Comparative Study Effect of Urea-Sulfur Fertilizers on Nitrogen Uptake and Maize Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Soil Characteristics
2.2. Research Schema and Experimental Design
- Control (N0P80K160 kg ha−1).
- Urea (N150P80K160 kg ha−1).
- Urea + ammonium sulfate (N150P80K160S42.5 kg ha−1).
- Urea + calcium sulfate (N150P80K160S42.5Ca53 kg ha−1).
- Urea Cocrystal as CaSO4.4urea (N150 P80K160S42.5Ca53 kg ha−1).
2.3. Field Preparation and Maize Cultivation
2.4. Soil Sampling and Analytical Procedures
2.5. Nitrogen Uptake and Its Efficiency
2.6. Climatic Conditions
2.7. Statistical Analysis
3. Results
3.1. Nitrogen Release in Soil-Grown Maize from Urea-Sulfur Fertilizers
3.2. Plants’ Density, Green Matter and Dry Matter Yield
3.3. Grain Yields and Grain Quality
3.4. Nitrogen Uptake and Apparent Nitrogen Recovery Efficiency in Grains
4. Discussion
4.1. Effect of Sulfur Fertilizers on Mineral N Release and Nitrogen Uptake
4.2. Effect of Combining Urea and Sulfur on Grain Yields and Grain Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H.; Burke, J. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture, Executive Summary; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.d.B. Agronomic Efficiency of NBPT as a Urease Inhibitor: A Review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L. World Fertilizer Progress into the 1980s; Tech. Bull. T-22; International Fertilizer Development Center: Muscle Shoals, AZ, USA, 1981. [Google Scholar]
- Touchton, J.T.; Hargrove, W.L. Nitrogen Sources and Methods of Application for No-Tillage Corn Production1. Agron. J. 1982, 74, 823–826. [Google Scholar] [CrossRef]
- Chen, D.; Suter, H.; Islam, A.; Edis, R.; Freney, J.R.; Walker, C.N. Prospects of Improving Efficiency of Fertilizer Nitrogen in Australian Agriculture: A Review of Enhanced Efficiency Fertilizers. Aust. J. Soil Res. 2008, 46, 289–301. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Erisman, J.W.; Abrol, Y.P.; Bekunda, M.; Datta, A.; Davidson, E.; de Vries, W.; Oenema, O.; et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution; UNEP: Edinburgh, UK, 2013. [Google Scholar]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Wang, H.; Köbke, S.; Dittert, K. Use of Urease and Nitrification Inhibitors to Reduce Gaseous Nitrogen Emissions from Fertilizers Containing Ammonium Nitrate and Urea. Glob. Ecol. Conserv. 2020, 22, e00933. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Wei, J.; Cui, R.; Sun, J.; Qiu, S.; Zhao, S. Use of Controlled-Release Urea to Improve Yield, Nitrogen Utilization, and Economic Return and Reduce Nitrogen Loss in Wheat-Maize Crop Rotations. Agronomy 2021, 11, 723. [Google Scholar] [CrossRef]
- Kasim, S.; Ahmed, O.H.; Muhamad, N.; Majid, A. Reduction of Ammonia Loss by Mixing Urea with Liquid Humic and Fulvic Acids Isolated from Tropical Peat Soil. Am. J. Agric. Biol. Sci. 2009, 4, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Reeza, A.A.; Ahmed, O.H.; Ab Majid, N.M.N.; Jalloh, M.B. Reducing Ammonia Loss from Urea by Mixing with Humic and Fulvic Acids Isolated from Coal. Am. J. Environ. Sci. 2009, 5, 420–426. [Google Scholar] [CrossRef]
- Food Agriculture Organization. Current World Fertilizer Trends and Outlook to 2011/12; Food Agriculture Organization: Rome, Italy, 2008. [Google Scholar]
