Conservation Assessment and Chemistry of Boswellia ogadensis, a Critically Endangered Frankincense Tree
Abstract
:1. Introduction
2. Results
2.1. Population Status of Boswellia ogadensis
2.2. Chemical Composition of Resin Samples
3. Discussion
4. Materials and Methods
4.1. Field Surveying
4.2. Collection of Resins
4.3. Hydrodistillation of Resins
4.4. Gas Chromatographic-Mass Spectrometry
4.5. Gas Chromatographic-Flame Ionization Detection
4.6. Chiral Gas Chromatographic-Mass Spectrometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thulin, M. The Genus Boswellia (Burseraceae): The Frankincense Trees; Acta Universitatis Upsaliensis: Uppsala, Sweden, 2020. [Google Scholar]
- Thulin, M. New Species of Boswellia and Commiphora (Burseraceae) from Somalia. Nord. J. Bot. 2004, 24, 373–376. [Google Scholar] [CrossRef]
- Thulin, M.; Beier, B.-A.; Razafimandimbison, S.G.; Banks, H.I. Ambilobea, a New Genus from Madagascar, the Position of Aucoumea, and Comments on the Tribal Classification of the Frankincense and Myrrh Family (Burseraceae). Nord. J. Bot. 2008, 26, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany; Timber Press, Incorporated: Portland, OR, USA, 2003; ISBN 978-0-88192-574-6. [Google Scholar]
- DeCarlo, A.; Dosoky, N.S.; Satyal, P.; Sorensen, A.; Setzer, W.N. The Essential Oils of the Burseraceae. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–145. ISBN 978-3-030-16546-8. [Google Scholar]
- Hull, B.Z. Frankincense, myrrh, and spices: The oldest global supply chain? J. Macromarket. 2008, 28, 275–288. [Google Scholar] [CrossRef]
- DeCarlo, A.; Cunningham, A.B. Boswellia Species in International Trade: Identification, Supply Chains, & Practical Management Considerations; Convention on International Trade in Endangered Species of Wild Fauna and Flora: Washington, DC, USA, 2022; p. 203. [Google Scholar]
- Bongers, F.; Groenendijk, P.; Bekele, T.; Birhane, E.; Damtew, A.; Decuyper, M.; Eshete, A.; Gezahgne, A.; Girma, A.; Khamis, M.A.; et al. Frankincense in Peril. Nat. Sustain. 2019, 2, 602–610. [Google Scholar] [CrossRef]
- DeCarlo, A.; Ali, S.; Ceroni, M. Ecological and Economic Sustainability of Non-Timber Forest Products in Post-Conflict Recovery: A Case Study of the Frankincense (Boswellia Spp.) Resin Harvesting in Somaliland (Somalia). Sustainability 2020, 12, 3578. [Google Scholar] [CrossRef]
- Attorre, F.; Taleb, N.; Sanctis, M.D.; Farcomeni, A.; Guillet, A.; Vitale, M. Developing Conservation Strategies for Endemic Tree Species When Faced with Time and Data Constraints: Boswellia Spp. on Socotra (Yemen). Biodivers. Conserv. 2011, 20, 1483–1499. [Google Scholar] [CrossRef]
- Lvončík, S.; Vahalík, P.; Bongers, F.; Peijnenburg, J.; Hušková, K.; van Rensburg, J.J.; Hamdiah, S.; Maděra, P. Development of a Population of Boswellia elongata Balf. F. in Homhil Nature Sanctuary, Socotra Island (Yemen). Rend. Fis. Acc. Lincei 2020, 31, 747–759. [Google Scholar] [CrossRef]
- Soumya, K.V.; Shackleton, C.M.; Setty, S.R. Impacts of Gum-Resin Harvest and Lantana camara Invasion on the Population Structure and Dynamics of Boswellia serrata in the Western Ghats, India. For. Ecol. Manag. 2019, 453, 117618. [Google Scholar] [CrossRef]
