M. A Mixture of Kaempferol-3-O-sambubioside and Kaempferol-3-O-sophoroside from Malvaviscus arboreus Prevents Ethanol-Induced Gastric Inflammation, Oxidative Stress, and Histologic Changes. Plants. 2022; 11(21):2951. https://doi.org/10.3390/plants11212951
Chicago/Turabian StyleCampos-Vidal, Yrvinn, Alejandro Zamilpa, Enrique Jiménez-Ferrer, Antonio Ruperto Jiménez-Aparicio, Brenda Hildeliza Camacho-Díaz, Gabriela Trejo-Tapia, Daniel Tapia-Maruri, Nayeli Monterrosas-Brisson, and Maribel Herrera-Ruiz. 2022. "A Mixture of Kaempferol-3-O-sambubioside and Kaempferol-3-O-sophoroside from Malvaviscus arboreus Prevents Ethanol-Induced Gastric Inflammation, Oxidative Stress, and Histologic Changes" Plants 11, no. 21: 2951. https://doi.org/10.3390/plants11212951
APA StyleCampos-Vidal, Y., Zamilpa, A., Jiménez-Ferrer, E., Jiménez-Aparicio, A. R., Camacho-Díaz, B. H., Trejo-Tapia, G., Tapia-Maruri, D., Monterrosas-Brisson, N., & Herrera-Ruiz, M. (2022). A Mixture of Kaempferol-3-O-sambubioside and Kaempferol-3-O-sophoroside from Malvaviscus arboreus Prevents Ethanol-Induced Gastric Inflammation, Oxidative Stress, and Histologic Changes. Plants, 11(21), 2951. https://doi.org/10.3390/plants11212951