Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai
Abstract
:1. Introduction
2. Results
2.1. Conserved Domain and Motif Analysis of Putative R Genes in R. nigrum
2.2. Expression Patterns of Unigenes in Response to BRV Infection
2.3. Expression and Phylogenetic Analyses of Putative R Gene to BRV Resistance
3. Discussion
4. Materials and Methods
4.1. Prediction of Putative R Genes in Transcriptome of R. nigrum cv. Aldoniai
4.2. Expression and Phylogenetic Analyses of R.nigrum_R
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef] [PubMed]
- Moffett, P. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 2009, 75, 1–33. [Google Scholar] [PubMed]
- Marone, D.; Russo, M.A.; Laido, G.; De Leonardis, A.M.; Mastrangelo, A.M. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. Int. J. Mol. Sci. 2013, 14, 7302–7326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.; Wendel, J.; Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 2000, 50, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, Z.; Duan, C.; Chen, Y.; Meng, Q.; Wu, J.; Hao, Z.; Wang, Z.; Li, M.; Yong, H.; et al. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. J. Exp. Bot. 2016, 67, 4593–4609. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Lv, Y.; Zhao, T.; Li, N.; Yang, Y.; Yu, W.; He, X.; Liu, T.; Zhang, B. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 2013, 8, e80816. [Google Scholar] [CrossRef]
- Goyer, A.; Hamlin, L.; Crosslin, J.M.; Buchanan, A.; Chang, J.H. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genom. 2015, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Cheng, Y.; Gong, M.; Zhao, Q.; Jiang, C.; Cheng, L.; Ren, M.; Wang, Y.; Yang, A. Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible tobacco cultivars in response to infection by cucumber mosaic virus. Crop J. 2019, 7, 307–321. [Google Scholar] [CrossRef]
- Jones, A.T. Black currant reversion disease–the probable causal agent, eriophyid mite vectors, epidemiology and prospects for control. Virus Res. 2000, 71, 71–84. [Google Scholar] [CrossRef]
- Susi, P. Black currant reversion virus, a mite-transmitted nepovirus. Mol. Plant Pathol. 2004, 5, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Špak, J.; Koloniuk, I.; Tzanetakis, I.E. Graft-transmissible diseases of Ribes–pathogens, impact, and control. Plant Dis. 2021, 105, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.R. Sequiviruses and Waikaviruses (Secoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 703–711. ISBN 978-0-12-814516-6. [Google Scholar]
- Łabanowska, B.H.; Pluta, S. Assessment of big bud mite (Cecidophyopsis ribis Westw.) infestation level of blackcurrant genotypes in the field. J. Fruit Ornam. Plant Res. 2010, 18, 283–295. [Google Scholar]
- Anderson, M.M. Resistance to gall mite (Phytoptus ribis Nal.) in the Eucoreosma section of Ribes. Euphytica 1971, 20, 422–426. [Google Scholar] [CrossRef]
- Knight, R.L.; Keep, E.; Briggs, J.B.; Parker, J.H. Transference of resistance to black currant gall mite Cecidophyopsis ribis, from goosebery to black currant. Ann. Appl. Biol. 1974, 76, 123–130. [Google Scholar] [CrossRef]
- Brennan, R.M. Currants and gooseberries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 177–196. [Google Scholar] [CrossRef]
- Juškytė, A.D.; Mažeikienė, I.; Stanys, V. An effective method of Ribes spp. inoculation with blackcurrant reversion virus under in vitro conditions. Plants 2022, 11, 1635. [Google Scholar] [CrossRef]
- Mažeikienė, I.; Juškytė, A.D.; Bendokas, V.; Stanys, V. De novo transcriptome analysis of R. nigrum cv. Aldoniai in response to blackcurrant reversion virus infection. Int. J. Mol. Sci. 2022, 23, 9560. [Google Scholar] [CrossRef]
- Die, J.V.; Román, B.; Qi, X.; Rowland, L.J. Genome-scale examination of NBS-encoding genes in blueberry. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arya, P.; Kumar, G.; Acharya, V.; Singh, A.K. Genome-wide identification and expression analysis of NBS-encoding genes in Malus × domestica and expansion of NBS genes family in Rosaceae. PLoS ONE 2014, 9, e107987. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Kazmi, A.Z.; Ahmed, Z.; Roychowdhury, G.; Kumari, V.; Kumar, M.; Mukhopadhyay, K. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Rep. 2017, 36, 1097–1112. [Google Scholar] [CrossRef]
- Afrin, K.S.; Rahim, M.A.; Park, J.I.; Natarajan, S.; Kim, H.T.; Nou, I.S. Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol. Biol. Rep. 2018, 45, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Changwei, Z.; Tang, J.; Li, Y.; Wang, Z.; Jiang, D.; Hou, X. Genome-wide analysis and identification of TIR-NBS-LRR genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveal expression patterns to TuMV infection. Physiol. Mol. Plant Pathol. 2015, 90, 89–97. [Google Scholar] [CrossRef]