- Wilson, T.L.; Guttieri, M.J.; Nelson, N.O.; Fritz, A.; Tilley, M. Nitrogen and Sulfur Effects on Hard Winter Wheat Quality and Asparagine Concentration. J. Cereal Sci. 2020, 93, 102969. [Google Scholar] [CrossRef]
- Kalmbacher, R.S.; Ezenwa, I.V.; Arthington, J.D.; Martin, F.G. Sulfur Fertilization of Bahia grass with Varying Levels of Nitrogen Fertilization on a Florida Spodosol. Agron. J. 2005, 97, 661–667. [Google Scholar] [CrossRef]
- Zaman, A.; Khyber, K.; Ali, B.; Afzal, M.; Wahab, S.; Zaman Khan, A. Effects of Sulfur and Urease Coated Controlled Release Urea on Dry Matter Yield, N Uptake and Grain Quality of Rice. JAPS J. Anim. Plant Sci. 2015, 25, 679–685. [Google Scholar]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur Fertilization Improves Nitrogen Use Efficiency in Wheat by Increasing Nitrogen Uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- De Bona, F.D.; Fedoseyenko, D.; von Wirén, N.; Monteiro, F.A. Nitrogen Utilization by Sulfur-Deficient Barley Plants Depends on the Nitrogen Form. Environ. Exp. Bot. 2011, 74, 237–244. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Response of Wheat Cultivars to Nitrogen and Sulfur for Crop Yield, Nitrogen Use Efficiency, and Protein Quality in the Semiarid Region. J. Plant Nutr. 2009, 32, 1768–1787. [Google Scholar] [CrossRef]
- Corpas, F.J.; Zhang, J.; Gao, Q.; Liu, S.; Cui, S.; Zhang, X.; Wang, Y.; Mi, G. Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. Front. Plant Sci. 2020, 11, 576718. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Wang, L.; Zhou, C.; Jing, J.; Sun, X.; Tian, X. Combined Effects of Nitrogen and Sulfur Fertilization on Maize Growth, Physiological Traits, N and S Uptake, and Their Diagnosis. Field Crops Res. 2019, 242, 107593. [Google Scholar] [CrossRef]
- Syukur, A.; Shiddieq, D.; Yuwono, T. Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil Column Method. J. Trop. Soils 2010, 15, 11–18. [Google Scholar]
- Selladurai, R.; Purakayastha, T.J. Effect of Humic Acid Multinutrient Fertilizers on Yield and Nutrient Use Efficiency of Potato. J. Plant Nutr. 2016, 39, 949–956. [Google Scholar] [CrossRef]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Fedoseeva, E.; Terekhova, V. Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil-A Review. Front. Environ. Sci. 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kou, M.; Tang, Z.; Zhang, A.; Li, H. The Use of Humic Acid Urea Fertilizer for Increasing Yield and Utilization of Nitrogen in Sweet Potato. Plant Soil Environ. 2017, 63, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Rizk, F.A.; Shaheen, A.M.; Singer, S.M.; Sawan, O.A. The Productivity Of Potato Plants Affected By Urea Fertilizer As Foliar Spraying and Humic Acid Added With Irrigation Water. Middle East J. Agric. Res. 2013, 2, 76–83. [Google Scholar]
- Nongmeikapam, G.; Devi, N.S. Effect of Organic Manures and Humic Acids on Nitrogen Concentration and Yield of Chickpea (JG-16). Int. J. Chem. Stud. 2018, 6, 2707–2711. [Google Scholar]
- Science, S.; Sciences, E.; Campus, A. Integration of humic acid with nitrogen wields an auxiliary impact on physiological traits, growth and yield of maize (Zea mays L.) VARIETIES. Appl. Ecol. Environ. Res. 2019, 17, 6783–6799. [Google Scholar]
