Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia)
Abstract
:1. Introduction
- (1)
- It has been demonstrated that some algae cultures contribute significant free carbohydrates only during late bloom conditions when algae are abundant and under physiological circumstances resembling stationary or declining culture [23]. Under such conditions additional CDOM can also be released so in this study we focus on CDOM at the stationary phase of algae growth. The cultivation was interrupted when the cultures entered the stationary phase.
- (2)
- (3)
- CDOM of algae origin has been studied using the optical indices calculated from absorbance and fluorescence spectra [25,26], analysis of synchronous fluorescence spectra [27] and EEMs by the conventional “peak picking” technique [28] and EEM fluorometry combined with PARAFAC [29,30,31,32]. The study of the fluorescence fraction of DOM (FDOM) produced during the cultivation of the arctic algal species will make a significant contribution to understanding the diversity of autochthonous FDOM in aquatic systems.
- (4)
- Previously, it has been determined that CDOM is produced by live algae [28] and by bacteria using non-fluorescent organic matter derived from phytoplankton [33], as well as via phytoplankton degradation [30] and live algae excreting simple phenols that can be slowly transformed to humic substances [34]. Our study aims to characterize the bulk FDOM formed during cultivation of microalgae strains.
- (5)
- In the last two decades, there has been a tendency to revise the systematic position of a large number of previously described species as well as to describe new microalgae species. The absence of comprehensive morphological and molecular genetic data in scientific papers creates difficulties for further verification and validation of the results. In this study we provide a comprehensive description of the algae strains to ensure both the accuracy of the definition of species and the reliability of data comparison in the future.
2. Results
2.1. Morphological Description of the Algae Strains
2.1.1. Diatoms
2.1.2. Green Algae
2.1.3. Yellow-Green Algae
2.2. Molecular Description of the Algae Strains
2.2.1. Diatoms
2.2.2. Green Algae
2.2.3. Yellow-Green Algae
2.3. FDOM Fluorescence
2.3.1. PARAFAC Components
2.3.2. FDOM Production
3. Discussion
4. Study Area and Sampling
4.1. Environmental Conditions
4.2. Field Work
5. Materials and Methods
5.1. Algae Strains’ Isolating and Cultivation Conditions
5.2. Molecular Analyses
5.3. Preparation of Slides and Microscopic Analysis
5.4. Optical Measurements and PARAFAC Decomposition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fogg, G. The role of algae in organic production in aquatic environments. Br. Phycol. Bull. 1963, 2, 195–205. [Google Scholar] [CrossRef]
- Romankevich, E.A.; Vetrov, A.A.; Peresypkin, V.I. Organic matter of the World Ocean. Russ. Geol. Geophys. 2009, 50, 299–307. [Google Scholar] [CrossRef]
- Lobus, N.V.; Kulikovskiy, M.S.; Maltsev, Y.I. Multi-Element Composition of Diatom chaetoceros spp. from Natural Phytoplankton Assemblages of the Russian Arctic Seas. Biology 2021, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Lobus, N.V. Biogeochemical Role of Algae in Aquatic Ecosystems: Basic Research and Applied Biotechnology. J. Mar. Sci. Eng. 2022, 10, 1846. [Google Scholar] [CrossRef]
- Thornton, D.C.D. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 2014, 49, 20–46. [Google Scholar] [CrossRef] [Green Version]
- Hansell, D.A.; Carlson, C.A.; Repeta, D.J.; Schlitzer, R. Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights. Oceanography 2009, 22, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Vetrov, A.; Romankevich, E. Distribution and fluxes of dissolved organic carbon in the Arctic Ocean. Polar Res. 2019, 38, 3500. [Google Scholar] [CrossRef] [Green Version]
