The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Yield of Plant Crude Extracts
2.2. Phytochemical Identification and the Concentration of Plant Metabolites
2.2.1. Aloe vera
2.2.2. Jatropha curcas
2.2.3. Moringa oleifera
2.2.4. Piper betle
2.3. In Vitro Organic Matter Fermentation
3. Materials and Methods
3.1. Study Area and Collection of the Plant Materials
3.2. Methanolic Extraction
3.3. Ultra-Performance Liquid Chromatography—Mass Spectrometry (UPLC–MS) Analysis of the Bioactive Molecules in Plant Extracts
3.4. Buffer Mineral Solution, Collection of the Rumen Fluid from Donor Steer and the In Vitro Gas Production
3.5. Determination of the In Vitro Organic Matter Digestibility (IVOMD)
3.6. Chemical Analyses
3.7. Statistical Analysis
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broucek, J. Options to methane production abatement in ruminants: A review. J. Anim. Plant. Sci. 2018, 28, 348–364. [Google Scholar]
- Jiménez-Ocampo, R.; Valencia-Salazar, S.; Pinzón-Díaz, C.E.; Herrera-Torres, E.; Aguilar-Pérez, C.F.; Arango, J.; Ku-Vera, J.C. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals 2019, 9, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Mwenya, B.; Santoso, B.; Sar, C.; Gamo, Y.; Kobayashi, T.; Arai, I.; Takahashi, J. Effects of including β1-4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim. Feed. Sci. Technol. 2004, 115, 313–326. [Google Scholar] [CrossRef]
- Akanmu, A.M.; Hassen, A. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility. Anim. Prod. Sci. 2018, 58, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Goel, G.; Makkar, H.P.S.; Becker, K. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Anim. Feed. Sci. Technol. 2008, 147, 72–89. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 2013, 148, 352–360. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Ratshilivha, N.; Awouafack, M.D.; du Toit, E.S.; Eloff, J.N. The variation in antimicrobial and antioxidant activities of acetone leaf extracts of 12 Moringa oleifera (Moringaceae) trees enables the selection of trees with additional uses. S. Afr. J. Bot. 2014, 92, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Soliva, C.R.; Meile, L.; Hindrichsen, I.K.; Kreuzer, M.; Machmüller, A. Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release. Anaerobe 2004, 10, 269–276. [Google Scholar] [CrossRef]
- Kedarnath, N.K.; Ramesh, S.; And, M.S.P.; Patil, C.S. Phytochemical screening and antimicrobial activity of Aloe vera L. World Res. J. Med. Aromat Plants 2012, 1, 2278–9863. Available online: http://www.bioinfo.in/contents.php?id=159 (accessed on 20 May 2022).
- Aysan, E.; Bektas, H.; Ersoz, F. A new approach to postoperative peritoneal adhesions: Prevention of peritoneal trauma by aloe vera gel. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 149, 195–198. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, Y.; Fu, R.; Peng, T.; Zhang, Y.; Chen, F. Antioxidant activity of flavonoids from leaves of Jatropha curcas. Science 2014, 40, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Amaglo, N.K.; Bennett, R.N.; Lo Curto, R.B.; Rosa, E.A.S.; Lo Turco, V.; Giuffrida, A.; Lo Curto, A.; Crea, F.; Timpo, G.M. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 2010, 122, 1047–1054. [Google Scholar] [CrossRef]
- Coppin, J.P.; Xu, Y.; Chen, H.; Pan, M.-H.; Ho, C.-T.; Juliani, R.; Simon, J.E.; Wu, Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods. 2013, 5, 1892–1899. [Google Scholar] [CrossRef]
- Emon, N.U.; Kaiser, M.; Islam, M.; Kabir, M.F.I.; Jamir, M.; Uddin, M.A.J.; Islam, M.N. Anxiolytic and thrombolytic investigation of methanol extract of Piper nigrum L. Fruits and Sesamum indicum L. seeds. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 158–164. [Google Scholar] [CrossRef]
- Fathilah, A.R.; Piper betle, L.; Psidium guajava, L. In oral health maintenance. J. Med. Plants Res. 2011, 5, 156–163. [Google Scholar]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Nn, A. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat Plants 2015, 4, 3–8. [Google Scholar]
- Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res. 2010, 4, 104–111. [Google Scholar]
