A New Cryptic Species of the Genus Mychonastes (Chlorophyceae, Sphaeropleales)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Samples and Collection
4.3. Culturing
4.4. Light Microscopy
4.5. Extraction of DNA and Amplification
4.6. Phylogenetic Analysis of SSU rDNA Data
4.7. Internal Transcribed Spacer 2 Annotation, Secondary Structure Modeling, Alignment and Phylogeny
4.8. Blast Search of Barcoding Data (ITS1)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maltsev, Y.; Maltseva, S.; Kociolek, J.P.; Jahn, R.; Kulikovskiy, M. Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data. Sci. Rep. 2021, 11, 4266. [Google Scholar] [CrossRef] [PubMed]
- Kezlya, E.; Glushchenko, A.; Maltsev, Y.; Gusev, E.; Genkal, S.; Kociolek, J.P.; Kulikovskiy, M. Three New Species of Placoneis Mereschkowsky (Bacillariophyceae: Cymbellales) with Comments on Cryptic Diversity in the P. elginensis—Group. Water 2021, 13, 3276. [Google Scholar] [CrossRef]
- Gusev, E.S.; Čertnerová, D.; Škaloudová, M.; Škaloud, P. Exploring cryptic diversity and distribution patterns in the Mallomonas kalinae/rasilis species complex with a description of a new taxon—Mallomonas furtiva sp. nov. J. Euk. Microbiol. 2018, 65, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Škaloud, P.; Škaloudová, M.; Jadrná, I.; Bestová, H.; Pusztai, M.; Kapustin, D.A.; Siver, P.A. Comparing morphological and molecular estimates of species diversity in the freshwater genus Synura (stramenopiles): A model for understanding diversity of eukaryotic microorganisms. J. Phycol. 2020, 56, 574–591. [Google Scholar] [CrossRef]
- Kim, J.I.; Shin, W.; Triemer, R.E. Cryptic Speciation in the Genus Cryptoglena (Euglenaceae) Revealed by Nuclear and Plastid SSU and LSU rRNA Gene. J. Phycol. 2013, 49, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Shin, W. Molecular Phylogeny and Cryptic Diversity of the Genus Phacus (Phacaceae, Euglenophyceae) and the Descriptions of Seven New Species. J. Phycol. 2014, 50, 948–959. [Google Scholar] [CrossRef]
- Lewis, L.A.; Flechtner, V.R. Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. J. Phycol. 2004, 40, 1127–1137. [Google Scholar] [CrossRef]
- Mikhailyuk, T.; Glaser, K.; Tsarenko, P.; Demchenko, E.; Karsten, U. Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. Eur. J. Phycol. 2019, 54, 263–290. [Google Scholar] [CrossRef]
- Škaloud, P.; Rindi, F. Ecological Differentiation of Cryptic Species within an Asexual Protist Morphospecies: A Case Study of Filamentous Green Alga Klebsormidium (Streptophyta). J. Euk. Microbiol. 2013, 60, 350–362. [Google Scholar] [CrossRef]
- Irisarri, I.; Darienko, T.; Pröschold, T.; Fürst-Jansen Janine, M.R.; Jamy, M.; de Vries, J. Unexpected cryptic species among streptophyte algae most distant to land plants. Proc. R. Soc. B. 2021, 288, 20212168. [Google Scholar] [CrossRef]
- Krienitz, L.; Bock, C.; Dadheech, P.K.; Pröschold, T. Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 2011, 50, 89–106. [Google Scholar] [CrossRef]
- Simpson, P.D.; Van Valkenburg, S.D. The ultrastructure of Mychonastes ruminates gen. et sp. nov., a new member of the Chlorophyceae isolated from brackish water. Br. Phycol. J. 1978, 13, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Puncŏchárŏvá, M. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Arch. Hydrobiol. Suppl. 1987, 73, 473–521. [Google Scholar]
- Margulis, B.L.; Hinkle, G.; McKhann, H.; Moynihan, B. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)—An intertidal alga forming achlorophyllous desiccation–resistant cysts. Arch. Hydrobiol. 1988, 78, 425–446. [Google Scholar]
