Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Isolation
2.2. Physical Properties of Essential Oil
2.3. Essential Oil Compounds’ Identification
2.4. Tolerance Studies: Cytotoxicity Assay
2.5. In Vivo Anti-Inflammatory Efficacy Studies: Arachidonic Acid (AA)-Induced Inflammation
2.5.1. Stratum Corneum Hydration (SCH) and Thickness Evaluation
2.5.2. Histological Analysis
2.5.3. Pro-Inflammatory Cytokines’ Determination
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Essential Oil Isolation
4.4. Determination of Physical Properties of Essential Oil
4.5. Determination of the Chemical Composition of Essential Oil
4.6. Tolerance Studies: Cytotoxicity Assay
4.7. Anti-Inflammatory Efficacy Studies: Arachidonic Acid (AA)-Induced Edema Model in Mouse Ear
4.7.1. Study Protocol
4.7.2. Stratum Corneum Hydration (SCH) and Thickness Evaluation
4.7.3. Histological Analysis
4.7.4. Pro-Inflammatory Cytokines Determination
4.7.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, W.J.; Tan, Z.; Lai, X.F.; Xu, Y.N.; Mai, C.L.; Zhang, J.; Lin, Z.J.; Liu, X.G.; Sun, S.L.; Zhou, L.J. Topical delivery of l-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation. Chem. Biol. Interact. 2018, 284, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.C.; Nicolaou, A. Bioactive lipid mediators in skin inflammation and immunity. Prog. Lipid Res. 2013, 52, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Pireddu, R.; Caddeo, C.; Valenti, D.; Marongiu, F.; Scano, A.; Ennas, G.; Lai, F.; Fadda, A.M.; Sinico, C. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf. B Biointerfaces 2016, 143, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Dainichi, T.; Hanakawa, S.; Kabashima, K. Classification of inflammatory skin diseases: A proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity. J. Derm. Sci. 2014, 76, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, T.A.; El-Hela, A.A.; El-Hefnawy, H.M.; Al-Taweel, A.M.; Perveen, S. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt. Iran. J. Pharm. Res. IJPR 2017, 16, 328–337. [Google Scholar]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef]
- Perveen, S. Introductory Chapter. In Terpenes and Terpenoids; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Frangedakis, E.; Shimamura, M.; Villarreal, J.C.; Li, F.-W.; Tomaselli, M.; Waller, M.; Sakakibara, K.; Renzaglia, K.S.; Szövényi, P. The hornworts: Morphology, evolution and development. New Phytol. 2021, 229, 735–754. [Google Scholar] [CrossRef]
- Pérez, A.J.; Hernández, C.; Romero-Saltos, H.; Valencia, R. Árboles Emblemáticos de Yasuní, Ecuador. Available online: https://bioweb.bio/floraweb/arbolesyasuni/FichaEspecie/Dacryodes%20peruviana (accessed on 29 September 2020).
- Torre, L.d.l.; Navarrete, H.; Muriel, M.P.; Macía Barco, M.J.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador and Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador; Aarhus, Denmark, 2008. [Google Scholar]
- Jørgesen, P.M.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador. Available online: http://legacy.tropicos.org/ProjectAdvSearch.aspx?projectid=2 (accessed on 11 July 2020).