- Wong, S.P.; Leong, L.P.; William Koh, J.H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Bidie, A.; Koffi, E.; Yapi, F.; Yémié, A.; Djaman, J.; Guede-Guina, F. Evaluation of the toxicity of a methanolic total extract of Mitragyna. ciliata a natural anti-malaric. Int. J. Biol. Chem. Sci. 2011, 4, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.; Selamat, J.; Hamid, A.; Zaidul, I. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Perva-uzunalic, A.; Otto, F.; Gru, S. Food Chemistry Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Quispe, C.; Villalobos, M.; Bórquez, J.; Simirgiotis, M. Chemical Composition and Antioxidant Activity of Aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J. Chem. 2018, 2018, 6123850. [Google Scholar] [CrossRef] [Green Version]
- Vega Arroy, J.D.; Ruiz-Espinosa, H.; Luna-Guevara, J.J.; Luna-Guevara, M.L.; Hernàndez-Carranza, P.; Avila-Sosa, R.; Ochoa-Velasco, C.E. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech. J. Food Sci. 2017, 35, 456–465. [Google Scholar] [CrossRef] [Green Version]
- El Sayed, A.M.; Ezzat, S.M.; El Naggar, M.M.; El Hawary, S.S. In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. Rev. Bras. Farmacogn. 2016, 26, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ding, W.; Zhong, J.; Wan, J.; Xie, Z. Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight and high performance liquid chromatography-diode array detector. J. Pharm. Biomed. Anal. 2013, 80, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Logaranjan, K.; Devasena, T.; Pandian, K. Quantitative Detection of Aloin and Related Compounds Present in Herbal Products and Aloe vera Plant Extract Using HPLC Method. Am. J. Anal. Chem. 2013, 4, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Kanama, S.K.; Viljoen, A.M.; Kamatou, G.P.; Chen, W.; Sandasi, M.; Adhami, H.-R.; Van Wyk, B.-E. Simultaneous quantification of anthrones and chromones in Aloe ferox (“Cape aloes”) using UHPLC-MS. Phytochem. Lett. 2015, 13, 85–90. [Google Scholar] [CrossRef]
- Chien, S.; Wu, Y.; Chen, Z.; Yang, W. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evid.-Based Complement. Altern. Med. 2014, 2015, 357357. [Google Scholar] [CrossRef]
- Rejila, S.; Vijayakumar, N.; Jayakumar, M. Chromatographic Determination of Allelochemicals (Phenolic Acids) in Jatropha curcas by HPTLC. Asian J. Plant Sci. Res. 2012, 2, 123–128. Available online: www.pelagiaresearchlibrary.com (accessed on 20 May 2022).
- Benavides, A.; Montoro, P.; Bassarello, C.; Piacente, S.; Pizza, C. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali-quantitative analysis. J. Pharm. Biomed. Anal. 2006, 40, 639–647. [Google Scholar] [CrossRef]
- Pilon, A.C.; Carneiro, R.L.; Carnevale Neto, F.; Da SBolzani, V.; Castro-Gamboa, I. Interval multivariate curve resolution in the dereplication of HPLC-DAD data from Jatropha gossypifolia. Phytochem. Anal. 2013, 24, 401–406. [Google Scholar] [CrossRef]
- Ambriz-Pérez, D.L.; Bang, W.Y.; Nair, V.; Angulo-Escalante, M.A.; Cisneros-Zevallos, L.; Heredia, J.B. Protective Role of Flavonoids and Lipophilic Compounds from Jatropha platyphylla on the Suppression of Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. J. Agric. Food Chem. 2016, 64, 1899–1909. [Google Scholar] [CrossRef]
- Diwani, G.E.L.; Rafie, S.E.l.; Hawash, S. Antioxidant activity of extracts obtained from residues of nodes leaves stem and root of Egyptian Jatropha curcas. Afr. J. Pharm. Pharmacol. 2009, 3, 521–530. [Google Scholar]
- Salehi, B.; Venditti, A.; Sharifi-rad, M.; Kr, D.; Sharifi-rad, J.; Durazzo, A. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and Their Therapeutic Potential against Oral Diseases. Molecules 2022, 27, 2932. [Google Scholar] [CrossRef] [PubMed]
- Dasiman, R. A Review of Procyanidin: Updates on Current Bioactivities and Potential Health Benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar]
- Azubuike-osu, S.O.; Ohanenye, I.C.; Jacob, C.; Ejike, C.E.C.C.; Udenigwe, C.C. Beneficial Role of Vitexin and Isovitexin Flavonoids in the Vascular Endothelium and Cardiovascular System. Curr. Nutraceuticals 2021, 2, 127–134. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Foidl, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003, 51, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Nouman, W.; Anwar, F.; Gull, T.; Newton, A.; Rosa, E.; Domínguez-Perles, R. Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Ind. Crops Prod. 2016, 83, 166–176. [Google Scholar] [CrossRef]
- Onyekaba, T.U.; Chinedu, O.G.; Fred, A.C. 962 Journal of pharmaceutical, chemical and biological sciences phytochemical screening and investigations of antibacterial activities of various fractions of the ethanol leaves extract of Moringa oleifera LAM (Moringaceae). IJPCBS 2013, 2013, 962–973. Available online: www.ijpcbs.com (accessed on 20 May 2022).
