Natural Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion (MSPD) Extraction for Determination of Bioactive Compounds from Sandy Everlasting (Helichrysum arenarium L.): A Case of Stability Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of the NADES for the VA-MSPD
2.2. Optimization of NADES-VA-MSPD Method
2.2.1. Selection of the Stationary Phase (Adsorbent)
2.2.2. Determination of the Optimal Sample-to-Adsorbent Ratio (S/A Ratio)
2.2.3. Optimization of Vortex Time
2.2.4. Optimization of Sample-to-Solvent Volume Ratio
2.3. Stability Study
3. Materials and Methods
3.1. Samples and Chemicals
3.2. Preparation of Eutectic Liquids
3.3. Vortex Assisted-Matrix Solid-Phase Dispersion Extraction (VA-MSPD) Procedure
3.4. Ultrasound-Assisted Extraction (UAE)
3.5. Optimization of VA-MSPD Conditions
- (a)
- After selecting the most effective extraction solvent based on the results of the preliminary extraction experiment, four different adsorbents, including: Florisil RP (0.15–0.25 mm, 60–100 mesh ASTM, Fluka), C18 Silica gel spherical (0.7–0.9 cm3/g pore volume, 200–400 mesh, Supelco), and silica with two different pore sizes; silica 60 (0.2–0.5 mm, 35–70 mesh ASTM, Fluka) and silica (0.063–0.20 mm, 70–230 mesh ASTM, Kemika), were tested. Other factors were as follows: S/A ratio of 1:2.5 (200 mg sample and 500 mg of the stationary phase), 2 min grinding and vortex time, and 10 mL of the selected NADES.
- (b)
- In the second phase, after selecting the most effective adsorbent, four different S/A ratios (1:0.5, 1:1, 1:1.5, and 1:2) were evaluated. For comparison, a sample extraction without addition of adsorbent was also performed. Other parameters were: 2 min grinding and vortex time and 10 mL of the selected NADES.
- (c)
- Vortex time was studied in a range of 1 to 4 min, while the other parameters were kept constant: S/A ratio determined from the results of experiments (a) and (b), grinding time of 2 min and 10 mL of the selected NADES.
- (d)
- Finally, the volumes of the selected NADES (5 mL–20 mL) were examined. Other extraction conditions were: S/A ratio and vortex time based on the results of the previous experiments and 2 min grinding time
3.6. Stability Study of the Obtained VA-MSPD Extracts
3.7. Analytical Procedures
3.7.1. Total Phenolic Content (TPC)
3.7.2. ABTS Radical Scavenging Assay
3.7.3. FRAP Assay
3.7.4. Quantification of Individual Phenolic Compounds by High-Performance Liquid Chromatography with UV Detection (HPLC-UV)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried piper betle extracts. Molecules 2018, 23, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, S.; Cartes, J.; Cornejo, P.; Tereucán, G.; Winterhalter, P.; Contreras, B.; Ruiz, A. Stability of phenolic compounds, antioxidant activity and colour parameters of a coloured extract obtained from coloured-flesh potatoes. LWT 2021, 136, 110370. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef] [PubMed]
- Rotta, E.M.; Rodrigues, C.A.; Jardim, I.C.S.F.; Maldaner, L.; Visentainer, J.V. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. LWT-Food Sci. Technol. 2019, 100, 397–403. [Google Scholar] [CrossRef]
- Ding, M.; Li, J.; Zou, S.; Tang, G.; Gao, X.; Chang, Y. xu Simultaneous extraction and determination of compounds with different polarities from Platycladi cacumen by AQ C18-based vortex-homogenized matrix solid-phase dispersion with ionic liquid. Front. Pharmacol. 2019, 9, 1532. [Google Scholar] [CrossRef]