- Hansell, D.A.; Craig, A.C. Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Arrigo, K.; Brown, C.W. Impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the sea. Mar. Ecol. Prog. Ser. 1996, 140, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Hansell, D.A.; Lorenzi-Kayser, M. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. Ocean 2002, 107, 21-1–21-14. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Norman, B.N. The Optical Properties of Dom in the Ocean. In Biogeochemistry of Marine Dissolved Organic Matter; Elsevier: Amsterdam, The Netherlands, 2015; pp. 481–508. [Google Scholar]
- Ekrause-Jensen, D.; Duarte, C.M. Expansion of vegetated coastal ecosystems in the future Arctic. Front. Mar. Sci. 2014, 1, 77. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hallegraeff, G.M. Ocean Climate Change, Phytoplankton Community Responses, and Harmful Algal Blooms: A Formidable Predictive Challenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- Beardall, J.; Stojkovic, S. Microalgae under Global Environmental Change: Implications for Growth and Productivity, Populations and Trophic Flow. Sci. Asia 2006, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Gu, C.; Xupeng, C.; Dong, W. Molecular Characterization of CO2 Sequestration and Assimilation in Microalgae and Its Biotechnological Applications. Bioresour. Technol. 2017, 244, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yun, H.; Jia, F.; Jing, S.; Junhu, Z.; Kefa, C. Improving CO2 Fixation Efficiency by Optimizing Chlorella Py-Zu1 Culture Conditions in Sequential Bioreactors. Bioresour. Technol. 2013, 144, 321–327. [Google Scholar] [CrossRef]
- Gökçe, D. Algae as an Indicator of Water Quality. In Algae-Organisms for Imminent Biotechnology; INTECH: Vienna, Austria, 2016; pp. 81–101. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.H.; Allen, J.I.; Clark, P.A. Extraction of a weak climatic signal by an ecosystem. Nature 2002, 416, 629–632. [Google Scholar] [CrossRef]
- Amon, R.; Rinehart, A.; Duan, S.; Louchouarn, P.; Prokushkin, A.; Guggenberger, G.; Bauch, D.; Stedmon, C.; Raymond, P.; Holmes, R.; et al. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 2012, 94, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef]
- Jaffé, R.; Mcknight, D.; Maie, N.; Cory, R.; McDowell, W.; Campbell, J. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. Biogeosci. 2008, 113, G04032. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Wangersky, P.J. The Production of Extracellular Carbohydrates by Some Marine Flagellates1. Limnol. Oceanogr. 1958, 3, 449–454. [Google Scholar] [CrossRef]
- Bro, R. Parafac. Tutorial and Applications. In Chemometrics and Intelligent Laboratory Systems; 1997; Volume 38, pp. 149–171. [Google Scholar]
- Henderson, R.K.; Baker, A.; Parsons, S.A.; Jefferson, B. Characterisation of Algogenic Organic Matter Extracted from Cyanobacteria, Green Algae and Diatoms. Water Res. 2008, 13, 3435–3445. [Google Scholar] [CrossRef]
- Ly, Q.V.; Lee, M.-H.; Hur, J. Using fluorescence surrogates to track algogenic dissolved organic matter (AOM) during growth and coagulation/flocculation processes of green algae. J. Environ. Sci. 2019, 79, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Mingazzini, M. Synchronous fluorescence spectra of dissolved organic matter (DOM) of algal origin in marine coastal waters. Mar. Ecol. Prog. Ser. 1995, 125, 305–315. [Google Scholar] [CrossRef]
- Castillo, C.R.; Sarmento, H.; Alvarez-Salgado, X.A.; Gasol, J.; Marraséa, C. Production of Chromophoric Dissolved Organic Matter by Marine Phytoplankton. Limnol. Oceanogr. 2010, 1, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 2013, 55, 26–37. [Google Scholar] [CrossRef]