- Groenendijk, P.; Eshete, A.; Sterck, F.J.; Zuidema, P.A.; Bongers, F. Limitations to Sustainable Frankincense Production: Blocked Regeneration, High Adult Mortality and Declining Populations. J. Appl. Ecol. 2012, 49, 164–173. [Google Scholar] [CrossRef]
- Farah, M. Non-Timber Forest Product (NTFP) Extraction in Arid Environments: Land-Use Change, Frankincense Production and the Sustainability of Boswellia sacra in Dhofar (Oman); University of Arizona: Tucson, AZ, USA, 2008. [Google Scholar]
- Vollesen, K. Studies in Burseraceae of Northeastern Africa. Kew Bull. 1985, 40, 39–76. [Google Scholar] [CrossRef]
- Alemu, S.; Atnafu, H.; Awas, T.; Belay, B.; Demissew, S.; Luke, W.R.Q.; Mekbib, E.; Nemomissa, S.; Bahdon, J. Boswellia ogadensis; The IUCN Red List of Threatened Species; E.T34385A128140745; IUCN: Fontainebleau, France, 2018. [Google Scholar]
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.S.; Sorensen, A.; Setzer, W.N. Organic Certification Is Not Enough: The Case of the Methoxydecane Frankincense. Plants 2019, 8, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, D.; Ved, D.; Ravikumar, K.; Haridasan, K. Boswellia ovalifoliolata; The IUCN Red List of Threatened Species; E.T50126567A50131280; IUCN: Fontainebleau, France, 2015. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- IUCN. IUCN Red List Categories and Criteria: Version 3.1, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2012. [Google Scholar]
- Negussie, A.; Gebrehiwot, K.; Yohannes, M.; Aynekulu, E.; Manjur, B.; Norgrove, L. An Exploratory Survey of Long Horn Beetle Damage on the Dryland Flagship Tree Species Boswellia papyrifera (Del.) Hochst. J. Arid. Environ. 2018, 152, 6–11. [Google Scholar] [CrossRef]
- Strumia, F.; Dapporto, L.; Delacasa, M.; Scaramozzino, P.L. Notes on Some Insects Associated to Frankincense Tree (Boswelia sacra FlückIger, 1867, Burseraceae) In Dhofar (Sultanate of Oman). Tosc. Sci. Nat. Mem. 2007, 114, 135–139. [Google Scholar]
- DeCarlo, A.; Johnson, S.; Poudel, A.; Satyal, P.; Bangerter, L.; Setzer, W.N. Chemical variation in essential oils from the oleo-gum resin of Boswellia carteri: A preliminary investigation. Chem. Biodivers. 2018, 15, e1800047. [Google Scholar] [CrossRef]
- Suhail, M.M.; Wu, W.; Cao, A.; Mondalek, F.G.; Fung, K.-M.; Shih, P.-T.; Fang, Y.-T.; Woolley, C.; Young, G.; Lin, H.-K. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement. Altern. Med. 2011, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Al-Saidi, S.; Rameshkumar, K.B.; Hisham, A.; Sivakumar, N.; Al-Kindy, S. Composition and Antibacterial Activity of the Essential Oils of Four Commercial Grades of Omani Luban, the Oleo-Gum Resin of Boswellia sacra FLUECK. Chem. Biodivers. 2012, 9, 615–624. [Google Scholar] [CrossRef]
- Ni, X.; Suhail, M.M.; Yang, Q.; Cao, A.; Fung, K.-M.; Postier, R.G.; Woolley, C.; Young, G.; Zhang, J.; Lin, H.-K. Frankincense Essential Oil Prepared from Hydrodistillation of Boswellia sacra Gum Resins Induces Human Pancreatic Cancer Cell Death in Cultures and in a Xenograft Murine Model. BMC Complement. Altern. Med. 2012, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.; Sorensen, A.; Setzer, W. The Chemical Composition of Single-Tree Boswellia frereana Resin Samples. Nat. Prod. Commun. 2021, 16, 1934578X2110437. [Google Scholar] [CrossRef]