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 2016, 17, 2141. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Arora, S. Innovare Academic Sciences alkaloids-important therapeutic secondary metabolites of plant origin. J. Crit. Rev. 2015, 2, 1–8. [Google Scholar]
- Hussain, Y.; Khan, H.; Alsharif, K.F.; Khan, A.H.; Aschner, M.; Saso, L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022, 27, 4145. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Review Article Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evidence-Based Complement. Altern. Med. 2021, 2021, 9913179. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, D.H.; Guan, L.L.; Ahn, S.K.; Cho, K.W.; Lee, S.S. Effect of medicinal plant by-products supplementation to total mixed ration on growth performance, carcass characteristics and economic efficacy in the late fattening period of hanwoo steers. Asian-Australasian J. Anim. Sci. 2015, 28, 1729–1735. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, D.; Mior Ahmad, Z.A.; How, T.Y.; Bala Jaganath, I.; Shahnazi, S. Inhibition of afatoxin biosynthesis in Aspergillus favus by phenolic compounds extracted of Piper betle L. Iran J. Microbiol. 2013, 5, 428–433. [Google Scholar]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper Betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 33–39. [Google Scholar]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef]
- Rubí, L.; Muruato, A.; Juárez, J.V.; Michael, A.; Hernandez, P.; Morales, A.H.; Numberto, M.O.; Sandra, L.M.; Brender, A.; Jose, R.M.; et al. Therapeutic perspectives of p-coumaric acid: Anti-necrotic, anti-cholestatic and anti-amoebic activities. World Acad. Sci. J. 2021, 3, 47. [Google Scholar]
- Math, P.; Mishra, D.K.; Prajapati, P.K.; Roshy, J.J.P. Anti-Pyretic Activity of Madhukadi Kwatha and Madhukadi Ghana—An Experimental Study. Int. J. Pharm. Biol. Arch. 2011, 2, 572–576. [Google Scholar]
- Sabandar, C.W.; Ahmat, N.; Jaafar, F.M.; Sahidin, I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): A review. Phytochemistry 2013, 85, 7–29. [Google Scholar] [CrossRef]
- Agidigbi, T.S.; Odeyemi, O. Antibacterial Activities of Crude Extracts of Tithonia Diversifolia. Experiment 2014, 20, 1421–1426. [Google Scholar]
- Gautam, R.; Saklani, A.; Jachak, S.M. Indian medicinal plants as a source of antimycobacterial agents. J. Ethnopharmacol. 2007, 110, 200–234. [Google Scholar] [CrossRef] [PubMed]
- Ojiako, E.N. Phytochemical Analysis and Antimicrobial Screening of Moringa oleifera Leaves Extract. Int. J. Eng. Sci. 2014, 3, 32–35. Available online: www.theijes.com (accessed on 20 May 2022).