- Patova, E.; Novakovskaya, I.; Martynenko, N.; Gusev, E.; Kulikovskiy, M. Mychonastes frigidus sp. nov. (Sphaeropleales/Chlorophyceae), a new species described from a mountain stream in the subpolar Urals (Russia). Fottea 2021, 21, 8–15. [Google Scholar] [CrossRef]
- Andreeva, V.M. Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales); Nauka: St. Petersburg, Russia, 1998; pp. 1–352. [Google Scholar]
- Neustupa, J. Soil algae from marlstone-substratum based biotopes in the Nature park Džbán (Central Bohemia, Czech Republic) with special attention to the natural treeless localities. Algol. Stud. 2001, 101, 109–120. [Google Scholar] [CrossRef]
- Saadaouia, I.; Cherifa, M.; Rasheeda, R.; Bounnita, T.; Al Jabria, H.; Sayadia, S.; Ben Hamadoub, R.; Manning, S.R. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal Res. 2020, 5, 102021. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Fan, F.; Zhang, M.; Yang, Z.; Yang, Y. Mychonastes dominates the photosynthetic picoeukaryotes in Lake Poyang, a river-connected lake. FEMS Microbiol. Ecol. 2019, 95, fiy211. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Liu, J.; Fan, Y.; Ren, X.; Hu, G.; Li, F. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 2011, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xu, L.; Hu, C. Screening and Characterization of Oleaginous Microalgal Species from Northern Xinjiang. J. Microbiol. Biotechnol. 2015, 25, 910–917. [Google Scholar] [CrossRef]
- Sun, L.Y.; Cui, W.J.; Chen, K.M. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energy Sources A Recovery Util. Environ. Eff. 2018, 40, 1452–1460. [Google Scholar] [CrossRef]
- Chernogor, L.; Denikina, N.; Kondratov, I.; Solovarov, I.; Khanaev, I.; Belikov, S.; Ehrlich, H. Isolation and identification of the microalgal symbiont from primmorphs of the endemic freshwater sponge Lubomirskia baicalensis (Lubomirskiidae, Porifera). Eur. J. Phycol. 2013, 48, 497–508. [Google Scholar] [CrossRef]
- Hoshina, R.; Sato, E.; Shibata, A.; Fujiwara, Y.; Kusuoka, Y.; Imamura, N. Cytological, genetic, and biochemical characteristics of an unusual non-Chlorella photobiont of Stentor polymorphus collected from an artificial pond close to the shore of Lake Biwa, Japan. Phycol. Res. 2013, 61, 7–14. [Google Scholar] [CrossRef]
- Boenigk, J.; Wodniok, S.; Bock, C.; Beisser, D.; Hempel, C.; Grossmann, L.; Lange, A.; Jensen, M. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding Metagenom. 2018, 2, e21519. [Google Scholar] [CrossRef] [Green Version]
- Krienitz, L.; Klein, G.; Bohm, H. Zur Kenntnis der Morphologie und Ultrastruktur von Dactylosphaerium jurisii Hindak (Chlorococcales). Algol. Stud. 1982, 32, 351–361. [Google Scholar]
- Krienitz, L.; Huss, V.A.R.; Hümmer, C. Picoplanktonic Choricystis species (Chlorococcales, Chlorophyta) and problems surrounding the morphologically similar “Nannochloris-like algae”. Phycologia 1996, 35, 332–341. [Google Scholar] [CrossRef]
- Krienitz, L.; Takeda, H.; Hepperle, D. Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia 1999, 38, 100–107. [Google Scholar] [CrossRef]
- Fawley, M.W.; Fawley, K.P.; Buchheim, M.A. Molecular diversity among communities of freshwater microchlorophytes. Microb. Ecol. 2004, 48, 489–499. [Google Scholar] [CrossRef]
- Fawley, M.W.; Fawley, K.P.; Owen, H.A. Diversity and ecology of small coccoid green algae from Lake Itasca, Minnesota, USA, including Meyerella planktonica, gen. et sp. nov. Phycologia 2005, 44, 35–48. [Google Scholar] [CrossRef]