- Zhang, Y.; van Dijk, M.A.; Liu, M.; Zhu, G.; Qin, B. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Res. 2009, 43, 4685–4697. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, W.; Ma, S.; Feng, M.; Liu, C.; Gu, X.; Chen, K. Characterization of Chromophoric Dissolved Organic Matter in the Littoral Zones of Eutrophic Lakes Taihu and Hongze during the Algal Bloom Season. Water 2018, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Erik, J.; Yunlin, Z.; Cheng, N.; Kun, S.; Xiaohan, L.; Guangwei, Z.; Boqiang, Q. Chromophoric Dissolved Organic Matter of Black Waters in a Highly Eutrophic Chinese Lake: Freshly Produced from Algal Scums? J. Hazard. Mater. 2015, 299, 222–230. [Google Scholar] [CrossRef]
- Rochelle-Newall, E.; Fisher, T. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: An investigation into the role of phytoplankton. Mar. Chem. 2002, 77, 7–21. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Jensen, A. Studies on algal substances in the sea. II. The formation of Gelbstoff (humic material) by exudates of phaeophyta. J. Exp. Mar. Biol. Ecol. 1969, 3, 275–289. [Google Scholar] [CrossRef]
- Cho, K.-J. Fine Structure of Diatom Stephanodiscus hantzschii F. tenuis and S. parvus from the Naktong River of Korea. Korean J. Phycol. 1995, 10, 69–76. [Google Scholar]
- Kulikovskiy, M.S.; Glushchenko, A.M.; Genkal, S.I.; Kuznetsova, I.V. Identification Book of Diatoms from Russia; Filigran: Yaroslavl, Russia, 2016. [Google Scholar]
- Genkal, S.I.; Kulikovskiy, M.S.; Kuznetsova, I.V. The Recent Freshwater Centric Diatoms of Russia; Filigran: Yaroslavl, Russia, 2020. [Google Scholar]
- Gololobova, M.A.; Gogorev, R.M.; Lyakh, A.M.; Dorofeyuk, N.I. The main valve shapes of diatoms: Terminology. I. Valve shapes symmetrical to the apical axis and valve shapes with radial symmetry. Nov. Sist. Nizshikh Rastenii 2022, 56, 29–54. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 2013, 6, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Coble, P.G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 2007, 2, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Williams, C.J.; Frost, P.C.; Xenopoulos, M.A. Beyond best management practices: Pelagic biogeochemical dynamics in urban stormwater ponds. Ecol. Appl. 2013, 23, 1384–1395. [Google Scholar] [CrossRef]
- Limberger, R.; Birtel, J.; Peter, H.; Catalán, N.; Farias, D.D.S.; Best, R.J.; Brodersen, J.; Bürgmann, H.; Matthews, B. Predator-induced changes in dissolved organic carbon dynamics. Oikos 2018, 128, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Stedmon, C.A.; Markager, S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr. 2005, 50, 1415–1426. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Romera-Castillo, C.; Sarmento, H.; Álvarez-Salgado, X.A.; Gasol, J.M.; Marrasé, C. Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates. Appl. Environ. Microbiol. 2011, 77, 7490–7498. [Google Scholar] [CrossRef] [Green Version]
- Amaral, V.; Graeber, D.; Calliari, D.; Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 2016, 61, 906–918. [Google Scholar] [CrossRef]
- Yamashita, Y.; Maie, N.; Briceño, H.; Jaffé, R. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Jung, J.; Lee, Y.K.; Hur, J. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. Sci. Total Environ. 2018, 639, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R.L.; Lorenzen, C.J. Yellow-green algae with chlorophyllide c. J. Phycol. 1972, 8, 10–14. [Google Scholar] [CrossRef]
- Nichols, H. Handbook of Phycological Methods: Culture Methods and Growth Measurements: Growth Media-Freshwater; University Press: London, UK, 1973. [Google Scholar]
- Qu, F.; Liang, H.; He, J.; Ma, J.; Wang, Z.; Yu, H.; Li, G. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Res. 2012, 46, 2881–2890. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cai, H.; Yu, G.; Jiang, H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013, 47, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Villacorte, L.; Ekowati, Y.; Neu, T.; Kleijn, J.; Winters, H.; Amy, G.; Schippers, J.; Kennedy, M. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res. 2015, 73, 216–230. [Google Scholar] [CrossRef]