- Rosliza, S.; Ahmed, O.H.; Muhamad, N.; Majid, A. Controlling Ammonia Volatilization by Mixing Urea with Humic Acid, Fulvic Acid, Triple Superphosphate and Muriate of Potash. Am. J. Environ. Sci. 2009, 5, 605–609. [Google Scholar] [CrossRef]
- Taufik, M.; Yusuff, M.; Ahmed, O.H.; Muhamad, N.; Majid, A.; Campus, S. Effect of Mixing Urea with Humic Acid and Acid Sulfate Soil on Ammonia Loss, Exchangeable Ammonium and Available Nitrate. Am. J. Environ. Sci. 2009, 5, 588–591. [Google Scholar]
- Zhian, L. Ammonia Volatilization Characteristics and Related Affecting Factors of Humic Acid Urea. Plant Nutr. Fertil. Sci. 2010, 16, 208–213. [Google Scholar]
- do Nascimento, C.A.C.; Vitti, G.C.; Faria, L.d.A.; Luz, P.H.C.; Mendes, F.L. Ammonia Volatilization from Coated Urea Forms. Rev. Bras. Cienc. Solo 2013, 37, 1057–1063. [Google Scholar] [CrossRef]
- Rahman, N.S.A.; Yunus, R.; Ishak, C.F. Communications in Soil Science and Plant Analysis Laboratory Evaluation on Ammonia Volatilization from Coated Urea Fertilizers. Commun. Soil Sci. Plant Anal. 2018, 49, 717–724. [Google Scholar] [CrossRef]
- Guan, Y.; Song, C.; Gan, Y.; Li, F.-M. Increased Maize Yield Using Slow-Release Attapulgite-Coated Fertilizers Increased Maize Yield Using Slow-Release Attapulgite-Coated Fertilizers. Agron. Sustain. Dev. 2014, 34, 657–665. [Google Scholar] [CrossRef]
- Azeem, B.; Kushaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on Materials & Methods to Produce Controlled Release Coated Urea Fertilizer. J. Control Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Effects of Polymer-Coated Urea on Nitrate Leaching and Nitrogen Uptake by Potato. J Environ. Qual. 2010, 39, 492–499. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effect of Nitrogen Levels and Coated Urea on Growth, Yields and Nitrogen Use Efficiency in Aromatic Rice. J. Plant Nutr. 2016, 39, 875–882. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Zhang, M.; Shi, Y.; Zhu, Q.; Sun, Y.; Zhou, H.; Li, C.; Yang, Y.; Geng, J. Improving Crop Yields, Nitrogen Use Efficiencies, and Profits by Using Mixtures of Coated Controlled-Released and Uncoated Urea in a Wheat-Maize System. Field Crops Res. 2017, 205, 106–115. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use Of Controlled Release Fertilizers And Nitrification Inhibitors To Increase Nitrogen Use Efficiency and To Conserve Air and Water Quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Malinowski, P.; Biskupski, A.; Gtowiłski, J. Preparation Methods of Calcium Sulfate and Urea Adduct. Pol. J. Chem. Technol. 2007, 9, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Jin, J.Y.; He, P.; Liang, M.Z. Recent Advances on the Technologies to Increase Fertilizer Use Efficiency. Agric. Sci. China 2008, 7, 469–479. [Google Scholar] [CrossRef]
- Rosmarina, A.K.; Khanif, Y.M.; Hanafi, M.M.; Hussin, A.; Rahim, K.A. Nitrogen Loss Pathways in Anaerobic Soils and Mitigation Approaches through Inhibitors—A Review. Am.-Eurasian J. Agric. Environ. Sci. 2016, 16, 641–651. [Google Scholar]
- Gao, J.; Luo, J.; Lindsey, S.; Shi, Y.; Wei, Z.; Wang, L.; Zhang, L. Effects of Soil Properties on Urea-N Transformation and Efficacy of Nitrification Inhibitor 3, 4-Dimethypyrazole Phosphate (DMPP). Soil Sci. Plant Nutr. 2022, 68, 228–237. [Google Scholar] [CrossRef]
