Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids
Abstract
:1. Introduction
2. Results
2.1. Content of Carotenoids
2.2. Content of Tocopherols
2.3. Content of Vitamin C
2.4. Content of Polyphenols and Antioxidant Capacity
3. Discussion
4. Materials and Methods
4.1. Plant Material and Technology
4.2. Chemicals
4.3. Analytical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlović, N.V.; Mladenović, J.D.; Pavlović, R.M.; Moravčević, D.Z.; Zdravković, J.M. The impact of different thermal processing of tomato to its antioxidant activity, vitamin E.; dry matter and sugar content. Food Feed. Res. 2017, 44, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, S.; Choi, H.; Baek, M.W.; Jeong, C.S. Antioxidant, Properties, γ-Aminobutyric, Acid (GABA) Content, and Physicochemical, Characteristics of Tomato, Cultivars. Agronomy 2021, 11, 1204. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Martínez, M.C.; Stojanović, A.; Martínez-Huélamo, M.; Grung, B.; Raventós, R.M.L. Characterisation of bioactive compounds and assessment of antioxidant activity of different traditional Lycopersicum esculentum L. varieties: Chemometric analysis. Food Compos. Anal. 2019, 70, 813–824. [Google Scholar] [CrossRef] [PubMed]
- WHO/FAO 916. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, Geneva, 28 January–1 February 2002; WHO Technical, Report Series; 916; WHO: Geneva, Switzerland, 2003; ISBN 92 4 120916 X. ISSN 0512-3054. [Google Scholar]
- Choi, S.H.; Lee, S.H.; Kim, H.J.; Lee, I.S.; Kozukue, N.; Levin, C.E.; Friedman, M. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J. Agric. Food Chem. 2010, 58, 7547–7556. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Romero, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 2010, 71, 1848–1864. [Google Scholar] [CrossRef]
- Perveen, R.; Suleira, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes, Chemistry; Metabolism, Absorption, Nutrition, and Allied, Health Claims—A Comprehensive, Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Niranjana, R.; Gayathri, R.; Mol, S.M.; Sugawara, T.; Hirata, T.; Miyashita, K.; Ganesan, P. Carotenoids modulate the hallmarks of cancer cells. J. Funct. Foods 2015, 18, 968–985. [Google Scholar] [CrossRef]
- Abete, I.; Perez-Cornago, A.; Navas-Carretero, S.; Bondia-Pons, I.; Zulet, M.A.; Martinez, J.A. A regular lycopene enriched tomato sauce consumption influences antioxidant status of healthy young-subjects: A crossover study. J. Funct. Foods 2013, 5, 28–35. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F.A. One century of Vitamin, E: The progress and application of vitamin E encapsulation—A Review. Food Hydrocoll. 2021, 121, 106998. [Google Scholar] [CrossRef]
- Binoy, G.; Kaur, C.; Khurdiya, D.S.; Kapoor, C. Antioxidants in tomato (Lycopersicum esculentum L.) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar]
- Garcia, E.; Barrett, D.M. Assessing lycopene content in California processing tomatoes. J. Food Processing Preserv. 2006, 30, 56–70. [Google Scholar] [CrossRef]
- Saini, R.K.; Zamany, A.J.; Keum, Y.S. Ripening improves the content of carotenoid, a-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech 2017, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosman, B.P.C.; van’t Westende, W.; Henken, B.D.L.M.; van Eekelen, H.C.H.; de Vos, R.; Voorrips, R.E. Broad spectrum insect resistance and metabolites in close relatives of the cultivated tomato. Euphytica 2018, 214, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roepenack-Lahaye, E.; Newman, M.A.; Schornack, S.; Hammond-Kosack, K.E.; Lahaye, T.; Jones, J.D.G.; Daniels, M.J.; Dow, J.M. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J. Biol. Chem. 2003, 278, 43373–43383. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Rubio, M.; Perez-Espinosa, A.; Lairini, K.; Roldan-Arjona, T.; Dipietro, A.; Anaya, N. Metabolism of the tomato saponin α-tomatine by phytopathogenic fungi. Stud. Nat. Prod. Chem. 2001, 25, 293–326. [Google Scholar]
- Wojciechowska, E.; Weinert, C.H.; Egert, B.; Trierweiler, B.; Schmidt-Heydt, M.; Horneburg, B.; Graeff-Hönninger, S.; Kulling, S.E.; Geisen, R. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. Eur. J. Plant Pathol. 2014, 139, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Urbanoviciene, D.; Viskelis, P.; Viskelis, J.; Jankauskiene, J.; Bobinas, C. Lycopene and β-carotene in non-blanched and blanched tomatoes. J. Food Agric. Environ. 2012, 10, 142–146. [Google Scholar]
- Moco, S.; Capanoglu, E.; Tikunov, Y.; Bino, R.J.; Boyaciooglu, D.; Hall, R.D.; Vervoort, J.; De Vos, R.C.H. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 2007, 58, 4131–4146. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Diretto, G.; Purgatto, E.; Danoun, S.; Zouine, M.; Li, Z.; Roustan, J.P.; Bouzayen, M.; Giuliano, G. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 2015, 15, 114. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary, Sources, Extraction, Encapsulation, Bioavailability, and Health, Benefits—A Review of Recent, Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Blaner, W.S.; Vitamin, A.; Carotenoids, P.A. Present, Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Wiley-Blackwell: Cambridge, MA, USA, 2020; pp. 73–91. [Google Scholar]
- National, Institute of Health. Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 26 March 2021).