- Gonçalves-Araujo, R.; Stedmon, C.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A. From Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region, Siberia. Front. Mar. Sci. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves-Araujo, R.; Granskog, M.; Bracher, A.; Azetsu-Scott, K.; Dodd, P.A.; Stedmon, C. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters. Sci. Rep. 2016, 6, 33978. [Google Scholar] [CrossRef] [Green Version]
- Guéguen, C.; Chad, W.C.; Chase, J.C.; Eddy, C.C. Absorption and Fluorescence of Dissolved Organic Matter in the Waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea. J. Geophys. Res. Ocean 2014, 3, 2034–2047. [Google Scholar] [CrossRef]
- Stedmon, C.; Thomas, D.; Papadimitriou, S.; Granskog, M.; Dieckmann, G.S. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Mendoza, W.G.; Weiss, E.L.; Schieber, B.; Mitchell, B.G. Controls on the distribution of fluorescent dissolved organic matter during an under-ice algal bloom in the western Arctic Ocean. Glob. Biogeochem. Cycles 2017, 31, 1118–1140. [Google Scholar] [CrossRef] [Green Version]
- Cory, R.M.; Kaplan, L.A. Biological lability of streamwater fluorescent dissolved organic matter. Limnol. Oceanogr. 2012, 57, 1347–1360. [Google Scholar] [CrossRef]
- Findley, W.G. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Singh, S.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Huang, W.; Chu, H.; Dong, B. Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling. Desalination 2012, 293, 104–111. [Google Scholar] [CrossRef]
- Drozdova, A.N.; Krylov, I.N.; Nedospasov, A.A.; Arashkevich, E.G.; Labutin, T.A. Fluorescent Signatures of Autochthonous Dissolved Organic Matter Production in Siberian Shelf Seas. Front. Mar. Sci. 2022, 9, 1497. [Google Scholar] [CrossRef]
- Drozdova, A.; Nedospasov, A.; Lobus, N.; Patsaeva, S.; Shchuka, S. CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas. Remote Sens. 2021, 13, 1145. [Google Scholar] [CrossRef]
- Guay, C.K.H.; Falkner, K.K.; Muench, R.D.; Mensch, M.; Frank, M.; Bayer, R. Wind-driven transport pathways for Eurasian Arctic river discharge. J. Geophys. Res. Earth Surf. 2001, 106, 11469–11480. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlov, V.K.; Timokhov, L.A.; Baskakov, G.A.; Kulakov, M.Y.; Kurazhov, V.K. Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas; Applied Physics Laboratory, University of Washington: Seattle, WA, USA, 1996. [Google Scholar]
- Osadchiev, A.; Medvedev, I.; Shchuka, S.; Kulikov, M.; Spivak, E.; Pisareva, M.; Semiletov, I. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Shchuka, S.A.; Semiletov, I.P. Freshwater Transport between the Kara, Laptev, and East-Siberian Seas. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Frey, D.I.; Shchuka, S.A.; Tilinina, N.D.; Morozov, E.G.; Zavialov, P.O. Structure of the Freshened Surface Layer in the Kara Sea During Ice-Free Periods. J. Geophys. Res. Oceans 2021, 126. [Google Scholar] [CrossRef]
- Osadchiev, A.; Konovalova, O.; Gordey, A. Water Exchange between the Gulf of Ob and the Kara Sea During Ice-Free Seasons: The Roles of River Discharge and Wind Forcing. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Frey, D.; Osadchiev, A. Large River Plumes Detection by Satellite Altimetry: Case Study of the Ob–Yenisei Plume. Remote. Sens. 2021, 13, 5014. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Izhitskiy, A.S.; Zavialov, P.O.; Kremenetskiy, V.V.; Polukhin, A.A.; Pelevin, V.V.; Toktamysova, Z.M. Structure of the Buoyant Plume Formed by Ob and Yenisei River Discharge in the Southern Part of the Kara Sea during Summer and Autumn. J. Geophys. Res. Ocean 2017, 122, 5916–5935. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Asadulin, E.; Miroshnikov, A.Y.; Zavialov, I.B.; Dubinina, E.O.; Belyakova, P. Bottom Sediments Reveal Inter-Annual Variability of Interaction between the Ob and Yenisei Plumes in the Kara Sea. Sci. Rep. 2019, 9, 18642. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.A.; Masanobu, K. Microalgae Isolation Techniques. In Algal Culturing Techniques; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Zimmermann, J.; Regine, J.; Birgit, G. Barcoding Diatoms: Evaluation of the V4 Subregion on the 18s Rrna Gene, Including New Primers and Protocols. Org. Divers. Evol. 2011, 11, 173–192. [Google Scholar] [CrossRef]