- Martin, G.B.; Bogdanove, A.J.; Sessa, G. Understanding the functions of plant disease resistance proteins. Annu Rev. Plant Biol. 2003, 54, 23–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelmore, R.W.; Meyers, B.C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8, 1113–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, A.; Xavier, R.J. Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity. Autophagy 2011, 7, 1082–1084. [Google Scholar] [CrossRef] [Green Version]
- Kohler, A.; Rinaldi, C.; Duplessis, S.; Baucher, M.; Geelen, D.; Duchaussoy, F.; Meyers, B.C.; Boerjan, W.; Martin, F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol. Biol. 2008, 66, 619–636. [Google Scholar] [CrossRef]
- Grant, M.R.; Godiard, L.; Straube, E.; Ashfield, T.; Lewald, J.; Sattler, A.; Innes, R.W.; Dangl, J.L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 1995, 269, 843–846. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- Bisgrove, S.; Simonich, M.; Smith, N.; Sattler, A.; Innes, R. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 1994, 6, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.; Holf, B.F.; Wiig, A.; Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002, 108, 743–754. [Google Scholar] [CrossRef]
- Torres, M.D.; Sanchez, P.; Fernandez-Delmond, I.; Grant, M. Expression profiling of the host response to bacterial infection: The transition from basal to induced defence responses in RPM1-mediated resistance. Plant J. 2003, 33, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, W.; Tao, F.; Wang, J.; Shang, H.; Chen, X.; Xu, X.; Hu, X. TaRPM1 positively regulates wheat high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2020, 10, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; Rai, K.M.; Kianian, S.F.; Singh, S.P. Study of Triticum aestivum resistome in response to wheat dwarf India virus infection. Life 2021, 11, 955. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [Green Version]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011, 12, 385. Available online: http://www.biomedcentral.com/1471-2105/12/385 (accessed on 15 June 2022). [CrossRef] [Green Version]
- Bailey, T.L.; Elkan, C. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers; UCSD Technical Report CS94-351; Standford University: Stanford, CA, USA, 1994; pp. 28–36. [Google Scholar]
- Tusher, V.; Tibshirani, R.; Chu, C. Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, E.A.; Sinha, R.; Schlauch, D.; Quackenbush, J. RNA-Seq analysis in MeV. Bioinformatics 2011, 27, 3209–3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Lemmetty, A.; Susi, P.; Latvala, S.; Lehto, K. Detection of the putative causal agent of Blackcurrant reversion disease. Acta Hortic. 1998, 471, 93–98. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
Cluster | Accession No. and Gene Name According to NCBI Blast | Gene Identity, % | log2FC (V_2vsC_2) | log2FC (V_4vsC_4) |
---|---|---|---|---|
Cluster-12591.21693 | XP_028108391_RGA4 [Camellia sinensis] | 54.01 | 0.41 | −0.48 |
Cluster-12591.20650 | KAB1227433_RGA4 [Morella rubra] | 54.01 | 0.93 | −0.22 |
Cluster-12591.12984 | XP_021660273_RGA1 [Hevea brasiliensis] | 52.83 | 0.50 | 0.01 |
Cluster-12591.11844 | XP_002526758_RGA4 [Ricinus communis] | 60.00 | 0.77 | 0.30 |
Cluster-12591.21347 | XP_022735032_At1g12280 [Durio zibethinus] | 63.33 | 0.60 | −0.79 |
Cluster-12591.19111 | XP_034689147.1_RGA3 [Vitis riparia] | 52.32 | −0.80 | −0.40 |
Cluster-12591.17963 | XP_030942204.1_RPM1 [Quercus lobata] | 51.28 | −0.45 | −0.42 |
Cluster-12591.3030 | XP_002281054.1_RPP13 [Vitis vinifera] | 50.63 | −0.71 | 0.03 |
Cluster-12591.17815 | XP_023923535.1_TMV resistance protein N [Quercus suber] | 54.31 | 0.06 | 0.40 |
Cluster-12591.15361 | KAB1200960.1_RGA3 [Morella rubra] | 52.03 | −0.72 | 0.81 |
Cluster-12591.17642 | XP_015865709.2_RGA1 [Ziziphus jujuba] | 34.23 | 0.24 | 0.50 |
Cluster-12591.33361 | XP_002324939.1_RPM1 [Populus trichocarpa] | 63.88 | −0.40 | 1.09 |
Cluster-12591.27284 | XP_009335301.1_TMV resistance protein N [Pyrus x bretschneideri] | 70.00 | 0.07 | 0.43 |
Cluster-12591.18471 | XP_021663085.1_RGA3 [Hevea brasiliensis] | 58.05 | 0.04 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juškytė, A.D.; Mažeikienė, I.; Stanys, V. Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai. Plants 2022, 11, 3137. https://doi.org/10.3390/plants11223137
Juškytė AD, Mažeikienė I, Stanys V. Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai. Plants. 2022; 11(22):3137. https://doi.org/10.3390/plants11223137
Chicago/Turabian StyleJuškytė, Ana Dovilė, Ingrida Mažeikienė, and Vidmantas Stanys. 2022. "Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai" Plants 11, no. 22: 3137. https://doi.org/10.3390/plants11223137
APA StyleJuškytė, A. D., Mažeikienė, I., & Stanys, V. (2022). Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai. Plants, 11(22), 3137. https://doi.org/10.3390/plants11223137