- Hindák, F. Studies on the chlorococcal algae (Chlorophyceae)—I. Biol. Práce 1977, 28, 1–263. [Google Scholar]
- Coleman, A.W.; Mai, J.C. Ribosomal DNA and ITS-2 sequences comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 1997, 45, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.; Maisel, S.; Gerlach, D.; Muller, T.; Wolf, M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 2005, 11, 164–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, A.W. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 2000, 151, 1–9. [Google Scholar] [CrossRef]
- Coleman, A.W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003, 19, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Philippi, N.; Dandekar, T.; Schultz, J.; Wolf, M. Distinguishing species. RNA 2007, 13, 1469–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.; Chen, S.; Song, J.; Ankenbrand, M.; Müller, T. Compensatory Base Changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in its2 sequences—A Proof of concept. PLoS ONE 2013, 8, e66726. [Google Scholar] [CrossRef] [PubMed]
- Hoef-Emden, K.; Melkonian, M. Revision of the Genus Cryptomonas (Cryptophyceae): A Combination of Molecular Phylogeny and Morphology Provides Insights into a Long-Hidden Dimorphism. Protist 2003, 154, 371–409. [Google Scholar] [CrossRef]
- Gusev, E.; Martynenko, N.; Kulizin, P.; Kulikovskiy, M. Molecular diversity of the genus Cryptomonas (Cryptophyceae) in Russia. Eur. J. Phycol. 2022, 57, 526–550. [Google Scholar] [CrossRef]
- Amato, A.; Kooistra, W.S.C.F.; Ghiron, J.H.L.; Mann, D.G.; Proschold, T.; Montresor, M. Reproductive Isolation among Sympatric Cryptic Species in Marine Diatoms. Protist 2007, 158, 193–207. [Google Scholar] [CrossRef]
- Kryvenda, A.; Rybalka, N.; Wolf, M.; Friedl, T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 2018, 53, 471–491. [Google Scholar] [CrossRef]
- Tesson, S.V.M.; Pröschold, T. Description of Limnomonas gen. nov., L. gaiensis sp. nov. and L. spitsbergensis sp. nov. (Chlamydomonadales, Chlorophyta). Diversity 2022, 14, 481. [Google Scholar] [CrossRef]
- Hindák, F. Studies on the chlorococcal algae (Chlorophyceae)—IV. Biol. Práce 1988, 34, 1–264. [Google Scholar]
- Hindák, F. Studies on the chlorococcal algae (Chlorophyceae)—II. Biol. Práce 1980, 26, 1–195. [Google Scholar]
- Annenskaya, G.N.; Zhuchkova, V.K.; Kalinina, V.R.; Mamai, I.I.; Nizovtsev, V.A.; Khrustaleva, M.A.; Tseselchuk, Y.N. Landscapes of the Moscow Region and Their Current State; SHU Publishing House: Smolensk, Russia, 1997; pp. 1–299. [Google Scholar]
- Wagner, B.B.; Klevkova, I.V. Rivers of the Moscow Region; MGPU: Moscow, Russia, 2003; pp. 1–215. [Google Scholar]
- McFadden, G.I.; Melkonian, M. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 1986, 25, 551–557. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques; Elsevier/Academic: London, UK, 2005; pp. 1–589. [Google Scholar] [CrossRef]
- Katana, A.; Kwiatowski, J.; Spalik, K.; Zakryś, B.; Szalacha, E.; Szymańska, H. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J. Phycol. 2001, 37, 443–451. [Google Scholar] [CrossRef]
- Hamby, R.K.; Sims, L.; Issel, L.; Zimmer, E. Direct ribosomal RNA sequencing: Optimization of extraction and sequencing methods for work with higher plants. Plant Mol. Biol. Rep. 1988, 6, 175–192. [Google Scholar] [CrossRef]
- Nakayama, T.; Watanabe, S.; Mitsui, K.; Uchida, H.; Inouye, I. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 1996, 44, 47–55. [Google Scholar] [CrossRef]
