Chemical Composition and Evaluation of Insecticidal Activity of Seseli bocconei Essential Oils against Stored Products Pests
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis of Essential Oils
2.2. Toxicity Bioassay
3. Materials and Methods
3.1. Plant Materials
3.2. Essential Oils Extraction
3.3. Chemical Analysis of Essential Oils
3.4. Insects
3.5. Toxicity Bioassays
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant. Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep.; Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Schneidmiller, R.G.; Hoover, D.R. Essential oils and their compositions as spatial repellents for pestiferous social wasps. Pest. Manag. Sci. 2013, 69, 542–552. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Carlini, C.R.; Grossi-de Sa, M.F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 2002, 40, 1515–1539. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroski, R.J.; Stanley, D.W. Natural compounds for pest and weed control. J. Agric. Food. Chem. 2009, 57, 8171–8179. [Google Scholar] [CrossRef]
- Tak, J.H.; Jovel, E.; Isman, M.B. Synergistic interactions among the major constituents of lemongrass essential oil against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J. Pest. Sci. 2017, 90, 735–744. [Google Scholar] [CrossRef]
- Hasan, M.M.; Phillips, T.W. Mass-rearing of the redlegged ham beetle, Necrobia rufipes De Geer (Coleoptera: Cleridae) for laboratory research. J. Stored Prod. Res. 2010, 46, 38–42. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored. Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Han, W.; Tian, Y.; Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. 2020, 27, 21. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Cianfaglione, K.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Tlak Gajger, I.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crop. Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Canale, A.; Benelli, G. Promising insecticidal efficacy of the essential oils from the halophyte Echinophora spinosa (Apiaceae) growing in Corsica Island, France. Environ. Sci. Pollut. Res. 2019, 27, 14454–14464. [Google Scholar] [CrossRef] [PubMed]
- Piri, A.; Sahebzadeh, N.; Zibaee, A.; Sendi, J.J.; Shamakhi, L.; Shahriari, M. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 2020, 256, 127103. [Google Scholar] [CrossRef] [PubMed]
- Skuhrovec, J.; Douda, O.; Zouhar, M.; Manasova, M.; Bozik, M.; Kloucek, P. Insecticidal and behavioral effect of microparticles of Pimpinella anisum essential oil on larvae of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2020, 113, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; d’Auvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against the filiarasis vector Culex quinquefasciatus and the tobacco cutworm Spodoptera littoralis. Ind. Crop. Prod. 2017, 109, 603–620. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Bruno, M.; Benelli, G. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodiv. 2017, 14, e1700382. [Google Scholar] [CrossRef] [PubMed]
- Badalamenti, N.; Ilardi, V.; Bruno, M.; Pavela, R.; Boukouvala, M.; Kavallieratos, N.C.; Maggi, F.; Canale, A.; Benelli, G. Chemical composition and broad-spectrum insecticidal activity of the flower essential oil from an ancient Sicilian food plant, Ridolfia segetum. Agriculture 2021, 11, 304. [Google Scholar] [CrossRef]
- Cinar, A.S.; Bakar-Ates, F.; Onder, A. Seseli petraeum M. Bieb. (Apiaceae) significantly inhibited cellular growth of a549 lung cancer cells through g0/g1 cell cycle arrest. An. Acad. Bras. Cienc. 2020, 92, e20191533. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea. CUP 1968, 2, 334–338. [Google Scholar] [CrossRef]
- Kupeli, E.; Tosun, A.; Yesilada, E. Anti-inflammatory and antinociceptive activities of Seseli L. species (Apiaceae) growing in Turkey. J. Ethnopharmacol. 2006, 104, 310–314. [Google Scholar] [CrossRef]