- Gupta, M.; Rout, P.K.; Misra, L.N.; Gupta, P.; Singh, N.; Darokar, M.P.; Saikia, D.; Singh, S.C.; Bhakuni, R.S. Chemical composition and bioactivity of Boswellia serrata Roxb. essential oil in relation to geographical variation. Plant Biosyst. 2017, 151, 623–629. [Google Scholar] [CrossRef]
- DeCarlo, A.; Agieb, S.; Johnson, S.; Satyal, P.; Setzer, W.N. Inter-Tree Variation in the Chemical Composition of Boswellia papyrifera Oleo-Gum-Resin. Nat. Prod. Commun. 2022, 17, 1934578X221117411. [Google Scholar] [CrossRef]
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.S.; Sorensen, A.; Setzer, W.N. The Chemical Composition of Boswellia occulta Oleogum Resin Essential Oils. Nat. Prod. Commun. 2019, 14, 1934578X19866307. [Google Scholar] [CrossRef] [Green Version]
- Niebler, J.; Buettner, A. Frankincense revisited, part I: Comparative analysis of volatiles in commercially relevant Boswellia species. Chem. Biodivers. 2016, 13, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Bekana, D.; Kebede, T.; Assefa, M.; Kassa, H. Comparative phytochemical analyses of resins of Boswellia species (B. papyrifera (Del.) Hochst., B. neglecta S. Moore, and B. rivae Engl.) from northwestern, southern, and southeastern Ethiopia. ISRN Anal. Chem. 2014, 2014, 374678. [Google Scholar] [CrossRef] [Green Version]
- Camarda, L.; Dayton, T.; Di Stefano, V.; Pitonzo, R.; Schillaci, D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Ann. Chim. 2007, 97, 837–844. [Google Scholar] [CrossRef]
- Basar, S. Phytochemical Investigations on Boswellia Species. PhD Thesis, University of Hamburg, Hamburg, Germany, 2005. [Google Scholar]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.-K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography–mass spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [Google Scholar] [CrossRef]
- Ojha, P.K.; Poudel, D.K.; Rokaya, A.; Satyal, R.; Setzer, W.N.; Satyal, P. Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication. Plants 2022, 11, 2134. [Google Scholar] [CrossRef]
- DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional Analysis of the Essential Oil of Boswellia dalzielii Frankincense from West Africa Reveals Two Major Chemotypes. Phytochemistry 2019, 164, 24–32. [Google Scholar] [CrossRef]
RT (Min) | RIcalc | RIdb | Compound | #1 | #2 | #3 |
---|---|---|---|---|---|---|
5.965 | 778 | 766 | Toluene | tr | tr | tr |
8.403 | 846 | 846 | (Z)-Salvene | 0.2 | 0.2 | 0.2 |
8.746 | 855 | 856 | (E)-Salvene | tr | 0.1 | tr |
10.167 | 893 | 893 | 2-Bornene | 0.1 | 0.1 | 0.1 |
10.778 | 905 | 902 | Santolina triene | 0.2 | 0.2 | 0.2 |
11.425 | 920 | 921 | Hashishene | 0.1 | 0.1 | 0.1 |
11.551 | 922 | 923 | Tricyclene | --- | --- | 0.1 |
11.841 | 927 | 925 | α-Thujene | 46.2 | 37.5 | 30.8 |
12.114 | 932 | 932 | α-Pinene | 3.2 | 6.9 | 20.9 |
12.591 | 941 | 943 | Thujadiene | 0.7 | 2.4 | 1.8 |
12.938 | 948 | 950 | Camphene | 0.2 | 0.5 | 1.1 |
13.138 | 951 | 953 | Thuja-2,4(10)-diene | --- | --- | 0.2 |
13.239 | 953 | 954 | 2,2-Dimethyl-5-methylenenorbornane | --- | --- | 0.1 |