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef] [PubMed]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, P.M.; van Wikselaar, P.G.; Franssen, M.C.R.; de Vos, R.C.H.; Hall, R.D.; Beekwilder, J. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics 2014, 10, 179–189. [Google Scholar] [CrossRef]
- Aemiro, A.; Hanada, M.; Umetsu, K.; Nishida, T. The effect of Sunphenon 30S-O on methane emission, nutrient intake, digestibility and rumen fermentation. Anim. Feed. Sci. Technol. 2016, 214, 34–43. [Google Scholar] [CrossRef]
- Seradj, A.R.; Abecia, L.; Crespo, J.; Villalba, D.; Fondevila, M.; Balcells, J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed. Sci. Technol. 2014, 197, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Sirohi, S.K.; Pandey, N.; Goel, N.; Singh, B.; Mohini, M.; Pandey, P.; Chaudhry, P.P. Microbial Activity and Ruminal Methanogenesis as Affected by Plant Secondary Metabolites in Different Plant Extracts. Environ. Eng. 2009, 1, 52–58. [Google Scholar]
- Pin, K.Y.; Chuah, A.L.; Rashih, A.A.; Mazura, M.P.; Fadzureena, J.; Vimala, S.; Rasadah, M.A. Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J. Trop. For. Sci. 2010, 22, 448–455. [Google Scholar]
- Dwivedi, V.; Tripathi, S. Review study on potential activity of Piper betle. J. Pharmacogn. Phytochem. JPP. 2014, 93, 9398. [Google Scholar]
- Santra, A.; Saikia, A.; Baruah, K.K. Scope of Rumen Manipulation Using Medicinal Plants to Mitigate Methane Production. J. Pharmacogn. 2012, 3, 115–120. [Google Scholar]
- Jin, Q.; You, W.; Tan, X.; Liu, G.; Zhang, X.; Liu, X.; Wan, F.; Wei, C. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro. J. Sci. Food Agric. 2020, 101, 3013–3020. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method. Media Peternak. 2009, 32, 53–62. [Google Scholar]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M.; et al. MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, J.; Chen, S.; Yu, Y.; Ma, J.; Lin, Y.; Li, R.; Lin, J.; Fu, Z.; Zhou, Q. Metabolite signatures of diverse Camellia sinensis tea populations. Nat. Commun. 2020, 11, 5586. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Adejoro, F.A.; Hassen, A. In vitro methane production of eragrostis hay treated with graded levels of urea or nitrate. J. Anim. Plant Sci. 2018, 28, 679–685. [Google Scholar]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal feed: AOAC Official Method 942.05 revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- McCormick, E. Crude Fat Methods—Considerations. Lab. Methods Serv. Comm. 2014. Available online: http://docplayer.net/20904141-Crude-fat-methods-considerations-aafco-lab-methods-services-committee-crude-fat-best-practices-working-group-january-2014.html (accessed on 20 May 2022).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
70% CH3OH | 85% CH3OH | 100% CH3OH | SEM | p Value | |
---|---|---|---|---|---|
A. vera | 3.11 A | 2.42 B | 2.35 B | 0.10 | 0.009 |
J. curcas | 2.26 A | 2.06 AB | 1.77 B | 0.05 | 0.006 |
M. oleifera | 3.92 A | 3.38 B | 3.24 B | 0.12 | 0.013 |
P. betle | 3.53 A | 3.07 A | 2.42 B | 0.14 | 0.002 |