- Wu, H.H.; Zhu, K.Y.; Guo, Y.P.; Zhang, X.M. Comparative Studies of Substrate and Inhibitor Specificity of Glutathione S-Transferases in Six Tissues of Oxya Chinensis (Thunberg) (Orthoptera: Acrididae). Agric. Sci. China 2008, 7, 462–468. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association: Paris, France, 2010. [Google Scholar]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of Co-Application of Nitrogen with Phosphorus, Potassium and Sulfur on the Apparent Efficiency of Nitrogen Fertilizer Use, Grain Yield and Protein Content of Wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Mahmood, I.A.; Salim, M.; Ali, A.; Arshadullah, M.; Zaman, B.; Mir, A. Impact of Calcium Sulfate and Calcium Carbide on Nitrogen Use Efficiency of Wheat in Normal and Saline Sodic Soils. Soil Environ. 2009, 28, 29–37. [Google Scholar]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Vyn, T.J. Impact of Controlled Release Urea on Maize Yield and Nitrogen Use Efficiency under Different Water Conditions. PLoS ONE 2017, 12, e0181774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathot, M.; Mertens, J.; Verlinden, G.; Lambert, R. Positive Effects of Sulfur Fertilization on Grasslands Yields and Quality in Belgium. Eur. J. Agron. 2008, 28, 655–658. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Effects of Timing of Nitrogen and Sulfur Fertilizers on Yield, Nitrogen, and Sulfur Contents of Tef (Eragrostis Tef (Zucc.) Trotter). Nutr. Cycl. Agroecosyst. 2006, 75, 213–222. [Google Scholar] [CrossRef]
- Yerokun, O.A. Response of Maize to Ammonium Nitrate, Urea and Cogranulated Urea-Urea Phosphate. S. Afr. J. Plant Soil 2013, 14, 63–66. [Google Scholar] [CrossRef]
- Ma, Z.; Yue, Y.; Feng, M.; Li, Y.; Ma, X.; Zhao, X.; Wang, S. Mitigation of Ammonia Volatilization and Nitrate Leaching via Loss Control Urea Triggered H-Bond Forces. Sci. Rep. 2019, 9, 15140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Tian, Y.; Zhao, M.; Yin, B.; Zhu, Z. The Assessment of Nitrate Leaching in a Rice–Wheat Rotation System Using an Improved Agronomic Practice Aimed to Increase Rice Crop Yields. Agric. Ecosyst. Environ. 2017, 241, 100–109. [Google Scholar] [CrossRef]
- FAO. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, Update 2015; International Soil Resources Reports No.106; FAO: Rome, Italy, 2014. [Google Scholar]
- Buneviciene, K.; Drapanauskaite, D.; Mazeika, R.; Tilvikiene, V.; Baltrusaitis, J. Granulated Biofuel Ash as a Sustainable Source of Plant Nutrients. Waste Manag. Res. 2021, 39, 806–817. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Li, Q.; Zeng, X.P.; Liu, Y.; Li, Y.R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 1–20. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient Use Efficiency in Plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Anderson, J.W. Sulfur Metabolism in Plants. In The Biochemistry of Plants; Miflin, B.J., Lea, P.J., Eds.; Academic Press: New York, NY, USA, 1990; Volume 16, pp. 327–387. [Google Scholar]
- Niedziński, T.; Sierra, M.J.; Łabętowicz, J.; Noras, K.; Cabrales, C.; Millán, R. Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil. Agronomy 2021, 11, 1981. [Google Scholar] [CrossRef]
- Singh, U.; Sanabria, J.; Austin, E.R.; Agyin-Birikorang, S. Nitrogen Transformation, Ammonia Volatilization Loss, and Nitrate Leaching in Organically Enhanced Nitrogen Fertilizers Relative to Urea. Soil Sci. Soc. Am. J. 2012, 76, 1842–1854. [Google Scholar] [CrossRef]