- Tandan, S.K.; Chandra, S.; Tripathi, H.C.; Lal, J. Pharmacological actions of seselin, a coumarin from Seseli indicum seeds. Fitoterapia 1990, 61, 360–363. [Google Scholar]
- Ozturk, S.; Ercisli, S. Chemical composition and in vitro antibacterial activity of Seseli libanotis. World J. Microbiol. Biotechnol. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Ilic, M.D.; Jovanovic, V.P.S.; Mitic, V.D.; Jovanovic, O.P.; Mihajilov-Krstev, T.M.; Markovic, M.S.; Stojanovic, G.S. Comparison of chemical composition and biological activities of Seseli rigidum fruit essential oils from Serbia. Open Chem. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Hu, C.Q.; Chang, J.J.; Lee, K.H. Antitumor agents, 115. Seselidiol, a new cytotoxic polyacetylene from Seseli mairei. J. Nat. Prod. 1990, 53, 932–935. [Google Scholar] [CrossRef]
- Xie, L.; Takeuchi, Y.; Cosentino, L.M.; Lee, K.-H. Anti-AIDS Agents. 37.1 Synthesis and structure activity relationships of (3’R,4’R)-(þ)-cis-khellactone derivatives as novel potent anti-HIV agents. J. Med. Chem. 1999, 42, 2662–2672. [Google Scholar] [CrossRef]
- Chun, J.; Tosun, A.; Kim, Y.S. Anti-inflammatory effect of corymbocoumarin from Seseli gummiferum subsp. corymbosum through suppression of NF-jB signaling pathway and induction of HO-1 expression in LPS-stimulated RAW 264.7 cells. Int. Immunopharmacol. 2016, 31, 207–215. [Google Scholar] [CrossRef]
- Badalamenti, N.; Vaglica, A.; Ilardi, V.; Bruno, M. The chemical composition of essential oil from Seseli bocconei (Apiaceae) aerial parts growing in Sicily (Italy). Nat. Prod. Res, 2022; in press. [Google Scholar] [CrossRef]
- Badalamenti, N.; Vaglica, A.; Ilardi, V.; Bruno, M. The chemical composition of essential oil from Seseli tortuosum subsp. tortuosum and S. tortuosum subsp. maritimum (Apiaceae) aerial parts growing in Sicily (Italy). Nat. Prod. Res. 2022; in press. [Google Scholar] [CrossRef]
- Pignatti, S.; Guarino, R.; La Rosa, M. 176. Apiaceae. In Flora d’Italia, 2nd ed.; Edagricole, New Business Media: Bologna, Italy, 2018; Volume 4, p. 3560. [Google Scholar]
- Liang, J.; Ning, A.; Lu, P.; An, Y.; Wang, Z.; Zhang, J.; He, C.; Wang, Y. Biological activities and synergistic effects of Elsholtzia stauntoni essential oil from flowers and leaves and their major constituents against Tribolium castaneum. Eur. Food Res. Technol. 2021, 247, 2609–2619. [Google Scholar] [CrossRef]
- Mehta, V.; Kumar, S.; Jaram, C.S. Damage potential, effect on germination, and development of Sitophilus oryzae (Coleoptera: Curculionidae) on wheat grains in Northwestern Himalayas. J. Insect. Sci. 2021, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.A.; Al-Anany, M.S.; Abdelgaleil, S.A. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by com-bined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020, 88, 101663. [Google Scholar] [CrossRef]
- Ramzan, M.; Chahal, B.S.; Judge, B.K. Storage losses to some commonly used pulses caused by pulse beetle, Callosobruchus maculatus (Fab.). J. Insect. Sci. 1990, 3, 106–108. [Google Scholar]
- Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Maxia, A. Isolation of Seseli bocconi Guss., subsp. praecox Gamisans (Apiaceae) volatile oil by supercritical carbon dioxide extraction. Nat. Prod. Res. 2006, 20, 820–826. [Google Scholar] [CrossRef]
- Kovacevic, N.N.; Marcetic, M.D.; Lakusic, D.V.; Lakusic, B.S. Composition of the essential oils of different parts of Seseli annuum L. (Apiaceae). J. Essent. Oil Bear. Plants 2016, 19, 671–677. [Google Scholar] [CrossRef]
- Todorova, M.; Trendafilova, A.; Dimitrov, D. Essential oil composition of Seseli rigidum Waldst. from Bulgaria. C. R. Acad. Bulg. Sci. 2013, 66, 991–996. [Google Scholar] [CrossRef]
- Chizzola, R. Chemodiversity of essential oils in Seseli libanotis (L.) W.D.J.Koch (Apiaceae) in Central Europe. Chem. Biodivers. 2019, 16, e1900059. [Google Scholar] [CrossRef] [PubMed]
- Petrović, G.M.; Stamenković, J.G.; Jovanović, O.P.; Stojanović, G.S. Chemical compositions of the essential oils and headspace volatiles of Seseli peucedanoides plant parts. Nat. Prod. Comm. 2019, 14, 1934578X19850691. [Google Scholar] [CrossRef]