- Mestanza-Ramón, C.; Henkanaththegedara, S.M.; Vásconez Duchicela, P.; Vargas Tierras, Y.; Sánchez Capa, M.; Constante Mejía, D.; Jimenez Gutierrez, M.; Charco Guamán, M.; Mestanza Ramón, P. In-Situ and Ex-Situ Biodiversity Conservation in Ecuador: A Review of Policies, Actions and Challenges. Diversity 2020, 12, 315. [Google Scholar] [CrossRef]
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar] [CrossRef]
- Badalamenti, N.; Bruno, M.; Gagliano Candela, R.; Maggi, F. Chemical composition of the essential oil of Elaeoselinum asclepium (L.) Bertol subsp. meoides (Desf.) Fiori (Umbelliferae) collected wild in Central Sicily and its antimicrobial activity. Nat. Prod. Res. 2020, 36, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-K.; Lee, S.-G.; Choi, D.-H.; Park, J.-D.; Ahn, Y.-J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stored Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Piccinelli, A.C.; Santos, J.A.; Konkiewitz, E.C.; Oesterreich, S.A.; Formagio, A.S.N.; Croda, J.; Ziff, E.B.; Kassuya, C.A.L. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutr. Neurosci. 2015, 18, 217–224. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Churchill Livingstone; Elsevier: London, UK, 2014. [Google Scholar]
- Erasto, P.; Viljoen, A.M. Limonene—A Review: Biosynthetic, Ecological and Pharmacological Relevance. Nat. Prod. Commun. 2008, 3, 1934578X0800300728. [Google Scholar] [CrossRef] [Green Version]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.; Lima, B.; Agüero, M.B.; Lopez, M.L.; Hadad, M.; Zygadlo, J.; Caballero, D.; Stariolo, R.; Suero, E.; Feresin, G.E.; et al. Chemical composition, antibacterial and repellent activities of Azorella trifurcata, Senecio pogonias, and Senecio oreophyton essential oils. Arab. J. Chem. 2018, 11, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.D.; Lopes, E.M.C.; Silva, M.C.d.; Cordeiro, I.; Young, M.C.M.; Sobral, M.E.G.; Moreno, P.R.H. Chemical composition and acetylcholinesterase inhibitory activity of essential oils of Myrceugenia myrcioides(Cambess.) O. Berg and Eugenia riedelianaO. Berg, Myrtaceae. Rev. Bras. Farmacogn. 2010, 20, 175–179. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Sosa, L.; Granda, P.C.; Bozal, N.; Diaz-Garrido, N.; Chulca-Torres, B.; Calpena, A.C. Development of a Topical Amphotericin B and Bursera graveolens Essential Oil-Loaded Gel for the Treatment of Dermal Candidiasis. Pharmaceuticals 2021, 14, 1033. [Google Scholar] [CrossRef] [PubMed]
- Sarango-Granda, P.; Silva-Abreu, M.; Calpena, A.C.; Halbaut, L.; Fabrega, M.J.; Rodriguez-Lagunas, M.J.; Diaz-Garrido, N.; Badia, J.; Espinoza, L.C. Apremilast Microemulsion as Topical Therapy for Local Inflammation: Design, Characterization and Efficacy Evaluation. Pharmaceutics 2020, 13, 484. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Vera-Garcia, R.; Silva-Abreu, M.; Domenech, O.; Badia, J.; Rodriguez-Lagunas, M.J.; Clares, B.; Calpena, A.C. Topical Pioglitazone Nanoformulation for the Treatment of Atopic Dermatitis: Design, Characterization and Efficacy in Hairless Mouse Model. Pharmaceutics 2020, 12, 255. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, M.; Hwang, S.W. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J. Neuroinflamm. 2020, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; et al. Interleukins, from 1 to 37, and interferon-gamma: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721.e70. [Google Scholar] [CrossRef]