RT (min) | Molecular Formula | Measured Mass (m/z) | Error m/z (ppm) | MS Fragment | UVmax (nm) | Compound | Classification of the Compounds | 70% | 85% | 100% |
---|---|---|---|---|---|---|---|---|---|---|
10.94 | C16H18O8 | 337.0928 | −0.3 | 273,245,202 | 309 | 3-p-coumroyl quinic acid | Phenolic acid | 7.65 | 8.42 | 2.40 |
11.64 | C19H22O9 | 393.1185 | −0.3 | 273245202 | 296 | Aloesin | Chromone (C-glycosylated chromone) | 59.51 | 281.46 | 293.30 |
14.02 | C27H30O15 | 593.1526 | −0.7 | 473,383,353 | 332 | Aloe emodin-diglucosid | Anthrone (Anthracene compound) | 5.04 | 30.51 | 25.99 |
15.15 | C27H30O15 | 593.1455 | −6.1 | 431,311,297,283,282,269 | 269,335 | Aloe emodin-diglucoside isome | Anthrone (Anthracene compound) | 28.45 | 92.67 | 91.18 |
16.25 | C21H20O11 | 448.1304 | Kaempferol-7-O-glucoside | Flavonoid (C-glycosylated flavoinoid) | 8.32 | 6.50 | 5.22 | |||
16.66 | C21H22O10 | 433.1138 | 1.6 | 313,270 | 304 | 10-hydroxyaloin B | Anthrone | 1.45 | 60.38 | 74.93 |
16.89 | C21H22O10 | 433.1133 | 0.9 | 313,270 | 305 | 10-hydroxyaloin A | Anthrone | 0.91 | 58.23 | 70.58 |
18.61 | C24H26O12 | 505.1343 | −1.6 | 343,297,257 | 264,301 | 6-Malonylnataloin B (nataloin B) | Anthrone | 3.04 | 77.87 | 83.30 |
19.24 | C24H26O12 | 505.1355 | −4.4 | 343,325,297,257 | 264,301 | 6-Malonylnataloin A (nataloin A) | Anthrone | 1.97 | 55.97 | 59.22 |
20.16 | C29H30O12 | 569.1669 | 0.2 | 407,243,161 | 300 | Caffeoyl ester of aloesin | Chromone | 3.14 | 43.32 | 44.84 |
21.01 | C21H22O9 | 417.1194 | 0.0 | 297 | 297,354 | Aloin B | Anthrone (Anthracene compound) | 123.34 | 275.75 | 265.68 |
21.84 | C21H22O9 | 417.1176 | −2.4 | 297 | 297,354 | Aloin A | Anthrone (Anthracene compound) | 163.05 | 310.38 | 303.57 |
RT (min) | Molecular Formula | Measured Mass (m/z) | Error m/z (ppm) | MS Fragment | UVmax (nm) | Compound | Classification of the Compounds | 70% | 85% | 100% |
---|---|---|---|---|---|---|---|---|---|---|
7.73 | C45H38O18 | 865.2037 | 3.7 | 577,407,289,125 | 279 | Procyanidin trimer C1 | Flavonoid | 10.54 | 30.67 | 34.64 |
8.98 | C11H12N2O2 | 203.0821 | −0.3 | 149 | 279 | Tryptophan | Amino acid | 43.36 | 46.64 | 49.83 |
10.4 | C30H26O12 | 577.1321 | −4.9 | 407,289,125 | 279 | Procyanidin dimer B | Flavonoid | 96.38 | 104.34 | 109.56 |
10.78 | C30H26O12 | 577.1322 | −4.9 | 407,289,125 | 279 | Procyanidin dimer B2 | Flavonoid | 49.05 | 95.19 | 99.05 |
11.06 | C15H14O6 | 289.0712 | −1.0 | 245,203,151,103 | 279 | Catechin | Flavonoid | 292.48 | 298.98 | 312.01 |
11.44 | C45H38O18 | 865.1969 | −1.3 | 577,407,289,125 | 279 | Procyanidin trimer C2 | Flavonoid | 56.84 | 72.59 | 74.58 |
13.16 | C15H14O6 | 289.0716 | −1.4 | 245,203,151,103 | 279 | Epicatechin | Flavonoid | 101.19 | 125.93 | 143.53 |
15.47 | C26H28O14 | 563.1395 | −2.1 | 443,383,353 | 271,335 | Apigenin-6-C-arabinosyl-8-C-arabinoside | Flavonoid (C-glycosylated flavoinoid) | 141.07 | 137.38 | 137.52 |
15.69 | C21H20O11 | 448.093 | 0.7 | 357,327,300 | 269,349 | Kaempferol-7-O-glucoside | Flavonoid | 7.89 | 6.31 | 6.37 |