- Gonçalves, M.J.; Tavares, A.C.; Cavaleiro, C.; Cruz, M.T.; Lopes, M.C.; Canhoto, J.; Salgueiro, L. Composition, antifungal activity and cytotoxicity of the essential oils of Seseli tortuosum L. and Seseli montanum subsp. peixotoanum (Samp.) M. Laínz from Portugal. Ind. Crop. Prod. 2012, 39, 204–209. [Google Scholar] [CrossRef]
- Stojkovic, S.; Petrovic, S.; Kukic, J.; Dzamic, A.; Ristic, M.; Milenkovic, M.; Glamoclija, J.; Sokovic, M.; Stojkovic, D. Chemical composition and antimicrobial and antioxidant activity of Seseli rigidum flower essential oil. Chem. Nat. Comp. 2009, 45, 253–256. [Google Scholar] [CrossRef]
- Tkachev, A.V.; Korolyuk, E.A.; König, W.; Kuleshova, Y.V.; Letchamo, W. Chemical screening of volatile oil-bearing flora of siberia VIII.: Variations in chemical composition of the essential oil of wild growing Seseli buchtormense (Fisch. ex Sprengel) W. Koch from different altitudes of Altai region. J. Essent. Oil Res. 2006, 18, 100–103. [Google Scholar] [CrossRef]
- Robinson, C.; Portier, C.J.; Čavoški, A.; Mesnage, R.; Roger, A.; Clausing, P.; Whaley, P.; Muilerman, H.; Lyssimachou, A. Achieving a high level of protection from pesticides in Europe: Problems with the current risk assessment procedure and solutions. Eur. J. Risk Regul. 2020, 11, 450–480. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.L.; Liu, Q.R.; Chu, S.S.; Jiang, G.H. Insecticidal activity and chemical composition of the essential oils of Artemisia lavandulaefolia and Artemisia sieversiana from China. Chem. Biodivers. 2010, 7, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Ammar, S.; Noui, H.; Djamel, S.; Madani, S.; Maggi, F.; Bruno, M.; Romano, D.; Canale, A.; Pavela, R.; Benelli, G. Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides) as new botanical insecticides? Environ. Sci. Pollut. Res. 2020, 27, 26594–26604. [Google Scholar] [CrossRef] [PubMed]
- Sundufu, A.J.; Shoushan, H. Chemical composition of the essential oils of Lantana camara L. occurring in south China. Flavour Fragr. J. 2004, 19, 229–232. [Google Scholar] [CrossRef]
- Saxena, R.C.; Dixit, O.P.; Harshan, V. Insecticidal action of Lantana camara against Callosobruchus chinensis (Coleoptera: Bruchidae). J. Stored Prod. Res. 1992, 28, 279–281. [Google Scholar] [CrossRef]
- Pereira, K.D.C.; Quintela, E.D.; do Nascimento, V.A.; da Silva, D.J.; Rocha, D.V.; Silva, J.F.A.; Arthurs, S.P.; Forim, M.R.; Silva, F.G.; Cazal, C.D.M. Characterization of Zanthoxylum rhoifolium (Sapindales: Rutaceae) Essential Oil Nanospheres and Insecticidal Effects to Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Plants 2022, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.C.; Simões, R.C.; Lima, C.A.; da Silva, F.; Nunomura, S.M.; Roque, R.A.; Tadei, W.P.; Nunomura, R. Essential oil of Piper purusanum C. DC (Piperaceae) and its main sesquiterpenes: Biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. Environ. Sci. Pollut. Res. Int. 2022, 29, 47242–47253. [Google Scholar] [CrossRef]
- Tozlu, E.; Cakir, A.; Kordali, S.; Tozlu, G.; Ozer, H.; Akcin, T.A. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Sci. Hortic. 2011, 130, 9–17. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen 2016, 19, 565–571. [Google Scholar] [CrossRef]
- Grzywacz, D.; Stevenson, P.C.; Mushobozi, W.L.; Belmain, S.; Wilson, K. The use of indigenous ecological resources for pest control in Africa. Food Sec. 2014, 6, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Basile, S.; Badalamenti, N.; Riccobono, O.; Guarino, S.; Ilardi, V.; Bruno, M.; Peri, E. Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests. Molecules 2022, 27, 588. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. 10 March 2020. 2.8.12. Determination of Essential Oils in Herbal Drugs. 307. Available online: https://file.wuxuwang.com/yaopinbz/EP7/EP7.0_01__208.pdf (accessed on 10 October 2022).
- Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules 2022, 27, 1580. [Google Scholar] [CrossRef] [PubMed]
- Throne, J.E.; Weaver, D.K.; Chew, V.; Baker, J.E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 1995, 88, 1510–1512. [Google Scholar] [CrossRef]
No. | Compounds a | LRI b | LRI c | Flowers d | Leaves d | Stems d |
---|---|---|---|---|---|---|
1 | α-Pinene e | 1002 | 1017 | 0.89 | 0.88 | 4.41 |
2 | 3-Thujene | 1014 | 1030 | 5.13 | - | - |
3 | β-Pinene e | 1079 | 1099 | 1.71 | 0.72 | 1.48 |
4 | Sabinene e | 1095 | 1115 | 19.22 | 1.34 | 15.26 |
5 | α-Phellandrene | 1156 | 1174 | 0.76 | - | - |
6 | β-Myrcene e | 1159 | 1176 | 1.45 | - | - |
7 | α-Terpinene | 1163 | 1179 | 3.69 | - | - |
8 | Limonene e | 1177 | 1193 | 25.16 | 3.03 | 16.80 |
9 | Sylvestrene | 1194 | 1205 | 33.62 | - | - |
10 | α-Cubebene | 1442 | 1461 | - | 0.84 | 0.23 |
11 | δ-Elemene | 1469 | 1479 | 0.13 | - | 1.76 |
12 | α-Copaene | 1495 | 1500 | - | 2.07 | 1.78 |
13 | Elixene | 1497 | 1514 | - | 1.56 | - |
14 | Isoledene | 1499 | - | - | 1.50 | 3.09 |
15 | epi-Bicyclosesquiphellandrene | 1617 | 1633 | - | 3.64 | - |
16 | α-Amorphene | 1659 | 1679 | - | 7.30 | 3.21 |
17 | γ-Muurolene | 1666 | 1684 | - | 7.83 | 9.08 |
18 | Germacrane D e | 1698 | 1706 | 3.27 | 36.49 | 24.53 |
19 | α-Muurolene | 1731 | 1740 | - | 7.09 | - |
20 | δ-Cadinene | 1738 | 1744 | - | 16.78 | 9.59 |
Monoterpene Hydrocarbons | 91.63 | 5.97 | 37.95 | |||
Sesquiterpene Hydrocarbons | 3.40 | 85.10 | 53.27 | |||
Total | 95.03 | 91.07 | 91.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaglica, A.; Peri, E.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Guarino, S. Chemical Composition and Evaluation of Insecticidal Activity of Seseli bocconei Essential Oils against Stored Products Pests. Plants 2022, 11, 3047. https://doi.org/10.3390/plants11223047
Vaglica A, Peri E, Badalamenti N, Ilardi V, Bruno M, Guarino S. Chemical Composition and Evaluation of Insecticidal Activity of Seseli bocconei Essential Oils against Stored Products Pests. Plants. 2022; 11(22):3047. https://doi.org/10.3390/plants11223047
Chicago/Turabian StyleVaglica, Alessandro, Ezio Peri, Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, and Salvatore Guarino. 2022. "Chemical Composition and Evaluation of Insecticidal Activity of Seseli bocconei Essential Oils against Stored Products Pests" Plants 11, no. 22: 3047. https://doi.org/10.3390/plants11223047
APA StyleVaglica, A., Peri, E., Badalamenti, N., Ilardi, V., Bruno, M., & Guarino, S. (2022). Chemical Composition and Evaluation of Insecticidal Activity of Seseli bocconei Essential Oils against Stored Products Pests. Plants, 11(22), 3047. https://doi.org/10.3390/plants11223047