- Senes, C.E.R.; Rodrigues, C.A.; Nicácio, A.E.; Boeing, J.S.; Maldaner, L.; Visentainer, J.V. Determination of phenolic acids and flavonoids from Myrciaria cauliflora edible part employing vortex-assisted matrix solid-phase dispersion (VA-MSPD) and UHPLC-MS/MS. J. Food Compos. Anal. 2021, 95, 103667. [Google Scholar] [CrossRef]
- Lang, H.; Yang, R.; Dou, X.; Wang, D.; Zhang, L.; Li, J.; Li, P. Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS. LWT 2019, 107, 221–227. [Google Scholar] [CrossRef]
- Barker, S.A.; Long, A.R.; Short, C.R. Isolation of Drug Residues from Tissues by Solid Phase Dispersion. J. Chromatogr. A 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Ramos, L. Use of new tailored and engineered materials for matrix solid-phase dispersion. TrAC-Trends Anal. Chem. 2019, 118, 751–758. [Google Scholar] [CrossRef]
- da Silva, M.C.; Orlando, R.M.; Faria, A.F. Electrical field assisted matrix solid phase dispersion as a powerful tool to improve the extraction efficiency and clean-up of fluoroquinolones in bovine milk. J. Chromatogr. A 2016, 1461, 27–34. [Google Scholar] [CrossRef]
- Majidi, S.M.; Hadjmohammadi, M.R. Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples. Talanta 2021, 222, 121649. [Google Scholar] [CrossRef]
- Du, K.Z.; Li, J.; Gao, X.M.; Chang, Y. xu Ultrasound-enhanced matrix solid-phase dispersion micro-extraction applying Mesoporous Molecular Sieve SBA-15 for the determination of multiple compounds in Fructus Psoraleae. Sustain. Chem. Pharm. 2020, 15, 100198. [Google Scholar] [CrossRef]
- Nooraee Nia, N.; Reza Hadjmohammadi, M. Development of magnetic dispersive micro-solid phase extraction based on magnetic adipic acid nanoparticles and deep eutectic solvents for the isolation and pre-concentration of phenolic compounds in fruit juice samples prior to determination by HPLC-UV. Microchem. J. 2021, 170, 106721. [Google Scholar] [CrossRef]
- Du, K.; Li, J.; Bai, Y.; An, M.; Gao, X.M.; Chang, Y.X. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography. Food Chem. 2018, 244, 190–196. [Google Scholar] [CrossRef]
- Wu, W.; Qian, W.; Hao, H.; Kang, Y.; Wang, Y.; Deng, Y.; Ni, C.; Huang, J.; Weng, W. Determination of caffeoylquinic acid derivatives in Azolla imbricata by chitosan-based matrix solid-phase dispersion coupled with HPLC–PDA. J. Pharm. Biomed. Anal. 2019, 163, 197–203. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Du, K.; Guo, J.; He, J.; Li, J.; Chang, Y. A ball mill-assisted vortex-enhanced matrix solid-phase dispersion method for the extraction and determination of five phenolic compounds from Rubi Fructus by high-performance liquid chromatography. Sep. Sci. Plus 2021, 4, 211–221. [Google Scholar] [CrossRef]
- Chen, S.J.; Du, K.Z.; Li, J.; Chang, Y.X. A chitosan solution-based vortex-forced matrix solid phase dispersion method for the extraction and determination of four bioactive constituents from Ligustri Lucidi Fructus by high performance liquid chromatography. J. Chromatogr. A 2020, 1609, 460509. [Google Scholar] [CrossRef]
- Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind. Crops Prod. 2019, 138, 111471. [Google Scholar] [CrossRef]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem. 2010, 119, 114–122. [Google Scholar] [CrossRef]