- Lin, Z.M.; Ma, M.; Li, H.; Qi, Q.; Liu, Y.T.; Yan, Y.X.; Shen, Y.F.; Yang, X.Q.; Zhu, F.H.; He, S.J.; et al. Topical administration of reversible SAHH inhibitor ameliorates imiquimod-induced psoriasis-like skin lesions in mice via suppression of TNF-alpha/IFN-gamma-induced inflammatory response in keratinocytes and T cell-derived IL-17. Pharm. Res. 2018, 129, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Kono, T.; Sauder, D.N.; McKenzie, R.C. IL-8 gene expression and production in human keratinocytes and their modulation by UVB. J. Investig. Dermatol. 1993, 101, 690–694. [Google Scholar] [CrossRef] [Green Version]
- Dhaouadi, T.; Chahbi, M.; Haouami, Y.; Sfar, I.; Abdelmoula, L.; Ben Abdallah, T.; Gorgi, Y. IL-17A, IL-17RC polymorphisms and IL17 plasma levels in Tunisian patients with rheumatoid arthritis. PLoS ONE 2018, 13, e0194883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, E.S.; Lee, C.K.; Specht, C.A.; Yadav, B.; Huang, H.; Akalin, A.; Huh, J.R.; Mueller, C.; Levitz, S.M. Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma. PLoS Pathog. 2017, 13, e1006175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal Gel Formulation of Alpha Phellandrene for the Transdermal Delivery in Gout. Adv. Pharm. Bull. 2021, 11, 137–149. [Google Scholar] [CrossRef]
- Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- d’Alessio, P.A.; Mirshahi, M.; Bisson, J.-F.; Bene, M.C. Skin repair properties of dLimonene and perillyl alcohol in murine models. Anti-Inflammatory Anti-Allergy Agents. Med. Chem. 2014, 13, 29–35. [Google Scholar]
- Hansen, J.S.; Norgaard, A.W.; Koponen, I.K.; Sorli, J.B.; Paidi, M.D.; Hansen, S.W.; Clausen, P.A.; Nielsen, G.D.; Wolkoff, P.; Larsen, S.T. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J. Immunotoxicol. 2016, 13, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.M.; Lin, J.Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem. 2013, 141, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Lappas, C.M.; Lappas, N.T. D-Limonene modulates T lymphocyte activity and viability. Cell Immunol. 2012, 279, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep. 2017, 15, 2339–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valarezo, E.; Morocho, V.; Cartuche, L.; Chamba-Granda, F.; Correa-Conza, M.; Jaramillo-Fierro, X.; Meneses, M.A. Variability of the Chemical Composition and Bioactivity between the Essential Oils Isolated from Male and Female Specimens of Hedyosmum racemosum (Ruiz & Pav.) G. Don. Molecules 2021, 26, 4613. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST 05. Mass Spectral Library (NIST/EPA/NIH); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005.
CN | Rt | Compound | RI | RIf | % | SD | Type | CF | MM (Da) |
---|---|---|---|---|---|---|---|---|---|
1 | 5.83 | α-Thujene | 926 | 924 | 1.18 | 0.05 | MH | C10H16 | 136.13 |
2 | 6.08 | α-Pinene | 932 | 932 | 8.45 | 0.63 | MH | C10H16 | 136.13 |
3 | 6.7 | Camphene | 947 | 946 | 0.16 | 0.01 | MH | C10H16 | 136.13 |