- Sass-Kiss, A.; Kiss, J.; Milotay, P.; Kerek, M.M.; Toth-Markus, M. Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Res. Int. 2005, 38, 1023–1029. [Google Scholar] [CrossRef]
- D’Evoli, L.; Lombardi-Boccia, G.; Lucarini, M. Influence of Heat, Treatments on Carotenoid, Content of Cherry, Tomatoes. Foods 2013, 2, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumbein, A.; Schwarz, D.; Kläring, H.-P. Effects of environmental factors on carotenoid content in tomato (Lycopersicon esculentum (L.) Mill.) grown in a greenhouse. J. Appl. Bot. Food Qual. 2006, 80, 160–164. [Google Scholar]
- Flores, P.; Sánchez, E.; Fenoll, J.; Hellín, P. Genotypic variability of carotenoids in traditional tomato cultivars. Food Res. Int. 2016, 100, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.healthline.com/nutrition/lycopene#heart-health (accessed on 3 October 2018).
- Chen, P.; Zhang, W.; Wang, X.; Zhao, K.; Negi, D.S.; Zhuo, L.; Qi, M.; Wang, X.; Zhang, X. Lycopene and Risk of Prostate, Cancer: A Systematic, Review and Meta-Analysis. Medicine 2015, 94, 260. [Google Scholar] [CrossRef]
- Helyes, L.; Bőcs, A.; Lugasi, A.; Pék, Z. Tomato, Antioxidants and Yield as Affected by Different, Water Supply. Acta Hortic. 2012, 936, 213–218. [Google Scholar] [CrossRef]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of Water, Stress Levels on the Yield and Lycopene, Content of Tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Brandt, S.; Lugasi, A.; Barna, É.; Hóvári, J.; Pék, Z.; Helyes, L. Effects of the growing methods and conditions on the lycopene content of tomato fruits. Acta Aliment. 2003, 32, 269–278. [Google Scholar] [CrossRef]
- Keyhaninejad, N.; Richins, R.D.; O’Connell, M.A. Carotenoid content in field-grown versus greenhouse-grown peppers: Different responses in leaf and fruit. HortScience 2012, 47, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Raiola, A.; Tenore, G.C.; Barone, A.; Frusciante, L.; Rigano, M.M. Vitamin E Content and Composition in Tomato, Fruits: Beneficial, Roles and Bio-Fortification. Int. J. Mol. Sci. 2015, 16, 29250–29264. [Google Scholar] [CrossRef] [Green Version]
- Niki, E.; Abe, K. Vitamin E: Structure, Properties and Functions. In Vitamin E: Chemistry and Nutritional, Benefits; Niki, E., Ed.; Royal, Society of Chemistry: London, UK, 2019; pp. 1–11. [Google Scholar]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and Tocotrienols—Bioactive, Dietary Compounds; What, Is Certain, What, Is Doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Dietary, Antioxidants and Related, Compounds. Dietary, Reference Intakes Vitamin C, Vitamin E, Selenium, and Carotenoids; National, Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Packer, L.; Fuchs, J. Vitamin E in Health and Disease: Biochemistry and Clinical, Applications, 1st ed.; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Pék, Z.; Szuvandzsiev, P.; Daood, H.; Neményi, A.; Helyes, L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol. 2014, 9, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Ráth, S.; Horváth, K.; Andryie, B.; Daood, H.G. Effect of different ecological conditions on content of phytonutrients in industrial tomatoes. Acta Aliment. 2020, 49, 225–234. [Google Scholar] [CrossRef]