- Aljančić, I.S.; Vučković, I.; Jadranin, M.; Pešić, M.; Đorević, I.; Podolski-Renić, A.; Stojković, S.; Menković, N.; Vajs, V.E.; Milosavljević, S.M. Two structurally distinct chalcone dimers from Helichrysum zivojinii and their activities in cancer cell lines. Phytochemistry 2014, 98, 190–196. [Google Scholar] [CrossRef]
- Babotă, M.; Mocan, A.; Vlase, L.; Crisan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crişan, G.; Păltinean, R. Phytochemical analysis, antioxidant and antimicrobial activities of Helichrysum arenarium (L.) moench. and Antennaria dioica (L.) gaertn. Flowers. Molecules 2018, 23, 409. [Google Scholar] [CrossRef] [Green Version]
- Pljevljakušić, D.; Bigović, D.; Janković, T.; Jelačić, S.; Šavikin, K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front. Plant Sci. 2018, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
- Ivanović, M.; Albreht, A.; Krajnc, P.; Vovk, I.; Islamčević Razboršek, M. Sustainable ultrasound-assisted extraction of valuable phenolics from inflorescences of Helichrysum arenarium L. using natural deep eutectic solvents. Ind. Crops Prod. 2020, 111, 113102. [Google Scholar] [CrossRef]
- Jarzycka, A.; Lewińska, A.; Gancarz, R.; Wilk, K.A. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; Photostability in cosmetic emulsions. J. Photochem. Photobiol. B Biol. 2013, 128, 50–57. [Google Scholar] [CrossRef]
- Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res. 2018, 135, 122–126. [Google Scholar] [CrossRef]
- Smruthi, M.R.; Nallamuthu, I.; Anand, T. A comparative study of optimized naringenin nanoformulations using nano-carriers (PLA/PVA and zein/pectin) for improvement of bioavailability. Food Chem. 2022, 369, 130950. [Google Scholar] [CrossRef]
- Lucas-Abellán, C.; Pérez-Abril, M.; Castillo, J.; Serrano, A.; Mercader, M.T.; Fortea, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. Effect of temperature, pH, β- and HP-β-cds on the solubility and stability of flavanones: Naringenin and hesperetin. LWT 2019, 108, 233–239. [Google Scholar] [CrossRef]
- Liu, X.; Jing, X.; Li, G. A process to acquire essential oil by distillation concatenated liquid-liquid extraction and flavonoids by solid-liquid extraction simultaneously from Helichrysum arenarium (L.) Moench inflorescences under ionic liquid-microwave mediated. Sep. Purif. Technol. 2019, 209, 164–174. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Mohamed, H.M.; Kurowska-Susdorf, A.; Dewani, R.; Fares, M.Y.; Andruch, V. Green analytical chemistry as an integral part of sustainable education development. Curr. Opin. Green Sustain. Chem. 2021, 31, 100508. [Google Scholar] [CrossRef]
- Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; Alañón, M.E. Modifiers based on natural deep eutectic mixtures to enhance anthocyanins isolation from grape pomace by pressurized hot water extraction. LWT 2021, 149, 111889. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Roy, V.C.; Ho, T.C.; Lee, H.J.; Park, J.S.; Nam, S.Y.; Lee, H.; Getachew, A.T.; Chun, B.S. Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. J. Clean. Prod. 2021, 284, 125417. [Google Scholar] [CrossRef]
- Tong, X.; Yang, J.; Zhao, Y.; Wan, H.; He, Y.; Zhang, L.; Wan, H.; Li, C. Greener extraction process and enhanced in vivo bioavailability of bioactive components from Carthamus tinctorius L. by natural deep eutectic solvents. Food Chem. 2021, 348, 129090. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Yang, Y.; Liu, Y.; Chen, X. Development of a deep eutectic solvent-based matrix solid phase dispersion methodology for the determination of aflatoxins in crops. Food Chem. 2019, 291, 239–244. [Google Scholar] [CrossRef]