14.189 | 971 | 971 | Sabinene | 4.9 | 3.4 | 3.8 |
14.455 | 976 | 978 | β-Pinene | 0.2 | 0.4 | 1.3 |
14.785 | 982 | 982 | 6-Methyl-5-hepten-2-one | tr | tr | tr |
15.070 | 987 | 989 | Myrcene | tr | tr | tr |
15.740 | 1000 | 1000 | p-Menth-2-ene | --- | 0.1 | --- |
16.096 | 1006 | 1006 | α-Phellandrene | --- | --- | tr |
16.156 | 1007 | 1009 | 2-Methylanisole | 0.1 | --- | tr |
16.613 | 1014 | 1015 | 1,4-Cineole | 0.1 | 0.1 | tr |
16.743 | 1016 | 1017 | α-Terpinene | 0.2 | 0.4 | 0.4 |
16.910 | 1018 | 1022 | m-Cymene | 1.3 | 1.8 | 1.4 |
17.280 | 1024 | 1024 | p-Cymene | 9.0 | 14.5 | 11.4 |
17.397 | 1026 | 1026 | 2-Acetyl-3-methylfuran | 2.8 | 2.2 | 1.9 |
17.523 | 1028 | 1030 | Limonene | 0.2 | 0.3 | 0.5 |
17.616 | 1029 | 1029 | β-Phellandrene | tr | tr | tr |
17.697 | 1030 | 1030 | 1,8-Cineole | 0.1 | 0.1 | tr |
17.847 | 1033 | 1039 | o-Cymene | --- | --- | 0.1 |
17.912 | 1035 | 1036 | 3-Octen-2-one | tr | 0.1 | 0.1 |
18.781 | 1048 | --- | Unidentified | 1.2 | 1.0 | 0.8 |
19.333 | 1057 | 1057 | γ-Terpinene | 0.3 | 0.7 | 0.6 |
20.107 | 1069 | 1069 | cis-Sabinene hydrate | 0.4 | 0.3 | 0.2 |
20.235 | 1071 | 1071 | p-Cresol | 0.2 | 0.2 | 0.2 |
21.104 | 1084 | 1086 | Terpinolene | 0.1 | 0.1 | 0.2 |
21.417 | 1089 | 1091 | p-Cymenene | 0.1 | 0.1 | 0.1 |
22.144 | 1100 | 1101 | trans-Sabinene hydrate | 0.2 | 0.1 | 0.1 |
22.523 | 1106 | 1105 | α-Thujone | 0.2 | 0.3 | 0.2 |
22.950 | 1112 | 1112 | 2,4-Dimethyl-2,4-heptadienal | 0.7 | 0.5 | 0.4 |
23.290 | 1117 | 1118 | β-Thujone | 2.1 | 2.2 | 1.8 |
23.365 | 1118 | 1118 | Dehydrosabina ketone | 0.1 | 0.1 | 0.1 |
23.724 | 1123 | 1124 | cis-p-Menth-2-en-1-ol | 0.1 | 0.2 | 0.1 |
23.880 | 1126 | 1126 | α-Campholenal | --- | --- | 0.2 |
24.762 | 1138 | 1138 | trans-Sabinol | 0.5 | 0.4 | 0.4 |
24.815 | 1139 | 1140 | trans-Pinocarveol | --- | 0.1 | 0.4 |
24.950 | 1141 | 1139 | trans-p-Menth-2-en-1-ol | 0.1 | 0.1 | --- |
24.923 | 1141 | 1141 | cis-Verbenol | --- | --- | 0.2 |
25.170 | 1145 | 1145 | trans-Verbenol | 0.1 | 0.2 | 1.2 |
25.503 | 1149 | 1150 | α-Phellandren-8-ol | --- | --- | 0.1 |
25.974 | 1157 | 1157 | Sabina ketone | 0.1 | 0.1 | 0.1 |
26.183 | 1160 | 1160 | trans-Pinocamphone | --- | --- | 0.1 |
26.293 | 1162 | 1164 | Pinocarvone | --- | --- | 0.1 |
26.825 | 1169 | 1169 | Umbellulone | 0.5 | 0.4 | 0.4 |
26.866 | 1170 | 1168 | α-Phellandrene epoxide | 1.0 | 1.0 | 0.9 |
27.033 | 1171 | 1171 | p-Mentha-1,5-dien-8-ol | --- | 0.2 | 0.5 |
27.714 | 1182 | 1180 | Terpinen-4-ol | 14.8 | 12.4 | 5.4 |
27.790 | 1183 | 1183 | Thuj-3-en-10-al | 0.1 | 0.1 | 0.1 |
27.864 | 1185 | 1188 | p-Methylacetophenone | 0.1 | 0.3 | 0.2 |
28.022 | 1187 | 1186 | p-Cymen-8-ol | 0.8 | 1.6 | 1.4 |
28.360 | 1192 | 1194 | p-Mentha-1,5-dien-7-ol | 0.1 | 0.1 | 0.1 |
28.575 | 1195 | 1195 | α-Terpineol | 0.2 | 0.2 | 0.4 |
29.365 | 1206 | 1205 | Verbenone | tr | 0.1 | 0.5 |
29.490 | 1208 | 1208 | trans-Piperitol | 0.1 | 0.1 | 0.1 |
30.185 | 1218 | 1218 | trans-Carveol | --- | --- | 0.2 |
30.445 | 1223 | 1221 | p-Cumenol | 0.2 | 0.2 | 0.2 |
31.751 | 1241 | 1242 | Cuminal | 0.1 | 0.2 | 0.2 |
32.199 | 1248 | 1248 | Carvotanacetone | 0.2 | 0.6 | 0.5 |
32.306 | 1250 | 1258 | trans-Sabinene hydrate acetate | 0.2 | 0.2 | 0.2 |
