A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Optimization of Extraction and HPLC
4.3. Plant Samples and Sample Preparation for HPLC Analysis
4.4. HPLC Analysis
4.4.1. HPLC-PDA-MS Analysis Instrumentation
4.4.2. Identification of Peaks and Peak Purity—Quantitative Determination of Diterpenoids
4.4.3. Method Validation
Linearity, LOD, LOQ, Precision, and Accuracy of the HPLC Method
Precision and Accuracy of the Overall Method (Including Extraction Procedure)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtic, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Phys. 2017, 175, 1381–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birtic, S.; Dussort, P.; Pierre, F.-X.; Bily, A.C.; Roller, M. Molecules of Interest Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.; Kriebel, R.; Drummond, C.P.; Walked, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Pinos, C.; Tomé, M.; Murcia, M.; Jordán, M.; Bañón, S. Assessment of Rosemary (Rosmarinus officinalis L.) Extract as Antioxidant in Jelly Candies Made with Fructan Fibres and Stevia. Antioxidants 2020, 9, 1289. [Google Scholar] [CrossRef]
- Aguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K.-H.; Gontard, N.; Gott, D.; Grilli, S.; et al. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the Commission on the use of rosemary extracts as a food additive. EFSA J. 2008, 721, 1–29. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (EFSA ANS Panel). Refined Exposure Assessment of Extracts of Rosemary (E 392) from Its Use as Food Additive. EFSA J. 2018, 16, e05373. [Google Scholar]
- Hosokawa, I.; Hosokawa, Y.; Ozaki, K.; Matsuo, T. Carnosic acid inhibits inflammatory cytokines production in human periodontal ligament cells. Immunopharmacol. Immunotoxicol. 2020, 42, 373–378. [Google Scholar] [CrossRef]
- Wang, L.C.; Wei, W.H.; Zhang, X.W.; Liu, D.; Zeng, K.W.; Tu, P.F. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid. Front. Pharmacol. 2018, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Bardaweel, S.K.; Mubarak, M.S.; Koch, W.; Gaweł-Beben, K.; Antosiewicz, B.; Sharifi-Rad, J. Immunomodulatory Effects of Diterpenes and Their Derivatives Through NLRP3 Inflammasome Pathway: A Review. Front. Immunol. 2020, 11, 572136. [Google Scholar] [CrossRef]
- de Oliveira, M.R. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol. Neurobiol. 2018, 55, 6687–6699. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; Herrero, M. Rosemary (Rosmarinus officinalis) as a functional ingredient: Recent scientific evidence. Curr. Opin. Food Sci. 2017, 14, 13–19. [Google Scholar] [CrossRef]
- Satoh, T.; Trudler, D.; Oh, C.-K.; Lipton, S.A. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants 2022, 11, 124. [Google Scholar] [CrossRef]
- Taram, F.; Ignowski, E.; Duval, N.; Linseman, D.A. Neuroprotection Comparison of Rosmarinic Acid and Carnosic Acid in Primary Cultures of Cerebellar Granule Neurons. Molecules 2018, 23, 2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Huang, M.; Liu, D.; Li, Y.; Luo, Q.; Pham, K.; Wang, M.; Zhang, J.; Zhang, R.; Peng, Z.; et al. Absorption and Transport Characteristics and Mechanisms of Carnosic Acid. Biology 2021, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Romo Vaquero, M.; García Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.-T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Santoyo, S. Anti-inflammatory activity of rosemary extracts obtained by supercritical carbon dioxide enriched in carnosic acid and carnosol. Int. J. Food Sci. Technol. 2015, 50, 674–681. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Ribeiro-Santos, R.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. UHPLC-DAD Multi-Method for Determination of Phenolics in Aromatic Plants. Food Anal. Methods 2018, 11, 440–450. [Google Scholar] [CrossRef]
- Choi, S.H.; Jang, G.W.; Choi, S.I.; Jung, T.D.; Cho, B.Y.; Sim, W.S.; Han, X.; Lee, J.S.; Kim, D.Y.; Kim, D.B.; et al. Development and Validation of an Analytical Method for Carnosol, Carnosic Acid and Rosmarinic Acid in Food Matrices and Evaluation of the Antioxidant Activity of Rosemary Extract as a Food Additive. Antioxidants 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Quality Guidelines. Q2 Analytical Validation. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 25 September 2022).