16.91 | C21H20O10 | 431.0966 | −1.9 | 341,311,283 | 268,335 | Vitexin-7-olate | Flavonoid (C-glycosylated flavoinoid) | 142.42 | 143.18 | 144.79 |
17.44 | C21H20O10 | 431.097 | −2.1 | 341,311,283 | 271,335 | Isovitexin-7-olate | Flavonoid (C-glycosylated flavoinoid) | 188.89 | 187.05 | 190.77 |
19.81 | C27H30O14 | 577.1558 | 0.7 | 269 | 267,335 | Apigenin-7-O-rutinoside | Flavonoid (O-glycosylated flavoinoid) | 78.32 | 77.60 | 80.49 |
RT (min) | Molecular Formula | Measured Mass (m/z) | Error m/z (ppm) | MS Fragment | UVmax (nm) | Compound | Classification of the Compounds | 70% | 85% | 100% |
---|---|---|---|---|---|---|---|---|---|---|
9.29 | C16H18O9 | 353.0864 | −2.5 | 191,179,135 | 325 | neochlorogenic acid | Phenolic acid | 203.93 | 205.09 | 198.07 |
10.85 | C16H18O8 | 337.0922 | −0.3 | 191,173,163 | 305 | 3-p-coumaroylquinic acid | Phenolic acid | 108.21 | 110.85 | 107.67 |
11.72 | C16H18O9 | 353.088 | −1.4 | 191 | 325 | chlorogenic acid | Phenolic acid | 30.44 | 47.73 | 19.94 |
12.11 | C17H20O9 | 367.1014 | −1.9 | 193,134 | 323 | Feruloylquinic aci | Phenolic acid | 39.14 | 0 | 0 |
12.57 | C39H19NO7 | 612.1063 | −1 | 97 | 344 | Alkaloid | Alkaloid | 142.73 | 265.40 | 272.63 |
13.99 | C27H30O15 | 593.1519 | 2.5 | 473,383,353,297 | 270,334 | Kaempferol-3-O-rutinoside (isomer) | Flavonoid (O-glycosylated flavoinoid) | 77.03 | 78.23 | 64.81 |
17.08 | C27H30O16 | 609.1464 | −0.3 | 300,271,255 | 256,354 | Rutin | Flavonoid | 102.18 | 105.07 | 101.61 |
17.56 | C21H20O12 | 463.0873 | −0.2 | 300,271,255 | 351 | Quercetin-3-O-hexoside | Flavonoid (O-glycosylated flavoinoid) | 94.24 | 94.18 | 89.58 |
18.36 | C23H22O13 | 505.0983 | 0.2 | 300,271,255 | 354 | Quercetin-3-O-(6″- acetyl-glucoside | Flavonoid (O-glycosylated flavoinoid) | 84.60 | 82.54 | 86.07 |
18.71 | C27H30O15 | 593.151 | −1.9 | 285,271,255 | 265,348 | Kaempferol-3-O-rutinoside | Flavonoid (O-glycosylated flavoinoid) | 79.98 | 82.57 | 85.09 |
19.18 | C21H20O11 | 448.0924 | −0.7 | 285,255,227 | 265,348 | Kaempferol-3-O-glucoside | Flavonoid (O-glycosylated flavoinoid) | 146.74 | 146.99 | 157.28 |
20.31 | C23H22O12 | 489.1047 | 3.5 | 285,255 | 265,348 | Kaempferol-3-O-acetyl-glucoside | Flavonoid (O-glycosylated flavoinoid) | 108.11 | 115.14 | 108.24 |
RT (min) | Molecular Formula | Measured Mass (m/z) | Error m/z (ppm) | MS Fragment | UVmax (nm) | Compound | Classification of Compounds | 70% | 85% | 100% |
---|---|---|---|---|---|---|---|---|---|---|
7.45 | C15H18O10 | 357.0825 | 0.8 | 345,195 | 326 | Dihydrocaffeic acid 3′-O-βD-glucuronide | Phenolic acid | 34.36 | 54.73 | 44.62 |
8.35 | C15H18O10 | 357.0829 | 2.0 | 195,129,75 | 325 | Dihydrocaffeic acid 4′-O-βD-glucuronide | Phenolic acid | 25.14 | 27.52 | 21.13 |
9.91 | C15H18O9 | 341.0859 | 0.6 | 195,163,119 | 312 | Dihydro-m-coumaric acid 3′-O-β-D-glucuronide | Phenolic acid | 98.09 | 101.57 | 88.52 |
10.39 | C15H18O9 | 341.0862 | −3.2 | 195.163 | 308 | Dihydro-p-coumaric acid 4′-O-β-D-glucuronide | Phenolic acid | 52.65 | 50.67 | 30.85 |
13.72 | C16H18O8 | 337.0925 | −0.3 | 191,173,163 | 305 | 3-p-coumaroylquinic acid | Phenolic acid | 96.74 | 106.49 | 91.72 |