- Choi, B.; Son, M.; Kim, J.I.; Shin, W. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea. Algae 2013, 28, 307–330. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankenbrand, M.; Keller, A.; Wolf, M.; Schultz, J.; Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 2015, 32, 3030–3032. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Profile hidden Markov models. Bioinformatics 1998, 14, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.; Schleicher, T.; Schultz, J.; Müller, T.; Dandekar, T.; Wolf, M. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 2009, 430, 50–57. [Google Scholar] [CrossRef]
- Caisová, L.; Marin, B.; Melkonian, M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 2013, 164, 482–496. [Google Scholar] [CrossRef]
- Byun, Y.; Han, K. PseudoViewer: Web application and webservice for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res. 2006, 34, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTALW: Improving the sensitivity of progressive multiple sequence through weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Seibel, P.N.; Müller, T.; Dandekar, T.; Schultz, J.; Wolf, M. 4SALE—A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform. 2006, 7, 498. [Google Scholar] [CrossRef]
Country | No. lakes | pH, | Conductivity, | Temperature °C, | Altitude, |
---|---|---|---|---|---|
Austria | 2 | ||||
France | 2 | ||||
Germany | 13 | ||||
Hungary | 1 | 9.1 | 587 | 28.0 | 144 |
Italy | 1 | 8.6 | 220 | 27.2 | 64 |
Poland | 5 | ||||
Romania | 1 | 8.5 | 334 | 24.5 | 542 |
* Russia | 1 | 7.0 | 347 | 19.9 | 123 |
Spain | 2 | ||||
Sweden | 4 |
№ | Taxa | Helix Ia | Helix Ib | Helix II | Helix IIIa | Helix IV | ∑CBC | p-Distance | ITS2 Length |
---|---|---|---|---|---|---|---|---|---|
1 | M. afer CCAP 211/406 | 2/1 | 0/1 | 0/0 | 1/1 | 1/0 | 4/3 | 0.176 | 322 |
2 | M. frigidus SYKOA Ch-111-18 | 2/1 | 1/1 | 1/0 | 3/1 | 0/0 | 7/3 | 0.190 | 383 |
3 | M. homosphaera CAUP H6501 | 1/1 | 1/1 | 2/2 | 1/1 | 5/0 | 10/5 | 0.182 | 338 |
4 | M. huancayensis SAG 89.81 | 0/0 | 1/0 | 2/0 | 2/0 | 4/1 | 9/1 | 0.138 | 328 |
5 | M. jurisii CCAP 260/1 | 0/0 | 1/1 | 1/0 | 2/0 | 3/0 | 7/1 | 0.129 | 319 |
6 | M. ovahimbae CCAP 260/13 | 2/0 | 1/0 | 2/0 | 1/2 | 1/1 | 7/3 | 0.155 | 362 |
7 | M. pushpae CCAP 260/9 | 0/0 | 0/1 | 0/0 | 3/0 | 2/0 | 5/1 | 0.128 | 354 |
8 | M. pusillus CCAP 260/4 | 2/0 | 1/0 | 1/2 | 3/2 | 0/1 | 7/5 | 0.173 | 383 |
9 | M. racemosus CCAP 222/52 | 0/0 | 1/0 | 0/0 | 3/1 | 4/0 | 8/1 | 0.168 | 380 |
10 | M. rotundus CCAP 260/14 | 2/0 | 1/0 | 3/1 | 3/2 | 0/2 | 9/5 | 0.151 | 380 |
11 | M. timauensis CCAP 205/2 | 0/0 | 0/1 | 0/1 | 2/0 | 4/2 | 6/4 | 0.131 | 351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martynenko, N.; Gusev, E.; Kapustin, D.; Kulikovskiy, M. A New Cryptic Species of the Genus Mychonastes (Chlorophyceae, Sphaeropleales). Plants 2022, 11, 3363. https://doi.org/10.3390/plants11233363
Martynenko N, Gusev E, Kapustin D, Kulikovskiy M. A New Cryptic Species of the Genus Mychonastes (Chlorophyceae, Sphaeropleales). Plants. 2022; 11(23):3363. https://doi.org/10.3390/plants11233363
Chicago/Turabian StyleMartynenko, Nikita, Evgeniy Gusev, Dmitry Kapustin, and Maxim Kulikovskiy. 2022. "A New Cryptic Species of the Genus Mychonastes (Chlorophyceae, Sphaeropleales)" Plants 11, no. 23: 3363. https://doi.org/10.3390/plants11233363
APA StyleMartynenko, N., Gusev, E., Kapustin, D., & Kulikovskiy, M. (2022). A New Cryptic Species of the Genus Mychonastes (Chlorophyceae, Sphaeropleales). Plants, 11(23), 3363. https://doi.org/10.3390/plants11233363