- Hwang, E.S.; Stacewicz-Sapuntzakis, M.; Bowen, P.E. Effects of Heat, Treatment on the Carotenoid and Tocopherol, Composition of Tomato. J. Food Sci. 2012, 77, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Zanfini, A.; Franchi, G.G.; Massarelli, P.; Corbini, G.; Dreassi, E. Phenolic compounds, carotenoids and antioxidant activity in five tomato (Lycopersium esculentum Mill.) cultivars. Ital. J. Food Sci. 2017, 29, 90–99. [Google Scholar]
- Tianyi, Y. The Effects of Greenhouse, Cultivation on the Contents and Activities of Antioxidant, Compounds of Tomatoes. J. Guilin Norm. Coll. 2016, 4. [Google Scholar]
- Ntagkas, N.; Woltering, E.; Bouras, S.; de Vos, R.C.H.; Dieleman, J.; Nicole, C.C.S.; Labrie, C.; Marcelis, L.F.M. Light-induced vitamin C accumulation in tomato fruits is independent of carbohydrate availability. Plants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Valšíková-Frey, M.; Komár, P.; Rehuš, M. The effect of varieties and degree of ripeness to vitamin C content in tomato fruits. Acta Hortic. Regiotect. 2017, 2, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Mellidou, I.; Koukounaras, A.; Kostas, S.; Patelou, E.; Kanellis, A.K. Regulation of Vitamin, C Accumulation for Improved, Tomato Fruit, Quality and Alleviation of Abiotic, Stress. Genes 2021, 12, 694. [Google Scholar] [CrossRef]
- Sablani, S.S.; Opara, L.U.; Al-Balushi, K. Influence of bruising and storage temperature on vitamin C content of tomato fruit. J. Food Agric. Environ. 2006, 4, 54–56. [Google Scholar]
- Sanchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Nutritional characterisation of commercial traditional pasteurised tomato juices: Carotenoids, vitamin C and radical-scavenging capacity. Food Chem. 2006, 98, 749–756. [Google Scholar]
- Pandey, S.; Singh, J.; Singh, S.K.; Mourya, I.B. Influence of growing environment on growth, yield and chemical compositionof strawberry (Fragaria × ananassa) fruits under open vs naturally ventilated polyhouse conditions. Indian J. Agric. Sci. 2015, 85, 1540–1545. [Google Scholar]
- Pellegrini, N.; Riso, P.; Porrini, M. Tomato consumption does not affect the total antioxidant capacity of plasma. Nutrition 2000, 16, 268–271. [Google Scholar] [PubMed]