- Peris-Vicente, J.; Esteve-Romero, J.; Carda-Broch, S. Validation of Analytical Methods Based on Chromatographic Techniques: An Overview. In Analytical Separation Science; Anderson, J.L., Berthod, A., Pino Estévez, V., Stalcup, A.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1–52. [Google Scholar]
- Scheler, U.; Brandt, W.; Porzel, A.; Rothe, K.; Manzano, D.; Božić, D.; Papaefthimiou, D.; Balcke, G.U.; Henning, A.; Lohse, S.; et al. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat. Commun. 2016, 7, 12942. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.A.; de Souza, L.P.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Paniwnyk, L.; Cai, H.; Albu, S.; Mason, T.J.; Cole, R. The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrason. Sonochem. 2009, 16, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Brückner, K.; Božić, D.; Manzano, D.; Papaefthimiou, D.; Pateraki, I.; Scheler, U.; Ferrer, A.; de Vos, R.C.; Kanellis, A.K.; Tissier, A. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 2014, 101, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, M.A.; Hildebrandt, K.S. Quantitative determination of phenolic diterpenes in rosemary extracts: Aspects of accurate quantification. J. Chrom. A 2003, 995, 119–125. [Google Scholar] [CrossRef]
- Liu, X.; Du, J.; Ou, Y.; Xu, H.; Chen, X.; Zhou, A.; He, L.; Cao, Y. Degradation pathway of carnosic acid in methanol 24 through isolation and structural identification of its degradation products. Eur. Food. Res. Technol. 2013, 237, 617–626. [Google Scholar] [CrossRef]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation Study of Carnosic Acid, Carnosol, Rosmarinic Acid, and Rosemary Extract (Rosmarinus officinalis L.) Assessed Using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef]
- Masuda, T.; Kirikihira, T.; Takeda, Y. Recovery of antioxidant activity from carnosol quinone: Antioxidants obtained from a water-promoted conversion of carnosol quinone. J. Agric. Food Chem. 2005, 53, 6831–6834. [Google Scholar] [CrossRef]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef]
- Lagouri, V.; Alexandri, G. Antioxidant Properties of Greek O. dictamnus and S. rosmarinusMethanol and Aqueous Extracts-HPLC Determination of Phenolic Acids. Int. J. Food Prop. 2013, 16, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef]
- Papageorgiou, V.; Mallouchos, A.; Komaitis, M. Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle. J. Agric. Food Chem. 2008, 56, 5743–5752. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Sarrou, E.; Ganopoulos, I.; Xanthopoulou, A.; Masuero, D.; Martens, S.; Madesis, P.; Mavromatis, A.; Chatzopoulou, P. Genetic diversity and metabolic profile of Salvia officinalis populations: Implications for advanced breeding strategies. Planta 2017, 246, 201–215. [Google Scholar] [CrossRef] [PubMed]
Calibration Equation | Correlation Coefficient | LOD (ng) | LOQ (ng) | RSD% (n = 3) | |
---|---|---|---|---|---|
Carnosic Acid | y = 2 × 10−7x − 0.0013 | 1.0 | 0.68 | 2.0 | 1.43 |
Carnosol | y = 2 × 10−7x + 0.0027 | 0.999 | 1.8 | 4.4 | 4.16 |
Compound | Precision HPLC, Intra-Day (n = 6) | Precision, Overall (n = 6) | |||
---|---|---|---|---|---|
Concentration Level | μg/g ± SD (% RSD) | Amount of Fresh Plant | S. rosmarinus μg/g ± SD (% RSD) | S. officinalis μg/g ± SD (% RSD) | |
Carnosic Acid | 200% | 9626.59 ± 50.51 (0.52) | 200% | 9762.19 ± 237.82 (2.44) | 4709.06 ± 137.74 (2.92) |
100% | 9786.07 ± 87.35 (0.89) | 100% | 9690.86 ± 272.21 (2.81) | 4627.68 ± 147.85 (3.19) | |