- Arbačauskas, J.; Masevičienė, A.; Žičkienė, L.; Staugaitis, G. Mineral Nitrogen in Soils of Lithuania’s Agricultural Land: Comparison of Oven-Dried and Field-Moist Samples. Zemdirbyste 2018, 105, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Thongjoo, C.; Miyagawa, S.; Kawakubo, N. Effects of Soil Moisture and Temperature on Decomposition Rates of Some Waste Materials from Agriculture and Agro-Industry. Plant Prod. Sci. 2005, 8, 475–481. [Google Scholar] [CrossRef]
- Hood, R.C. The Effect of Soil Temperature and Moisture on Organic Matter Decomposition and Plant Growth. Isot. Environ. Health Stud. 2006, 37, 25–41. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science (1979) 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.D.; Bawden, A.D.; Coleman, D.C. Rates and Pathways of Mineral Nitrogen Transformation in a Soil from Pasture. Soil Biol. Biochem. 1984, 16, 127–131. [Google Scholar] [CrossRef]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous Overview on the Controlled Release Fertilizers. Adv. Chem. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The Effects of Controlled Release Urea on Maize Productivity and Reactive Nitrogen Losses: A Meta-Analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- Perucci, P.; Giusquiani, L.P.; Scarponi, L. Nitrogen Losses from Added Urea and Urease Activity of a Clay-Loam Soil Amended with Crop Residues on JSTOR. Plant Soil 1982, 69, 457–463. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Lu, J.; Hong, J.; Chen, G.; Xue, X.; Li, J.; Wei, Y.; Zou, J.; Liu, G. Effects of Controlled-Release Urea Application on the Growth, Yield and Nitrogen Recovery Efficiency of Cotton. Agric. Sci. 2013, 4, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wei, X. Controlled-Release Fertilizers as a Means to Reduce Nitrogen Leaching and Runoff in Container-Grown Plant Production. In Nitrogen in Agriculture—Updates; BoD–Books on Demand: Norderstedt, Germany, 2018; pp. 33–52. [Google Scholar] [CrossRef] [Green Version]
- Zörb, C.; Grover, C.; Steinfurth, D.; Mühling, K.H. Quantitative Proteome Analysis of Wheat Gluten as Influenced by N and S Nutrition. Plant Soil 2010, 327, 225–234. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.Y.; He, X.M.; Meng, Q.F.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Zou, C.Q.; Chen, X.P. Improving Grain Yield and Protein Concentration of Maize (Zea mays L.) Simultaneously by Appropriate Hybrid Selection and Nitrogen Management. Field Crops Res. 2020, 249, 107754. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Blaylock, A.D.; Chen, X. Mixture of Controlled Release and Normal Urea to Optimize Nitrogen Management for High-Yielding Maize. Field Crops Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Esculentus, B. Effect of Urea Fertilizer and Maize Cob Ash on Soil Chemical Properties, Growth, Yield, and Mineral Composition of Okra, Abelmoschus esculentus (L.) Moench. J. Hortic. Res. 2018, 26, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Uknowledge, U.; Murdock, L.W. Comparative Effectiveness of Urea, Ammonium Nitrate, and Urea Comparative Effectiveness of Urea, Ammonium Nitrate, and Urea Ammonium Polyphosphate on Fescue Production. Plant Soil Sci. 1982, 15, 2. [Google Scholar]
- Jiao, X.; Liang, W.; Chen, L.; Zhang, H.; Li, Q.; Wang, P.; Wen, D. Effects of Slow-Release Urea Fertilizers on Urease Activity, Microbial Biomass, and Nematode Communities in an Aquic Brown Soil. Sci. China Ser. C: Life Sci. 2005, 48, 26–32. [Google Scholar] [CrossRef]