- Arnao, M.B.; Cano, A.; Acosta, M. The Hydrphilic and Lipophilic, Contribution to Total, Antioxidant Activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Da Porto, C.; Calligaris, S.; Celotti, E.; Nicoli, M.C. Antiradical properties of commercial cognacs assessed by the DPPH(.) test. J. Agric. Food Chem. 2000, 48, 4241–4245. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. García-Viguera, CAnthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. J. Agric. Food Chem. 2000, 48, 1588–1592. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Núñez, M.J. Extraction of antioxidant phenolics from almond hulls (Prunus amygdlus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Sanchez-Moreno, C.; La Plaza, L.; de Ancos, B.; Cano, M.P. Impact of high-pressure and traditional thermal processing of tomato puree on carotenoids, vitamin C and antioxidant activity. J. Sci. Food Agric. 2006, 86, 171–179. [Google Scholar] [CrossRef]
- Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 2018, 239, 148–156. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Dew, T.P.; Orfila, C.; Urwin, P.E. Influence of Combined, Biotic and Abiotic, Stress on Nutritional, Quality Parameters in Tomato (Solanum lycopersicum). J. Agric. Food Chem. 2011, 59, 9673–9682. [Google Scholar] [CrossRef]
- Helyes, L.; Varga, G.Y. Irrigation demand of tomato according to the results of three decades. Acta Hortic. 1994, 376, 323–328. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Nagy, Z.; Daood, H.G.; Ambrózy, Z.S.; Helyes, L. Determination of polyphenols, capsaicinoids, and vitamin C in new hybrids of chili peppers. J. Anal. Methods Chem. 2015, 102125. [CrossRef] [PubMed] [Green Version]
- Daood, H.G.; Bencze, G.; Palotás, G.; Pék, Z.; Sidikov, A.; Helyes, L. HPLC analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. J. Chromatogr. Sci. 2014, 52, 985–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abushita, A.A.; Hebshi, E.A.; Daood, H.G.; Biacs, P.A. Determination of antioxidant vitamins in tomatoes. Food Chem. 1997, 60, 207–212. [Google Scholar] [CrossRef]
Genotype | Growing Technology | 2014 | 2015 | 2016 | |||
---|---|---|---|---|---|---|---|
Lycopene (mg.kg−1) | β-Carotene (mg.kg−1) | Lycopene (mg.kg−1) | β-Carotene (mg.kg−1) | Lycopene (mg.kg−1) | β-Carotene (mg.kg−1) | ||
NAIK 3992 | OF | 31.12 ± 0.61 | 1.05 ± 0.04 | 42.76 ± 3.2 | 2.95 ± 0.22 | 50.84 ± 4.04 | 1.93 ± 0.25 |
PH | NS | NS | 48.05 ± 0.51 | 2.80 ± 0.10 | 49.95 ± 1.18 | 2.42 ± 0.12 | |
NAIK 114 | OF | 9.41 ± 0.08 | 0.83 ± 0.04 | 26.14 ± 8.51 | 2.81 ± 0.06 | 10.38 ± 0.95 | 1.54 ± 0.36 |
PH | NS | NS | 15.83 ± 0.89 | 1.53 ± 0.25 | NS | NS | |
NAIK 1122 | OF | 11.29 ± 0.64 | 0.84 ± 0.07 | 42.51 ± 3.13 | 3.02 ± 0.92 | 31.91 ± 5.26 | 2.05 ± 0.63 |
PH | NS | NS | 39.25 ± 1.29 | 3.12 ± 0.42 | 23.86 ± 0.63 | 1.41 ± 0.01 | |
NAIK 352 | OF | 63.23 ± 5.71 | 1.79 ± 0.13 | 20.76 ± 6.46 | 3.82 ± 1.12 | 48.21 ± 0.55 | 1.74 ± 0.08 |
PH | 7.46 ± 0.25 | 0.43 ± 0.02 | 43.05 ± 4.95 | 1.90 ± 0.32 | 53.82 ± 3.01 | 2.92 ± 0.14 | |