50% | 9529.74 ± 50.62 (0.53) | 50% | 9858.55 ± 167.04 (1.69) | 4544.19 ± 151.84 (3.34) | |
Carnosol | 200% | 4135.29 ± 56.18 (1.36) | 200% | 4250.55 ± 60.44 (1.42) | 636.27 ± 19.88 (3.12) |
100% | 4319.67 ± 100.89 (2.34) | 100% | 4277.96 ± 186.14 (4.35) | 601.67 ± 15.31 (2.54) | |
50% | 4113.35 ± 21.74 (0.53) | 50% | 4176.88 ± 78.96 (1.89) | 615.71 ± 15.90 (2.58) |
S. rosmarinus | S.officinalis | ||||
---|---|---|---|---|---|
Carnosic Acid | Carnosol | Carnosic Acid | Carnosol | ||
Plant Sample | Mean Value ± SD (RSD) | Plant Sample | Mean Value ± SD (RSD) | ||
RO1 | 9786.1 ± 87.30 (0.89) | 4319.7 ± 100.90 (2.34) | SO1 | 3676.60 ± 21.38 (0.58) | 472.04 ± 3.90 (0.83) |
RO2 | 12,173.01 ± 52.48 (0.43) | 4470.37 ± 15.35 (0.34) | SO2 | 4367.27 ± 23.92 (0.55) | 649.41 ± 2.66 (0.41) |
RO3 | 10,827.56 ± 907.90 (8.38) | 3545.94 ± 138.10 (3.89) | SO3 | 5458.12 ± 21.77 (0.40) | 866.19 ± 0.13 (0.01) |
RO4 | 9413.33 ± 30.60 (0.32) | 3559.66 ± 188.04 (5.28) | SO4 | 4681.52 ± 25.87 (0.55) | 600.55 ± 0.90 (0.15) |
RO5 | 7472.86 ± 102.70 (1.37) | 2145.52 ± 20.58 (0.96) | SO5 | 3001.75 ± 115.98 (3.86) | 435.30 ± 1.30 (0.30) |
RO6 | 8833.70 ± 9.68 (0.11) | 3629.86 ± 40.07 (1.11) | SO6 | 3676.36 ± 10.19 (0.28) | 640.39 ± 1.19 (0.19) |
RO7 | 10,045.85 ± 105.36 (1.05) | 3319.29 ± 85.53 (2.58) | SO7 | 3662.32 ± 28.47 (0.78) | 633.50 ± 1.40 (0.22) |
RO8 | 9642.48 ± 38.26 (0.40) | 3534.29 ± 29.66 (0.84) | SO8 | 5833.98 ± 73.08 (1.25) | 981.28 ± 2.02 (0.20) |
RO9 | 7514.85 ± 108.07 (1.44) | 3143.29 ± 25.97 (0.83) | SO9 | 3790.78 ± 28.88 (0.76) | 809.93 ± 18.73 (2.31) |
RO10 | 5827.51 ± 2.38 (0.04) | 2716.66 ± 5.59 (0.21) | SO10 | 5452.92 ± 172.88 (3.17) | 1085.41 ± 1.16 (0.11) |
RO11 | 7576.98 ± 53.51 (0.70) | 3137.02 ± 16.27 (0.52) | SO11 | 4476.82 ± 29.72 (0.66) | 1044.45 ± 0.65 (0.06) |
RO12 | 6201.98 ± 25.98 (0.42) | 2741.18 ± 9.22 (0.34) | SO12 | 7033.23 ± 52.52 (0.75) | 880.33 ± 20.45 (2.32) |
RO13 | 8089.95 ± 63.86 (0.79) | 2751.88 ± 96.15 (3.49) | SO13 | 4398.15 ± 15.29 (0.35) | 831.13 ± 12.30 (1.48) |
RO14 | 10,625.26 ± 181.58 (1.71) | 3680.84 ± 9.71 (0.26) | SO14 | 6295.81 ± 26.70 (0.42) | 794.53 ± 5.53 (0.70) |
RO15 | 5638.22 ± 18.87 (0.33) | 3381.14 ± 0.21 (0.01) | SO15 | 3600.46 ± 20.87 (0.58) | 600.11 ± 0.98 (0.160 |
RO16 | 6964.89 ±28.36 (0.41) | 1392.72 ± 26.99 (1.94) | SO16 | 5841.15 ± 43.17 (0.74) | 879.71 ± 13.57 (1.54) |
RO17 | 6502.17 ± 51.16 (0.79) | 2458.34 ± 19.12 (0.78) | SO17 | 5182.14 ± 28.49 (0.55) | 969.52 ± 4.02 (0.42) |
RO18 | 9014.92 ± 9.29 (0.10) | 3256.18 ± 1.33 (0.04) | SO18 | 4753.01 ± 19.29 (0.41) | 1077.82 ± 24.77 (2.30) |
RO19 | 6043.98 ± 101.57 (1.68) | 1926.25 ± 21.53 (1.12) | SO19 | 5198.41 ± 20.78 (0.40) | 852.76 ± 14.76 (1.73) |
RO20 | 7077.33 ± 120.15 (1.70) | 1044.52 ± 13.52 (1.29) | SO20 | 3178.31 ± 21.99 (0.69) | 636.98 ± 5.02 (0.79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paloukopoulou, C.; Karioti, A. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. Plants 2022, 11, 3106. https://doi.org/10.3390/plants11223106
Paloukopoulou C, Karioti A. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. Plants. 2022; 11(22):3106. https://doi.org/10.3390/plants11223106
Chicago/Turabian StylePaloukopoulou, Charikleia, and Anastasia Karioti. 2022. "A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece" Plants 11, no. 22: 3106. https://doi.org/10.3390/plants11223106
APA StylePaloukopoulou, C., & Karioti, A. (2022). A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. Plants, 11(22), 3106. https://doi.org/10.3390/plants11223106