- Jones, C.A.; Koenig, R.T.; Ellsworth, J.W.; Brown, B.D.; Jackson, G.D. Management of Urea Fertilizer to Minimize Volatilization; Montana State University: Bozeman, MT, USA, 2007. [Google Scholar]
- Webb, J.; Researcher, I.; Sylvester-Bradley, R. Urea as a Nitrogen Fertilizer for Cereals. J. Agric. Sci. 1997, 128, 263–271. [Google Scholar] [CrossRef]
- Ahmad, A.; Abdin, M.Z. Photosynthesis and Its Related Physiological Variables in the Leaves of Brassica Genotypes as Influenced by Sulfur Fertilization. Physiol. Plant 2000, 110, 144–149. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Turnbull, J.J.D.; Bakker, C.J.; Vyn, R.J.; McKeown, A.W.; Westerveld, S.M. Comparing Soluble to Controlled-Release Nitrogen Fertilizers: Storage Cabbage Yield, Profit Margins, and N Use Efficiency. Can. J. Plant Sci. 2018, 98, 815–829. [Google Scholar] [CrossRef]
- Reddy, K.S.; Tripathi, A.K.; Singh, M.; Swarup, A.; Sudhir, K. Changes in Soil Sulfur Fractions and S Mineralization in a Kandic Paleustalf after Long-Term Cropping with Fertilizer and Farmyard Manure Applications. Agrochimica 2002, 46, 123–137. [Google Scholar]
Soil Properties | pH KCL | SOC * | P2O5 | K2O | S-SO4 ** | Nitrogen (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|
- | % | mg kg−1 | Min. N | NO3-N | NH4-N | |||
Depth (cm) | 0–20 | 0–30 | ||||||
2018 | 6.5 | 1.31 | 165 | 182 | 4.6 | 11.92 | 10.11 | 1.81 |
2019 | 7.4 | 1.41 | 249 | 198 | 5.9 | 13.68 | 11.82 | 1.86 |
Process | 2018 | 2019 |
---|---|---|
Plowing (20–22 cm) | 25 October 2017 | 27 October 2018 |
Surface tillage | 25 April 2018 | 29 April 2019 |
Fertilization | 2 May 2018 | 6 May 2019 |
Maize sowing | 3 May 2018 | 7 May 2019 |
Harvest * | 23 August 2018 | 20 September 2019 |
Treatments | Plants’ Density | Green Matter | Dry Matter | % Moisture |
---|---|---|---|---|
1000 Plant ha−1 | t ha−1 | |||
2018 | ||||
Control | 92.50 a | 17.90 a | 6.29 | 64.86 |
Urea | 97.50 b | 20.00 b | 7.52 | 62.40 |
Urea + (NH4)2SO4 | 100.00 b | 22.33 c | 7.59 | 66.00 |
Urea + CaSO4 | 98.75 b | 21.88 c | 7.84 | 64.16 |
CaSO4.4urea | 97.50 b | 22.05 c | 8.43 | 61.77 |
SE± | 1.21 | 0.38 | 0.53 | - |
p-value | 0.009 | 0.000 | ns * | - |
2019 | ||||
Control | 92.83 a | 17.47a | 8.92 | 48.94 |
Urea | 93.98 a | 18.93a | 9.83 | 48.07 |
Urea + (NH4)2SO4 | 97.60 ab | 18.79a | 9.85 | 47.58 |
Urea + CaSO4 | 95.55 ab | 18.22a | 9.66 | 46.98 |
CaSO4.4urea | 100.00 b | 22.12b | 11.41 | 48.42 |
SE± | 1.59 | 0.85 | 0.92 | - |
p-value | 0.049 | 0.020 | ns * | - |
Treatments | Developed Corn cobs | Fresh Cobs Yields | Dry Cobs Yields | Grain Yields | 1000 Grain |
---|---|---|---|---|---|
1000 ha−1 | t ha−1 | g. | |||
2018 | |||||
Control | 80.00 a | 12.14 a | 7.82 a | 6.86 a | 222.52 |
Urea | 93.75 b | 17.39 b | 11.34 b | 9.17 b | 247.02 |
Urea + (NH4)2SO4 | 96.25 b | 19.58 b | 12.44 b | 10.14 b | 249.56 |
Urea + CaSO4 | 100.94 b | 18.80 b | 12.20 b | 8.97 b | 226.43 |
CaSO4·4urea | 102.19 b | 18.70 b | 12.38 b | 9.86 b | 245.75 |
SE± | 2.99 | 1.27 | 0.77 | 0.59 | 9.11 |
p-value | 0.002 | 0.009 | 0.005 | 0.016 | ns * |
2019 | |||||
Control | 83.25 a | 16.63 a | 10.07 a | 8.50 a | 265.00 a |
Urea | 88.00 a | 17.35 ab | 11.85 a | 9.75 b | 285.97 b |