Aragon F1 | OF | 31.2 ± 0.40 | 1.43 ± 0.03 | 46.38 ± 0.67 | 6.25 ± 0.97 | 33.49 ± 2.61 | 3.67 ± 0.52 |
PH | NS | NS | 42.56 ± 2.46 | 3.52 ± 1.04 | 43.13 ± 0.32 | 2.78 ± 0.14 | |
NAIK 3355 | OF | 35.79 ± 0.83 | 1.12 ± 0.04 | 47.10 ± 1.88 | 4.18 ± 0.23 | 51.30 ± 0.48 | 3.05 ± 0.09 |
PH | NS | NS | 39.90 ± 3.46 | 3.30 ± 0.51 | 32.40 ± 1.33 | 2.45 ± 0.23 | |
Cherrola F1 | OF | 16.12 ± 0.64 | 1.54 ± 0.01 | 31.04 ± 9.45 | 11.66 ± 3.34 | 16.67 ± 2.57 | 3.39 ± 0.54 |
PH | NS | NS | 36.29 ± 1.83 | 6.56 ± 0.13 | 26.30 ± 0.85 | 4.43 ± 0.07 | |
Elán F1 | OF | NS | NS | 28.15 ± 2.66 | 4.92 ± 0.71 | 25.30 ± 2.13 | 4.43 ± 0.04 |
PH | 15.48 ± 0.11 | 1.39 ± 0.07 | 43.86 ± 1.34 | 4.12 ± 0.5 | 26.98 ± 0.64 | 2.79 ± 0.08 | |
Prairie | OF | 11.23 ± 0.38 | 0.58 ± 0.02 | 49.01 ± 7.5 | 6.47 ± 0.53 | 29.85 ± 14.57 | 3.89 ± 0.92 |
Schooner | PH | NS | NS | 43.74 ± 3.28 | 5.43 ± 0.67 | 32.02 ± 15.78 | 2.18 ± 0.65 |
NAIK 3254 | OF | 31.88 ± 2.18 | 1.67 ± 0.13 | 47.12 ± 4.53 | 6.05 ± 1.49 | 43.87 ± 4.25 | 5.40 ± 0.93 |
PH | NS | NS | 38.49 ± 0.75 | 5.30 ± 0.93 | 49.10 ± 4.22 | 6.44 ± 1.68 | |
Unorosso F1 | OF | NS | NS | 42.71 ± 4.87 | 4.38 ± 0.58 | 38.22 ± 1.23 | 2.43 ± 0.29 |
PH | 43.60 ± 3.01 | 0.69 ± 0.03 | 40.20 ± 2.23 | 2.59 ± 0.29 | NS | NS | |
NAIK 3451 | OF | 8.05 ± 0.16 | 0.49 ± 0.02 | 39.67 ± 6.51 | 3.43 ± 0.35 | 45.94 ± 2.01 | 3.91 ± 0.24 |
PH | NS | NS | 46.58 ± 1.86 | 1.60 ± 0.23 | 48.38 ± 5.27 | 2.48 ± 0.20 | |
NAIK 3270 | OF | 12.70 ± 0.31 | 0.51 ± 0.02 | 44.62 ± 5.39 | 3.11 ± 0.27 | 40.91 ± 1.69 | 1.49 ± 0.19 |
PH | NS | NS | 46.94 ± 2.22 | 2.61 ± 0.8 | 45.17 ± 6.92 | 1.91 ± 0.55 | |
Mokka F1 | OF | 19.69 ± 0.59 | 0.89 ± 0.05 | 28.37 ± 10.41 | 1.91 ± 1.03 | 35.01 ± 2.31 | 3.05 ± 0.31 |
PH | NS | NS | 39.95 ± 0.89 | 2.49 ± 0.00 | 30.18 ± 0.97 | 0.65 ± 0.02 |
Genotype | Growing Technology | 2014 | 2015 | 2016 | |||
---|---|---|---|---|---|---|---|
α-Tocopherol (mg.kg−1) | γ-Tocopherol (mg.kg−1) | α-Tocopherol (mg.kg−1) | γ-Tocopherol (mg.kg−1) | α-Tocopherol (mg.kg−1) | γ-Tocopherol (mg.kg−1) | ||
NAIK 3992 | OF | 18.99 ± 0.23 | 7.61 ± 0.09 | 8.09 ± 0.36 | 0.31 ± 0.03 | 9.34 ± 0.47 | 1.09 ± 0.06 |
PH | NS | NS | 9.27 ± 0.29 | 1.74 ± 0.04 | 4.62 ± 0.12 | 0.95 ± 0.06 | |
NAIK 114 | OF | 9.02 ± 0.18 | 1.72 ± 0.05 | 6.71 ± 0.15 | 0.41 ± 0.01 | 6.93 ± 0.28 | 0.64 ± 0.05 |
PH | NS | NS | 6.14 ± 0.23 | 1.41 ± 0.03 | NS | NS | |
NAIK 1122 | OF | 8.10 ± 0.03 | 3.01 ± 0.04 | 11.30 ± 0.16 | 0.80 ± 0.03 | 5.25 ± 0.41 | 0.46 ± 0.02 |
PH | NS | NS | 9.96 ± 0.26 | 0.93 ± 0.04 | 4.38 ± 0.21 | 1.62 ± 0.03 | |
NAIK 352 | OF | 18.10 ± 0.41 | 7.28 ± 0.05 | 8.13 ± 0.12 | 0.88 ± 0.02 | 8.17 ± 0.48 | 0.63 ± 0.03 |
PH | 11.50 ± 0.35 | 5.12 ± 0.43 | 7.54 ± 0.35 | 1.98 ± 0.14 | 5.29 ± 0.03 | 2.60 ± 0.03 | |
Aragon F1 | OF | 18.44 ± 0.52 | 3.86 ± 0.1 | 12.15 ± 0.33 | 1.52 ± 0.07 | 11.77 ± 0.64 | 0.88 ± 0.03 |
PH | NS | NS | 8.63 ± 0.24 | 0.72 ± 0.02 | 6.66 ± 0.41 | 0.77 ± 0.08 | |