- Xu, J.J.; Yang, R.; Ye, L.H.; Cao, J.; Cao, W.; Hu, S.S.; Peng, L.Q. Application of ionic liquids for elution of bioactive flavonoid glycosides from lime fruit by miniaturized matrix solid-phase dispersion. Food Chem. 2016, 204, 167–175. [Google Scholar] [CrossRef]
- Cho, C.W.; Pham, T.P.T.; Zhao, Y.; Stolte, S.; Yun, Y.S. Review of the toxic effects of ionic liquids. Sci. Total Environ. 2021, 786, 147309. [Google Scholar] [CrossRef]
- Mansur, A.R.; Kim, K.J.; Kim, D.B.; Yoo, M.; Jang, H.W.; Kim, D.O.; Nam, T.G. Matrix solid-phase dispersion extraction method for HPLC determination of flavonoids from buckwheat sprouts. LWT-Food Sci. Technol. 2020, 133, 110121. [Google Scholar] [CrossRef]
- Monasterio, R.P.; Fontana, A.R.; Silva, M.F. Matrix solid-phase dispersion: A simple and fast technique for the determination of phenolic compounds in olive oil by liquid chromatography. Anal. Methods 2014, 6, 8986–8995. [Google Scholar] [CrossRef]
- Peng, L.Q.; Li, Q.; Chang, Y.X.; An, M.; Yang, R.; Tan, Z.; Hao, J.; Cao, J.; Xu, J.J.; Hu, S.S. Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. A 2016, 1456, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, R.; Wang, Y.; Li, N.; Lei, L.; Yang, X.; Yu, A.; Qiu, F.; Zhang, H. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 969, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Jurić, T.; Uka, D.; Holló, B.B.; Jović, B.; Kordić, B.; Popović, B.M. Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. J. Mol. Liq. 2021, 343, 116968. [Google Scholar] [CrossRef]
- Zannou, O.; Koca, I.; Aldawoud, T.M.S.; Galankakis, C.M. Recovery and Stabilization of Anthocyanins and Phenolic Antioxidants of Roselle (Hibiscus sabdariffa L.) with Hydrophilic Deep Eutectic Solvents. Molecules 2020, 25, 3715. [Google Scholar] [CrossRef]
- da Silva, D.T.; Smaniotto, F.A.; Costa, I.F.; Baranzelli, J.; Muller, A.; Somacal, S.; Monteiro, C.S.A.; Vizzotto, M.; Rodrigues, E.; Barcia, M.T.; et al. Natural deep eutectic solvent (NADES): A strategy to improve the bioavailability of blueberry phenolic compounds in a ready-to-use extract. Food Chem. 2021, 364, 130370. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Cao, J.; Cao, J.; Wang, H.; Chen, L.; Cao, F.; Su, E. Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. J. Mol. Liq. 2020, 318, 113997. [Google Scholar] [CrossRef]
- Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural Deep Eutectic Solvents as Agents for Improving Solubility, Stability and Delivery of Curcumin. Pharm. Res. 2019, 36, 116. [Google Scholar] [CrossRef]
- Dixon, R.A. Isoflavonoids: Biochemistry, Molecular Biology, and Biological Functions. In Comprehensive Natural Products Chemistry; Sankawa, U., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 773–823. [Google Scholar]
- Kang, S.; Namgoong, H.; Son, W.S.; Kim, Y.D.; Jeong, K.M.; Jin, Y.; Won, H.S.; Hong, J.; Jeong, J.H.; Lee, J. Insights into the Vastly Different Effects of Eutectic Solvents on the Stability of Phenolic Compounds. J. Phys. Chem. Lett. 2020, 11, 5268–5272. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, W.; Soladoye, O.P. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. LWT 2021, 150, 111968. [Google Scholar] [CrossRef]