Urea + (NH4)2SO4 | 89.25 a | 19.23 bc | 11.82 a | 10.50 bc | 287.17 b |
Urea + CaSO4 | 85.00 a | 18.44 abc | 11.87 a | 10.77 c | 285.76 b |
CaSO4·4urea | 97.00 b | 20.17 c | 14.53 b | 12.00 d | 286.02 b |
SE± | 2.13 | 0.77 | 0.59 | 0.31 | 4.66 |
p-value | 0.006 | 0.044 | 0.003 | 0.000 | 0.024 |
Treatments | Grain N % | Crude Protein % | Starch % | Grain Yields | ||||
---|---|---|---|---|---|---|---|---|
2018 | ||||||||
Control | 1.24 a | 7.77 a | 69.71 | 6.86 a 9.17 b 10.14 b 8.97 b 9.86 b | ||||
Urea | 1.34 b | 8.39 b | 68.73 | |||||
Urea + (NH4)2SO4 | 1.40 b | 8.78 b | 68.86 | |||||
Urea + CaSO4 | 1.38 b | 8.62 b | 67.60 | |||||
CaSO4·4urea | 1.42 b | 8.87 b | 68.79 | |||||
p-value = | 0.007 | 0.007 | ns * | 0.016 | ||||
2019 | ||||||||
Control | 1.38 a | 8.60 a | 74.64 b | 8.50 a 9.75 b 10.50 bc 10.77 c 12.00 d | ||||
Urea | 1.40 a | 8.77 a | 74.99 b | |||||
Urea + (NH4)2SO4 | 1.43 ab | 8.94 ab | 73.41 b | |||||
Urea + CaSO4 | 1.43 ab | 8.93 ab | 71.67 a | |||||
CaSO4·4urea | 1.47 b | 9.22 b | 70.16 a | |||||
p-value = | 0.049 | 0.056 | 0.000 | 0.000 | ||||
Correlation coefficient | P < F | R | P < F | R | P < F | R | P < F | R |
2018 | ||||||||
Soil mineral N | <0.000 | 0.94 | <0.000 | 0.93 | ns * | −0.03 | <0.000 | 0.74 |
Soil available sulfur | <0.000 | 0.79 | <0.000 | 0.79 | ns * | −0.07 | <0.000 | 0.55 |
Total N in grains | - | - | <0.000 | 0.99 | <0.000 | −0.77 | <0.000 | 0.81 |
2019 | ||||||||
Soil mineral N | <0.05 | 0.46 | <0.05 | 0.47 | ns * | −0.02 | <0.000 | 0.62 |
Soil available sulfur | <0.000 | 0.61 | <0.000 | 0.58 | ns * | −0.07 | <0.000 | 0.71 |
Total N in grains | - | - | <0.000 | 0.98 | <0.000 | −0.39 | <0.000 | 0.76 |
Treatments | N Uptake in Grain (kg ha−1) | ANR (%) in Grain | ||||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | |||
Control | 77.24 a | 117.30 a | 0.00 a | 0.00 a | ||
Urea | 123.13 b | 136.76 b | 30.66 b | 12.98 b | ||
Urea + (NH4)2SO4 | 142.45 b | 168.47 cd | 43.44 b | 34.12 cd | ||
Urea + CaSO4 | 123.68 b | 153.86 bc | 30.94 b | 24.38 bc | ||
CaSO4·4urea | 139.90 b | 173.31 d | 41.79 b | 37.34 d | ||
p-value | <0.000 | <0.000 | <0.000 | <0.000 | ||
Correlation coefficient | P < F | R | P < F | R | ||
Soil mineral N | <0.000 | 0.79 | <0.001 | 0.69 | - | - |
Soil available sulfur | <0.003 | 0.62 | <0.000 | 0.73 | - | - |
Total N in grains | <0.000 | 0.87 | <0.000 | 0.86 | - | - |
Grains yield | <0.000 | 0.99 | <0.000 | 0.96 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swify, S.; Avizienyte, D.; Mazeika, R.; Braziene, Z. Comparative Study Effect of Urea-Sulfur Fertilizers on Nitrogen Uptake and Maize Productivity. Plants 2022, 11, 3020. https://doi.org/10.3390/plants11223020
Swify S, Avizienyte D, Mazeika R, Braziene Z. Comparative Study Effect of Urea-Sulfur Fertilizers on Nitrogen Uptake and Maize Productivity. Plants. 2022; 11(22):3020. https://doi.org/10.3390/plants11223020
Chicago/Turabian StyleSwify, Samar, Dovile Avizienyte, Romas Mazeika, and Zita Braziene. 2022. "Comparative Study Effect of Urea-Sulfur Fertilizers on Nitrogen Uptake and Maize Productivity" Plants 11, no. 22: 3020. https://doi.org/10.3390/plants11223020
APA StyleSwify, S., Avizienyte, D., Mazeika, R., & Braziene, Z. (2022). Comparative Study Effect of Urea-Sulfur Fertilizers on Nitrogen Uptake and Maize Productivity. Plants, 11(22), 3020. https://doi.org/10.3390/plants11223020