NAIK 3355 | OF | 10.98 ± 0.55 | 2.61 ± 0.16 | 12.00 ± 0.12 | 0.84 ± 0.03 | 8.13 ± 0.62 | 0.44 ± 0.01 |
PH | NS | NS | 5.09 ± 0.12 | 1.02 ± 0.03 | 9.21 ± 0.16 | 0.28 ± 0.01 | |
Cherrola F1 | OF | 15.31 ± 0.25 | 8.50 ± 0.08 | 9.16 ± 0.18 | 3.89 ± 0.06 | 6.82 ± 0.06 | 2.28 ± 0.07 |
PH | NS | NS | 7.78 ± 0.28 | 4.74 ± 0.14 | 4.03 ± 0.20 | 3.05 ± 0.16 | |
Elán F1 | OF | NS | NS | 8.50 ± 0.18 | 2.16 ± 0.06 | 3.30 ± 0.18 | 1.55 ± 0.10 |
PH | 6.99 ± 0.27 | 2.53 ± 0.09 | 6.52 ± 0.12 | 1.29 ± 0.04 | 2.56 ± 0.09 | 0.86 ± 0.05 | |
Prairie | OF | 14.81 ± 0.12 | 1.63 ± 0.06 | 11.35 ± 0.22 | 2.59 ± 0.03 | 6.95 ± 0.23 | 1.30 ± 0.03 |
Schooner | PH | NS | NS | 11.69 ± 0.27 | 0.70 ± 0.06 | 5.96 ± 0.38 | 1.46 ± 0.11 |
NAIK 3254 | OF | 13.95 ± 0.35 | 9.35 ± 0.05 | 12.42 ± 0.20 | 2.58 ± 0.04 | 7.03 ± 0.50 | 1.72 ± 0.10 |
PH | NS | NS | 8.70 ± 0.24 | 1.19 ± 0.05 | 5.85 ± 0.45 | 0.81 ± 0.08 | |
Unorosso F1 | OF | NS | NS | 7.64 ± 0.19 | 1.26 ± 0.03 | 8.09 ± 0.57 | 1.27 ± 0.12 |
PH | 6.65 ± 0.36 | 2.49 ± 0.14 | 9.43 ± 0.03 | 3.52 ± 0.01 | NS | NS | |
NAIK 3451 | OF | 15.24 ± 0.26 | 5.60 ± 0.07 | 10.80 ± 0.17 | 0.54 ± 0.03 | 6.97 ± 0.26 | 0.65 ± 0.03 |
PH | NS | NS | 7.86 ± 0.28 | 0.95 ± 0.03 | 3.86 ± 0.23 | 1.65 ± 0.15 | |
NAIK 3270 | OF | 18.69 ± 0.19 | 5.04 ± 0.03 | 8.13 ± 0.31 | 4.68 ± 0.12 | 6.93 ± 0.42 | 2.38 ± 0.15 |
PH | NS | NS | 9.16 ± 0.29 | 2.76 ± 0.06 | 5.29 ± 0.20 | 1.00 ± 0.08 | |
Mokka F1 | OF | 12.22 ± 0.18 | 3.61 ± 0.01 | 7.55 ± 0.18 | 1.67 ± 0.05 | 10.05 ± 0.69 | 1.06 ± 0.07 |
PH | NS | NS | 8.38 ± 0.15 | 1.71 ± 0.01 | 3.35 ± 0.17 | 1.16 ± 0.05 |
Genotype | Growing Technology | 2014 | 2015 | 2016 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DPPH (mMTr/kg) | Polyphenol (mg GAE/kg) | Vitamin C (mg.kg−1) | DPPH (mMTr/kg) | Polyphenol (mg GAE/kg) | Vitamin C (mg.kg−1) | DPPH (mMTr/kg) | Polyphenol (mg GAE/kg) | Vitamin C (mg.kg−1) | ||
NAIK 3992 | OF | 4.36 ± 0.04 | 496.32 ± 13.33 | 219.02 ± 11.83 | 0.97 ± 0.17 | 371.67 ± 14.19 | 142.98 ± 6.5 | 1.92 ± 0.03 | 404.32 ± 31.9 | 224.69 ± 11.14 |
PH | NS | NS | NS | 0.76 ± 0.21 | 287.58 ± 36.56 | 99.59 ± 21.37 | 1.10 ± 0.28 | 276.32 ± 38 | 215.19 ± 6.17 | |
NAIK 114 | OF | 2.71 ± 0.57 | 320.1 ± 11.39 | 72.39 ± 31.69 | 1.04 ± 0.3 | 310.33 ± 3.68 | 81.72 ± 15.21 | 1.24 ± 0.38 | 348.98 ± 18.9 | 186.60 ± 15.53 |
PH | NS | NS | NS | 0.79 ± 0.16 | 239.00 ± 33.27 | 67.18 ± 12.78 | NS | NS | NS | |
NAIK 1122 | OF | 2.11 ± 0.35 | 449.62 ± 15.96 | 141.83 ± 35.28 | 1.59 ± 0.29 | 369.08 ± 13.82 | 175.48 ± 16.73 | 2.06 ± 0.38 | 461.02 ± 18.6 | 330.80 ± 34.27 |
PH | NS | NS | NS | 2.38 ± 0.16 | 396.03 ± 52.17 | 179.21 ± 14.63 | 0.79 ± 0.03 | 236.84 ± 16.3 | 148.95 ± 6.65 | |
NAIK 352 | OF | 0.56 ± 0.03 | 428.1 ± 13.98 | 309.3 ± 9.93 | 1.11 ± 0.3 | 346.82 ± 37.62 | 60.81 ± 17.87 | 1.87 ± 0.04 | 345.46 ± 37.1 | 249.67 ± 24.01 |