- Frydman, A.; Weisshaus, O.; Bar-Peled, M.; Huhman, D.V.; Sumner, L.W.; Marin, F.R.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 2004, 40, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Kao, W.T.; Lin, K.W. Effects of pH on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars. Food Chem. 2008, 107, 250–257. [Google Scholar] [CrossRef]
- Liu, J.; Mu, T.; Sun, H.; Fauconnier, M.L. Effects of processing and storage conditions on the stability of sweet potato (Ipomoea batatas L.) leaf flavonoids. Int. J. Food Sci. Technol. 2020, 55, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, A.; Ekholm, A.; Scheewe, P.; Rumpunen, K. Changes in content of major Phenolic compounds during leaf development of sea buckthorn (Hippophaë rhamnoides L.). Agric. Food Sci. 2014, 23, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Czinner, E.; Hagymasi, K.; Blazovics, A.; Kery, A.; Szoke, E.; Lemerkovics, E. In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J. Ethnopharmacol. 2000, 73, 437–443. [Google Scholar] [CrossRef] [PubMed]
Method | Solvent | TPC | Chlorogenic Acid | Nar-4-gluc | TomA | Nar-5-gluc | Iso | Nar |
---|---|---|---|---|---|---|---|---|
mg GA/g DW | mg/10 g DW | |||||||
VA-MSPD | ChCl-LA | 38.34 ± 0.09 d | 48.99 ± 5.57 a | 9.72 ± 0.17 b | 19.69 ± 0.45 c | 23.33 ± 0.59 b | 36.23 ± 0.87 d | 8.54 ± 0.29 e |
ChCl-Prop | 31.06 ± 0.57 c | 38.94 ± 4.09 a | 12.40 ± 0.42 d | 17.50 ± 0.66 b | 30.10 ± 1.09 c | 30.87 ± 0.27 c | 7.49 ± 0.01 c | |
ChCl-Fruc | 13.58 ± 2.60 a | 37.87 ± 1.54 a | 6.96 ± 0.40 a | 8.39 ± 0.46 a | 16.16 ± 0.70 a | 10.44 ± 0.44 a | 3.21 ± 0.11 a | |
ChCl-U | 26.88 ± 0.88 b | 38.98 ± 0.13 a | 13.38 ± 0.43 d | 16.41 ± 0.27 b | 32.30 ± 0.70 d | 18.00 ± 0.30 b | 6.55 ± 0.05 b | |
80% MeOH | 30.13 ± 0.12 c | 43.10 ± 1.79 a | 12.09 ± 0.04 e | 21.75 ± 0.07 d | 28.60 ± 0.30 c | 35.99 ± 0.01 d | 9.38 ± 0.16 f | |
UAE | 80% MeOH | 32.73 ± 0.52 c | 43.10 ± 2.69 a | 11.19 ± 0.13 c | 15.74 ± 1.16 b | 28.16 ± 1.44 c | 30.68 ± 0.53 c | 7.97 ± 0.24 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanović, M.; Krajnc, P.; Mlinarič, A.; Razboršek, M.I. Natural Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion (MSPD) Extraction for Determination of Bioactive Compounds from Sandy Everlasting (Helichrysum arenarium L.): A Case of Stability Study. Plants 2022, 11, 3468. https://doi.org/10.3390/plants11243468
Ivanović M, Krajnc P, Mlinarič A, Razboršek MI. Natural Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion (MSPD) Extraction for Determination of Bioactive Compounds from Sandy Everlasting (Helichrysum arenarium L.): A Case of Stability Study. Plants. 2022; 11(24):3468. https://doi.org/10.3390/plants11243468
Chicago/Turabian StyleIvanović, Milena, Peter Krajnc, Aleš Mlinarič, and Maša Islamčević Razboršek. 2022. "Natural Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion (MSPD) Extraction for Determination of Bioactive Compounds from Sandy Everlasting (Helichrysum arenarium L.): A Case of Stability Study" Plants 11, no. 24: 3468. https://doi.org/10.3390/plants11243468
APA StyleIvanović, M., Krajnc, P., Mlinarič, A., & Razboršek, M. I. (2022). Natural Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion (MSPD) Extraction for Determination of Bioactive Compounds from Sandy Everlasting (Helichrysum arenarium L.): A Case of Stability Study. Plants, 11(24), 3468. https://doi.org/10.3390/plants11243468