Protein Maps for Durum Wheat Precision Harvest and Pasta Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protein Maps
2.2. Empiric Rheology
3. Material and Methods
3.1. Field Experiment
3.2. Precision Harvest
3.3. Grain Sampling and Gluten Protein Quantification
3.4. Semolina Characterization
3.5. Pasta Production
3.6. Proximate Composition of Pasta Samples
3.7. Pasta-Cooking Behaviour and Texture Determination
3.8. Sensory Evaluation
3.9. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Grains Council (IGC). World Grain Statistics 2016. 2020. Available online: https://www.igc.int/en/default.aspx (accessed on 21 May 2020).
- Beres, B.L.; Rahmani, E.; Clarke, J.M.; Grassini, P.; Pozniak, C.J.; Geddes, C.M.; Porker, K.D.; May, W.E.; Ransom, J.K. A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G xE xM). Front. Plant Sci. 2020, 11, 568657. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P. What Is Gluten—Why Is It Special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, C.; Bresciani, A.; Menesatti, P.; Pagani, M.A.; Marti, A. Assessing the rheological properties of durum wheat semolina: A Review. Foods 2021, 10, 2947. [Google Scholar] [CrossRef] [PubMed]
- Marti, A.; Cecchini, C.; D’Egidio, M.G.; Dreisoerner, J.; Pagani, M.A. Characterization of durum eat semolina by means of a rapid shear-based method. Cereal Chem. 2014, 91, 542–547. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Yu, Z.; Zeng, J.; Xu, D.; Dong, J.; Ma, W. Wheat Quality Formation and Its Regulatory Mechanism. Front. Plant Sci. 2022, 13, 834654. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M.; Cutillo, S.; Marcotuli, I.; Gadaleta, A. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties. J. Cereal Sci. 2021, 98, 103156. [Google Scholar] [CrossRef]
- Lafiandra, D.; Sestili, F.; Sissons, M.; Kiszonas, A.; Morris, C.F. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022, 11, 1532. [Google Scholar] [CrossRef] [PubMed]
- Visioli, G.; Bonas, U.; Cortivo, C.D.; Pasini, G.; Marmiroli, N.; Mosca, G.; Vamerali, T. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. J. Sci. Food Agric. 2018, 98, 2360–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziano, S.; Marando, S.; Prandi, B.; Boukid, F.; Marmiroli, N.; Francia, E.; Pecchioni, N.; Sforza, S.; Visioli, G.; Gullì, M. Technological quality and nutritional value of two durum wheat varieties depend on both genetic and environmental factors. J. Agric. Food Chem. 2019, 67, 2384–2395. [Google Scholar] [CrossRef] [PubMed]
- Graziano, S.; Marmiroli, N.; Visioli, G.; Gullì, M. Proteins and metabolites as indicators of quality and nutritional properties in two durum wheat varieties grown in four different Italian locations. Foods 2020, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Gandorfer, M.; Meyer Aurich, A. Economic potential of site-specific fertilizer application and harvest management. In Precision Agriculture: Technology and Economic Perspectives; Pedersen, S.M., Lind, K.M., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 79–92. [Google Scholar]
- Morari, F.; Zanella, V.; Sartori, L.; Visioli, G.; Berzaghi, P.; Mosca, G. Optimising durum wheat cultivation in North Italy. Understanding the effects of site-specific fertilization on yield and protein content. Prec. Agric. 2018, 19, 257–277. [Google Scholar] [CrossRef]
- Pasini, G.; Visioli, G.; Morari, F. Is site specific pasta a prospective asset for a short supply chain? Foods 2020, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Long, D.S.; McCallum, J.D.; Scharf, P.A. Optical-mechanical system for on-combine segregation of wheat by grain protein concentration. Agron. J. 2013, 105, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Phakela, K.; van Biljon, A.; Wentzel, B.; Guzman, C.; Labuschagne, M.T. Gluten protein response to heat and drought stress in durum wheat as measured by reverse phase-High performance liquid chromatography. J. Cereal Sci. 2021, 100, 103267. [Google Scholar] [CrossRef]
- Grassi, S.; Gullì, M.; Visioli, G.; Marti, A. Gluten aggregation properties as a tool for durum wheat quality assessment: A chemometric approach. LWT 2021, 142, 111048. [Google Scholar] [CrossRef]
- Sissons, M. GlutoPeak: A breeding tool for screening dough properties of durum wheat semolina. Cereal Chem. 2016, 93, 550–556. [Google Scholar] [CrossRef]
- Marti, A.; D’Egidio, M.A.; Pagani, M.A. Pasta: Quality testing methods. In Encyclopedia of Food Grains; Wrigley, C.W., Cork, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 161–165. [Google Scholar]
- Bruce, M.A.; Moretto, J.; Polese, R.; Morari, F. Optimizing durum wheat cultivation in Northern Italy: Assessing proximal and remote sensing derived from different platforms for variable-rate application of nitrogen. In Precision Agriculture 2019; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 23–28. [Google Scholar] [CrossRef]
- UNI 10453. Grano Duro e Semole. Determinazione delle Caratteristiche Reologiche Mediante Alveografia. 1995. Available online: http://store.uni.com/catalogo/uni-10453-1995 (accessed on 27 October 2021).
- AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; The Association: St. Paul, MN, USA, 2010. [Google Scholar]
Low Protein Semolina (≤13%) | High Protein Semolina (>13%) | ||
---|---|---|---|
Alveograph test | Tenacity (P; mmH2O) | 41 ± 3 n.s. | 41 ± 3 |
Extesibility (L;mm) | 139 ± 12 ** | 107 ± 28 | |
P/L | 0.29 ± 0.05 ** | 0.41 ± 0.11 | |
Strenght (W; ×10−4 J) | 139 ± 8 n.s. | 130 ± 22 | |
GlutoPeak test | Peak maximum time (s) | 118 ± 1 *** | 190 ± 2 |
Maximum torque (GPU) | 44 ± 1 *** | 32 ± 0.1 | |
Total energy (GPE) | 2355 ± 39 ** | 2713 ± 1 |
Pasta | Protein | Ash | Fat | Fiber | Starch |
---|---|---|---|---|---|
High protein semolina (>13%) | 14.21 ** | 0.79 n.s. | 1.80 n.s. | 3.07 n.s. | 78.86 ** |
Low protein semolina (≤13%) | 12.60 | 0.75 | 1.90 | 2.97 | 80.17 |
Pasta | OCT (min) | WA (%) | CL (%) | Firmness (N) | Adhesiveness (g s−1) |
---|---|---|---|---|---|
High protein semolina (>13%) | 8 | 109.4 ± 5.3 * | 3.6 ± 0.6 * | 16.12 ± 1.46 n.s. | −0.045 ± 0.016 n.s. |
Low protein semolina (≤13%) | 7.30 | 96.7 ± 5.4 | 4.4 ± 0.3 | 14.76 ± 2.04 | −0.059 ± 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visioli, G.; Lauro, M.; Morari, F.; Longo, M.; Bresciani, A.; Pagani, M.A.; Marti, A.; Pasini, G. Protein Maps for Durum Wheat Precision Harvest and Pasta Production. Plants 2022, 11, 3149. https://doi.org/10.3390/plants11223149
Visioli G, Lauro M, Morari F, Longo M, Bresciani A, Pagani MA, Marti A, Pasini G. Protein Maps for Durum Wheat Precision Harvest and Pasta Production. Plants. 2022; 11(22):3149. https://doi.org/10.3390/plants11223149
Chicago/Turabian StyleVisioli, Giovanna, Marta Lauro, Francesco Morari, Matteo Longo, Andrea Bresciani, Maria Ambrogina Pagani, Alessandra Marti, and Gabriella Pasini. 2022. "Protein Maps for Durum Wheat Precision Harvest and Pasta Production" Plants 11, no. 22: 3149. https://doi.org/10.3390/plants11223149
APA StyleVisioli, G., Lauro, M., Morari, F., Longo, M., Bresciani, A., Pagani, M. A., Marti, A., & Pasini, G. (2022). Protein Maps for Durum Wheat Precision Harvest and Pasta Production. Plants, 11(22), 3149. https://doi.org/10.3390/plants11223149