PH | 0.47 ± 0.06 | 361.39 ± 39.74 | 58.08 ± 11.7 | 0.78 ± 0.15 | 245.25 ± 10.84 | 94.20 ± 8.11 | 0.52 ± 0.04 | 232.03 ± 20.8 | 170.70 ± 9.24 | |
Aragon F1 | OF | 3.02 ± 0.30 | 394.58 ± 109.08 | 186.01 ± 4.25 | 1.56 ± 0.27 | 391.03 ± 26.67 | 171.72 ± 21.33 | 2.22 ± 0.28 | 416.85 ± 7.03 | 336.25 ± 21.01 |
PH | NS | NS | NS | 2.34 ± 0.06 | 405.90 ± 53.06 | 137.86 ± 26.97 | 1.16 ± 0.16 | 282.93 ± 34.1 | 198.01 ± 30.86 | |
NAIK 3355 | OF | 1.73 ± 0.30 | 407.09 ± 31.79 | 236.51 ± 10.27 | 1.02 ± 0.22 | 459.61 ± 68.03 | 135.11 ± 20.45 | 1.86 ± 0.15 | 314.08 ± 36.5 | 354.28 ± 12.51 |
PH | NS | NS | NS | 0.53 ± 0.09 | 371.61 ± 29.18 | 96.59 ± 7.02 | 3.41 ± 0.22 | 377.23 ± 20.9 | 244.65 ± 8.61 | |
Cherrola F1 | OF | 1.99 ± 0.35 | 804.12 ± 16.78 | 289.85 ± 17.2 | 2.48 ± 0.19 | 606.24 ± 53.12 | 204.38 ± 28.64 | 3.97 ± 0.2 | 579.19 ± 44.2 | 191.08 ± 10.52 |
PH | NS | NS | NS | 2.3 ± 0.13 | 611.32 ± 35.5 | 312.25 ± 19.64 | 2.01 ± 0.04 | 546.30 ± 64 | 702.61 ± 22.39 | |
Elán F1 | OF | NS | NS | NS | 1.13 ± 0.23 | 354.46 ± 24.22 | 175.74 ± 16.24 | 1.28 ± 0.31 | 402.81 ± 76.5 | 176.66 ± 8.07 |
PH | 0.33 ± 0.04 | 363.24 ± 13.68 | 88.34 ± 3.45 | 1.06 ± 0.16 | 401.98 ± 31.41 | 165.25 ± 15.89 | 0.84 ± 0.15 | 336.15 ± 24.5 | 223.11 ± 5.47 | |
Prairie | OF | 2.71 ± 0.38 | 565.2 ± 63.33 | 226.21 ± 9.83 | 1.39 ± 0.1 | 377.35 ± 52.1 | 86.79 ± 15.06 | 2.07 ± 0.16 | 324.57 ± 8.04 | 235.53 ± 19.36 |
Schooner | PH | NS | NS | NS | 0.97 ± 0.21 | 414.01 ± 16.85 | 161.75 ± 29.11 | 1.52 ± 0.17 | 293.64 ± 49.5 | 141.69 ± 13.19 |
NAIK 3254 | OF | 4.40 ± 0.47 | 769.06 ± 74.55 | 306.44 ± 56.87 | 1.65 ± 0.4 | 449.21 ± 67.83 | 156.87 ± 13.97 | 2.16 ± 0.18 | 423.67 ± 25.95 | 371.30 ± 20.19 |
PH | NS | NS | NS | 2.11 ± 0.35 | 365.59 ± 20.77 | 293.04 ± 7.5 | 1.27 ± 0.16 | 278.04 ± 10.48 | 176.25 ± 5.51 | |
Unorosso F1 | OF | NS | NS | NS | 0.63 ± 0.05 | 340.22 ± 59.45 | 131.15 ± 14.57 | 1.41 ± 0.22 | 250.63 ± 44.08 | 136.86 ± 20.85 |
PH | 0.51 ± 0.05 | 295.33 ± 16.36 | 64.49 ± 12.91 | 0.66 ± 0.14 | 358.35 ± 35.56 | 144.80 ± 22.45 | NS | NS | NS | |
NAIK 3451 | OF | 3.16 ± 0.83 | 429.73 ± 36.22 | 183.55 ± 25.08 | 1.34 ± 0.29 | 349.95 ± 26.28 | 138.12 ± 17.3 | 2.02 ± 0.15 | 338.19 ± 18.74 | 363.11 ± 18.98 |
PH | NS | NS | NS | 0.81 ± 0.22 | 339.72 ± 36.63 | 130.11 ± 15.63 | 0.91 ± 0.1 | 222.48 ± 23.47 | 185.41 ± 2.27 | |
NAIK 3270 | OF | 3.82 ± 0.14 | 398.42 ± 53.33 | 137.61 ± 10.78 | 0.83 ± 0.09 | 290.11 ± 27.85 | 96.72 ± 12.81 | 1.84 ± 0.07 | 336.13 ± 12.92 | 210.39 ± 17.83 |
PH | NS | NS | NS | 0.75± | 241.88 ± 32.23 | 76.80 ± 19.08 | 0.91 ± 0.03 | 303.47 ± 11.7 | 152.46 ± 0.36 | |
Mokka F1 | OF | 3.02 ± 0.30 | 395.71 ± 1.89 | 177.97± | 1.42± | 339.36 ± 53.18 | 130.47 ± 26.11 | 2.23 ± 0.27 | 348.14 ± 29.67 | 347.15 ± 2.19 |
PH | NS | NS | NS | 0.53± | 330.40 ± 58.62 | 153.80 ± 19.17 | 0.79 ± 0.11 | 352.72 ± 32.9 | 150.77 ± 4.6 |