14.05 | C9H8O3 | 163.04 | −0.5 | 163 | 339 | Coumaric acid | Phenolic acid | 155.02 | 190.66 | 12.17 |
15.03 | C16H18O8 | 337.0929 | 1.8 | 191,173,163 | 305 | 3-p-coumaroylquinic | Phenolic acid | 128.56 | 129.21 | 105.34 |
15.51 | C27H30O16 | 609.1448 | 1.8 | 489,429,357, 327,309 | 348 | Rutin | Flavonoid | 73.76 | 98.27 | 103.70 |
16.42 | C27H30O15 | 593.1487 | −1.7 | 413,293 | 268,334 | Apigenin-7,4′-diglucoside | Flavonoid (O-glycosylated flavoinoid) | 83.36 | 118.99 | 128.32 |
22.12 | C9H10O2 | 149.0603 | 2-Methoxy-4-vinylphenol | Phenolic acid | 675.93 | 775.91 | 814.11 |
Extract (50 mg kg−1 DM) | CH4 (mL g−1 DM) | TGP mL g−1 DM | CH4/TGP (×10−3) | IVOMD (g kg−1 DM) | TGP/IVOMD (mL kg−1 DM) | CH4/IVOMD (mL kg−1 DM) |
---|---|---|---|---|---|---|
Control | 4.24A | 166.50B | 25.64A | 608.41 | 273.97 | 6.96A |
Aloe vera 70% | 3.97B | 170.49A | 23.39B | 607.40 | 280.91 | 6.54B |
Aloe vera 85% | 3.92B | 167.73AB | 23.49B | 608.43 | 275.44 | 6.44B |
Aloe vera 100% | 3.94B | 167.72AB | 23.68B | 604.08 | 277.10 | 6.53B |
SEM | 0.05 | 1.10 | 0.41 | 10.39 | 3.82 | 0.12 |
p value | 0.01 | 0.04 | 0.01 | 0.97 | 0.35 | 0.04 |
Control | 4.24A | 166.50 | 25.64A | 608.41 | 273.97 | 6.96A |
Jatropha curcas 70% | 3.79B | 169.93 | 22.52B | 616.17 | 275.20 | 6.15B |
Jatropha curcas 85% | 3.90B | 172.30 | 22.78B | 604.03 | 284.89 | 6.45B |
Jatropha curcas 100% | 3.75B | 164.91 | 22.95B | 608.37 | 271.01 | 6.16B |
SEM | 0.14 | 2.78 | 0.45 | 9.79 | 8.32 | 0.13 |
p value | 0.04 | 0.13 | 0.003 | 0.63 | 0.41 | 0.04 |
Control | 4.24A | 166.50 | 25.64A | 608.41 | 273.97 | 6.96A |
Moringa oleifera 70% | 3.70B | 165.46 | 22.69B | 608.67 | 271.95 | 6.09B |
Moringa oleifera 85% | 3.71B | 165.23 | 22.73B | 613.33 | 269.55 | 6.07B |
Moringa oleifera 100% | 3.69B | 165.65 | 22.55B | 613.00 | 270.02 | 6.02B |
SEM | 0.08 | 2.42 | 0.38 | 6.40 | 2.41 | 0.12 |
p value | 0.002 | 0.95 | 0.001 | 0.87 | 0.35 | 0.001 |
Control | 4.24A | 166.50 | 25.64A | 608.41 | 273.97 | 6.96A |
Piper betle 70% | 3.97B | 168.42 | 23.65B | 614.72 | 274.19 | 6.47B |
Piper betle 85% | 4.00B | 171.89 | 23.41B | 609.29 | 282.45 | 6.57B |
Piper betle 100% | 3.91B | 166.36 | 23.66B | 613.97 | 270.92 | 6.37B |
SEM | 0.06 | 2.18 | 0.43 | 6.08 | 3.87 | 0.09 |
p value | 0.03 | 0.15 | 0.01 | 0.74 | 0.09 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, T.A.; Hassen, A.; Apostolides, Z. The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents. Plants 2022, 11, 3296. https://doi.org/10.3390/plants11233296
Ibrahim TA, Hassen A, Apostolides Z. The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents. Plants. 2022; 11(23):3296. https://doi.org/10.3390/plants11233296
Chicago/Turabian StyleIbrahim, Taofik Adam, Abubeker Hassen, and Zeno Apostolides. 2022. "The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents" Plants 11, no. 23: 3296. https://doi.org/10.3390/plants11233296
APA StyleIbrahim, T. A., Hassen, A., & Apostolides, Z. (2022). The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents. Plants, 11(23), 3296. https://doi.org/10.3390/plants11233296