32.688 | 1255 | 1257 | Carvenone | 0.1 | 0.1 | --- |
33.319 | 1265 | 1265 | 3,5-Dimethoxytoluene | 0.4 | 0.1 | 0.1 |
34.588 | 1283 | 1282 | Bornyl acetate | 0.1 | 0.2 | 0.6 |
34.997 | 1289 | 1289 | Thymol | 0.9 | 1.2 | 1.0 |
35.390 | 1295 | 1296 | Terpinen-4-yl acetate | tr | --- | --- |
35.536 | 1297 | 1300 | Carvacrol | 0.7 | 0.8 | 0.6 |
35.946 | 1303 | 1306 | Isoascaridole | 0.1 | --- | --- |
36.274 | 1308 | 1308 | cis-2,3-Pinanediol | 0.1 | --- | 0.1 |
38.701 | 1345 | 1346 | α-Terpinyl acetate | 0.2 | 0.3 | 0.3 |
41.095 | 1382 | 1382 | β-Bourbonene | 0.1 | 0.2 | 0.2 |
Monoterpene hydrocarbons | 67.3 | 69.7 | 75.3 | |||
Oxygenated monoterpenoids | 24.5 | 24.3 | 19.3 | |||
Sesquiterpene hydrocarbons | 0.1 | 0.2 | 0.2 | |||
Oxygenated sesquiterpenoids | --- | --- | --- | |||
Benzenoid aromatics | 0.7 | 0.6 | 0.6 | |||
Others | 3.5 | 2.9 | 2.4 | |||
Total identified | 96.0 | 97.6 | 97.8 |
Compound | RT (Min) | Enantiomeric Distribution (%) | ||
---|---|---|---|---|
#1 | #2 | #3 | ||
(+)-α-Thujene a | 13.8 | 100 | 100 | 100 |
(+)-α-Pinene | 16.3 | 39.77 | 42.6 | 93.94 |
(−)-α-Pinene | 15.9 | 60.23 | 57.4 | 6.06 |
(+)-Camphene b | 18.4 | 100 | 100 | 100 |
(+)-Sabinene | 19.8 | 26.16 | 22.7 | 21.49 |
(−)-Sabinene | 20.6 | 73.84 | 77.26 | 78.51 |
(+)-β-Pinene | 20.4 | 40.55 | 35.64 | 66.49 |
(−)-β-Pinene | 20.9 | 59.44 | 64.36 | 33.51 |
(+)-Limonene | 26.1 | 41.38 | 46.24 | 51.09 |
(−)-Limonene | 25.5 | 58.62 | 53.75 | 48.91 |
(+)-cis-Sabinene hydrate | 40.8 | 14.1 | 15.59 | 17.61 |
(−)-cis-Sabinene hydrate | 41.4 | 85.9 | 84.41 | 82.39 |
(+)-α-Thujone c | 43.3 | 100 | 100 | 100 |
(+)-β-Thujone | 46.0 | 100 | 100 | 100 |
(+)-Terpinen-4-ol | 54.4 | 7.64 | 13.6 | 18.27 |
(−)-Terpinen-4-ol | 54.8 | 92.36 | 86.4 | 81.73 |
(+)-α-Terpineol | 60.6 | 38.11 | 39.22 | 60.61 |
(−)-α-Terpineol | 59.7 | 61.89 | 60.78 | 39.39 |
Collection Site | Mass Resin | Mass Essential Oil (Yield) |
---|---|---|
Site #1: 05°46.00’ N, 43°51.00′ E, 434 m asl | 34.44 g | 2.0948 g (6.08%) |
Site #2: 05°42.05′ N, 43°44.21′ E, 415 m asl | 30.20 g | 1.2629 g (4.18%) |
Site #3: 05°41.35′ N, 44°08.15′ E, 369 m asl | 23.07 g | 1.2977 g (5.63%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, S.; Abdikadir, A.; Satyal, P.; Poudel, A.; Setzer, W.N. Conservation Assessment and Chemistry of Boswellia ogadensis, a Critically Endangered Frankincense Tree. Plants 2022, 11, 3381. https://doi.org/10.3390/plants11233381
Johnson S, Abdikadir A, Satyal P, Poudel A, Setzer WN. Conservation Assessment and Chemistry of Boswellia ogadensis, a Critically Endangered Frankincense Tree. Plants. 2022; 11(23):3381. https://doi.org/10.3390/plants11233381
Chicago/Turabian StyleJohnson, Stephen, Abdinasir Abdikadir, Prabodh Satyal, Ambika Poudel, and William N. Setzer. 2022. "Conservation Assessment and Chemistry of Boswellia ogadensis, a Critically Endangered Frankincense Tree" Plants 11, no. 23: 3381. https://doi.org/10.3390/plants11233381
APA StyleJohnson, S., Abdikadir, A., Satyal, P., Poudel, A., & Setzer, W. N. (2022). Conservation Assessment and Chemistry of Boswellia ogadensis, a Critically Endangered Frankincense Tree. Plants, 11(23), 3381. https://doi.org/10.3390/plants11233381