Correlations 2014–2016 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A-Tocopherol | G-Tocopherol | DPPH | Total Polyphenol | Lycopene | B-Carotene | Vitamin C | Resistance | Technology | Size | Type | |
a-tocopherol | 1 | ||||||||||
g-tocopherol | 0.580 ** | 1 | |||||||||
DPPH | 0.455 ** | 0.339 ** | 1 | ||||||||
polyfenol | 0.469 ** | 0.557 ** | 0.541 ** | 1 | |||||||
lycopene | −0.349 ** | −0.457 ** | −0.362 ** | −0.355 ** | 1 | ||||||
b-carotene | −0.113 | −0.161 * | −0.040 | 0.109 | 0.477 ** | 1 | |||||
vitamin C | −0.035 | 0.098 | 0.330 ** | 0.365 ** | 0.056 | 0.158 * | 1 | ||||
resistance | 0.026 | 0.157 | 0.083 | 0.302 ** | 0.032 | 0.422 ** | 0.162 * | 1 | |||
technology | 0.397 ** | 0.116 | 0.479 ** | 0.383 ** | −0.259 ** | 0.019 | 0.157 | −0.006 | 1 | ||
size | −0.101 | −0.209 * | −0.184 * | −0.319 ** | −0.146 | −0.314 ** | −0.365 ** | −0.591 ** | 0.047 | 1 | |
type | −0.200 * | −0.058 | 0.053 | 0.175 * | −0.360 ** | 0.104 | 0.030 | 0.197 * | 0.069 | 0.121 | 1 |
Genotype | Type | Size of Fruit (g) | Resistance |
---|---|---|---|
Elán F1 | fresh market | 90–100 | - |
Cherrola F1 | fresh market | 15–20 | V, F0 |
NAIK parent line/NAIK 114 | fresh market | 120–140 | V, F0, F1, Tm, C5, N |
NAIK 1122 | fresh market | 110–130 | V, F0, F1, Tm, C5, N |
Prairie Schooner (gene bank) | fresh market | 20–23 | V, F0 |
NAIK 3254 | industrial | 20–22 | V, F0 |
Aragon F1 | industrial | 70–80 | V, F0, F1, Pt, N |
NAIK parent line/NAIK 352 | industrial | 60–65 | V, F0, F1, Pt, N |
Unorosso F1 | industrial | 60–70 | V, F0 |
NAIK 3355 | industrial | 70–80 | V, F0, F1, Pt, N |
NAIK 3451 | industrial | 70–80 | V, F0, F1, Pt, N |
NAIK 3270 | industrial | 70–80 | V, F0, F1, Pt, N |
NAIK 3992 | industrial | 60–65 | V, F0, F1, Pt, N |
Mokka F1 | industrial | 75–80 | V, F0, F1, Pt, N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt-Szantner, B.; Berki, M.; Lengyel-Kónya, É.; Milotay, P.; Molnár-Mondovics, Á.; Daood, H.G.; Tömösközi-Farkas, R. Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids. Plants 2022, 11, 3408. https://doi.org/10.3390/plants11233408
Schmidt-Szantner B, Berki M, Lengyel-Kónya É, Milotay P, Molnár-Mondovics Á, Daood HG, Tömösközi-Farkas R. Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids. Plants. 2022; 11(23):3408. https://doi.org/10.3390/plants11233408
Chicago/Turabian StyleSchmidt-Szantner, Barbara, Mária Berki, Éva Lengyel-Kónya, Péter Milotay, Ágnes Molnár-Mondovics, Hussein G. Daood, and Rita Tömösközi-Farkas. 2022. "Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids" Plants 11, no. 23: 3408. https://doi.org/10.3390/plants11233408
APA StyleSchmidt-Szantner, B., Berki, M., Lengyel-Kónya, É., Milotay, P., Molnár-Mondovics, Á., Daood, H. G., & Tömösközi-Farkas, R. (2022). Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids. Plants, 11(23), 3408. https://doi.org/10.3390/plants11233408