4 | 7.6 | Sabinene | 969 | 969 | 0.80 | 0.07 | MH | C10H16 | 136.13 |
5 | 7.76 | β-Pinene | 973 | 974 | 3.39 | 0.05 | MH | C10H16 | 136.13 |
6 | 8.29 | Myrcene | 986 | 988 | 0.82 | 0.02 | MH | C10H16 | 136.13 |
7 | 9.07 | α-Phellandrene | 1005 | 1002 | 52.35 | 3.14 | MH | C10H16 | 136.13 |
8 | 9.28 | δ-3-Carene | 1010 | 1008 | 0.08 | 0.01 | MH | C10H16 | 136.13 |
9 | 9.4 | α-Terpinene | 1013 | 1014 | 0.31 | 0.03 | MH | C10H16 | 136.13 |
10 | 9.73 | p-Cymene | 1021 | 1020 | 5.24 | 0.56 | MH | C10H14 | 134.1 |
11 | 9.89 | Limonene | 1025 | 1024 | 22.51 | 1.68 | MH | C10H16 | 136.13 |
12 | 11.12 | γ-Terpinene | 1055 | 1054 | 0.12 | 0.01 | MH | C10H16 | 136.13 |
13 | 12.23 | Terpinolene | 1082 | 1086 | 2.08 | 0.17 | MH | C10H16 | 136.13 |
14 | 14.61 | Camphor | 1140 | 1141 | 0.35 | 0.03 | OM | C10H16O | 152.12 |
15 | 15.84 | Terpinen-4-ol | 1170 | 1174 | 0.17 | 0.01 | OM | C10H18O | 154.14 |
16 | 17.15 | γ-Terpineol | 1202 | 1199 | 0.98 | 0.08 | OM | C10H18O | 154.14 |
17 | 18.54 | Ascaridole | 1236 | 1234 | 0.13 | 0.01 | OM | C10H16O2 | 168.12 |
18 | 22.73 | δ-Elemene | 1338 | 1335 | 0.06 | 0.00 | SH | C15H24 | 204.19 |
19 | 23.87 | α-Copaene | 1366 | 1374 | 0.08 | 0.01 | SH | C15H24 | 204.19 |
20 | 25.88 | trans-Caryophyllene | 1415 | 1417 | 0.21 | 0.02 | SH | C15H24 | 204.19 |
21 | 27.36 | α-Humulene | 1451 | 1452 | tr | SH | C15H24 | 204.19 | |
22 | 28.38 | Germacrene D | 1476 | 1480 | 0.13 | 0.01 | SH | C15H24 | 204.19 |
23 | 29.74 | δ-Amorphene | 1509 | 1511 | 0.05 | 0.00 | SH | C15H24 | 204.19 |
24 | 29.94 | β-Curcumene | 1514 | 1514 | 0.14 | 0.01 | SH | C15H24 | 204.19 |
Monoterpene hydrocarbons (MH) | 97.48 | ||||||||
Oxygenated monoterpenes (OM) | 1.63 | ||||||||
Sesquiterpene hydrocarbons (SH) | 0.67 | ||||||||
Total identified | 99.78 |
Gene | Primer Sequence (5′ to 3′) | Gene Accession Number |
---|---|---|
GAPDH | FW: AGCTTGTCATCAACGGGAAG | BC023196.2 |
RV: TTTGATGTTAGTGGGGTCTCG | ||
IL-8 | FW: GCTGTGACCCTCTCTGTGAAG | X53798.1 |
RV: CAAACTCCATCTTGTTGTGTC | ||
IL-17A | FW: TTTTCAGCAAGGAATGTGGA | NM_010552.3 |
RV: TTCATTGTGGAGGGCAGAC | ||
TNFα | FW: AACTAGTGGTGCCAGCCGAT | NM_013693.3 |
RV: CTTCACAGAGCAATGACTCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza, L.C.; Valarezo, E.; Fábrega, M.J.; Rodríguez-Lagunas, M.J.; Sosa, L.; Calpena, A.C.; Mallandrich, M. Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. Plants 2022, 11, 3104. https://doi.org/10.3390/plants11223104
Espinoza LC, Valarezo E, Fábrega MJ, Rodríguez-Lagunas MJ, Sosa L, Calpena AC, Mallandrich M. Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. Plants. 2022; 11(22):3104. https://doi.org/10.3390/plants11223104
Chicago/Turabian StyleEspinoza, Lupe Carolina, Eduardo Valarezo, María José Fábrega, María José Rodríguez-Lagunas, Lilian Sosa, Ana Cristina Calpena, and Mireia Mallandrich. 2022. "Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil" Plants 11, no. 22: 3104. https://doi.org/10.3390/plants11223104
APA StyleEspinoza, L. C., Valarezo, E., Fábrega, M. J., Rodríguez-Lagunas, M. J., Sosa, L., Calpena, A. C., & Mallandrich, M. (2022). Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. Plants, 11(22), 3104. https://doi.org/10.3390/plants11223104