- Ruck, E.C.; Theriot, E.C. Origin and Evolution of the Canal Raphe System in Diatoms. Protist 2011, 162, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Daugbjerg, N.; Andersen, R.A. A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. J. Phycol. 1997, 33, 1031–1041. [Google Scholar] [CrossRef]
- Katana, A.; Kwiatowski, J.; Zakryś, B.; Szalacha, E.; Spalik, K.; Szymańska, H. Phylogenetic Position of Koliella (Chlorophyta) as Inferred from Nuclear and Chloroplast Small Subunit rDNA. J. Phycol. 2001, 37, 443–451. [Google Scholar] [CrossRef]
- Belevich, T.A.; Ilyash, L.V.; Milyutina, I.A.; Logacheva, M.D.; Goryunov, D.V.; Troitsky, A. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia. Microb. Ecol. 2017, 75, 582–597. [Google Scholar] [CrossRef]
- Belevich, T.A.; Milyutina, I.A.; Troitsky, A.V. Seasonal Variability of Photosynthetic Microbial Eukaryotes (<3 µm) in the Kara Sea Revealed by 18S rDNA Metabarcoding of Sediment Trap Fluxes. Plants 2021, 10, 2394. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapustin, D.A.; Glushchenko, A.M.; Kulikovskiy, M.S. Achnanthidium bratanense sp. nov. (Bacillariophyceae, Achnanthidiaceae), a new diatom from the Lake Bratan (Bali, Indonesia). PhytoKeys 2022, 188, 167–175. [Google Scholar] [CrossRef]
- Lasareva, E.V.; Parfenova, A.M.; Romankevich, E.A.; Lobus, N.V.; Drozdova, A.N. Organic Matter and Mineral Interactions Modulate Flocculation Across Arctic River Mixing Zones. J. Geophys. Res. Biogeosci. 2019, 124, 1651–1664. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A Perfect Smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Krylov, I.N.; Drozdova, A.N.; Labutin, T.A. Albatross R package to study PARAFAC components of DOM fluorescence from mixing zones of arctic shelf seas. Chemom. Intell. Lab. Syst. 2020, 207, 104176. [Google Scholar] [CrossRef]
Algae Strains | C1 | C2 | C3 |
---|---|---|---|
ARC01 | 0.068 | 0.072 | 0.070 |
ARC03 | 0.045 | 0.029 | 0.036 |
ARC05 | 0.140 | 0.024 | 0.047 |
ARC06 | 0.173 | 0.285 | 0.134 |
ARC10 | 0.303 | 0.129 | 0.144 |
BBM 1 | 0.005 | 0.002 | 0.008 |
WC 2 | 0.006 | 0.004 | 0.008 |
Present Study | [29] | [30] | [32] | [31] | [26] | [40] |
---|---|---|---|---|---|---|
C1 278/330 | - | - | <230(280)/338 240(300)/338 | - | 270/340 | T |
- | 275/320 | 275/<300 | <230(275)/308 | 285/322 | - | B |
C2 < 300(376)/470 | 265/445 | 270(365)/453 | 255(345)/464 | 350/440 285(395)/497 | 250(370)/450 | C |
C3 < 260(315)/421 | - | 255(330)/412 | 230/405 | - | 240(270)/420 | A |
- | 310/380 | 315/372 | - | 315/384 | - | M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobus, N.V.; Glushchenko, A.M.; Osadchiev, A.A.; Maltsev, Y.I.; Kapustin, D.A.; Konovalova, O.P.; Kulikovskiy, M.S.; Krylov, I.N.; Drozdova, A.N. Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia). Plants 2022, 11, 3361. https://doi.org/10.3390/plants11233361
Lobus NV, Glushchenko AM, Osadchiev AA, Maltsev YI, Kapustin DA, Konovalova OP, Kulikovskiy MS, Krylov IN, Drozdova AN. Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia). Plants. 2022; 11(23):3361. https://doi.org/10.3390/plants11233361
Chicago/Turabian StyleLobus, Nikolay V., Anton M. Glushchenko, Alexander A. Osadchiev, Yevhen I. Maltsev, Dmitry A. Kapustin, Olga P. Konovalova, Maxim S. Kulikovskiy, Ivan N. Krylov, and Anastasia N. Drozdova. 2022. "Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia)" Plants 11, no. 23: 3361. https://doi.org/10.3390/plants11233361
APA StyleLobus, N. V., Glushchenko, A. M., Osadchiev, A. A., Maltsev, Y. I., Kapustin, D. A., Konovalova, O. P., Kulikovskiy, M. S., Krylov, I. N., & Drozdova, A. N. (2022). Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia). Plants, 11(23), 3361. https://doi.org/10.3390/plants11233361