Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on A. ciliata subsp. bernensis, a Narrow Endemic of the Swiss Northern Alps
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Genome Size Values in the Genus Arenaria
3.2. Arenaria ciliata s.str. and A. multicaulis
3.3. Arenaria gothica
3.4. Arenaria ciliata subsp. bernensis
3.5. Implications for Taxonomy and Conservation of A. ciliata subsp. bernensis
4. Materials and Methods
4.1. Taxon Identification in the A. ciliata Species Complex
4.2. Sampling of Plant Material
4.3. Flow Cytometry Analysis
4.4. Confocal Microscopy
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennet, M.D.; Leitch, I.J. Plant genome size research: A field in focus. Ann. Bot. 2005, 95, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicer, J.; Hidalgo, O.; Dodsworth, S.; Leitch, I.J. Genome size diversity and its impact on the evolution of land plants. Genes 2018, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doležel, J.; Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005, 95, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourge, M.; Brown, S.C.; Siljak-Yakovlev, S. Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet. Applic. 2018, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, A.; Iriondo, J.M.; Vallès, J.; Orellana, J.; Escidero, A. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Syst. Evol. 2012, 298, 139–146. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Guo, Z.; Guan, Y.; Guo, Y.; Yan, X. Variation in ploidy level and genome size of Cynodon dactylon (L.) Pers. along latitudinal gradient. Folia Geobot. 2019, 54, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Greimler, J.; Temsch, E.M.; Xue, Z.; Weiss-Schneeweiss, H.; Volkova, P.; Peintinger, M.; Wasowicz, P.; Shang, H.; Schanzer, I.; Chiapella, J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2022, 308, 9. [Google Scholar] [CrossRef]
- Plaschil, S.; Abel, S.; Klocke, E. The variablility of nuclear DNA content of different Pelargonium species estimated by flow cytometry. PLoS ONE 2022, 17, e0267496. [Google Scholar] [CrossRef]
- Kew Plant DNA C-Values Database. Available online: https://cvalues.science.kew.org/ (accessed on 18 November 2022).
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- GeSDaBaF. Genome Size of Balkan Flora Database. Available online: www.gesdabaf.pmf.unsa.ba (accessed on 18 November 2022).
- Šmarda, P.; Knápek, O.; Březinová, A.; Horová, L.; Grulich, V.; Danihelka, J.; Veselý, P.; Šmarda, J.; Rotreklová, O.; Bureš, P. Genome sizes and genomic guanine+ cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 2019, 91, 117–142. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M. The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks. Forum Geobot. 2019, 8, 24–78. [Google Scholar]
- Favarger, C. Nouvelles recherches sur les populations alpines et carpathiques d’Arenaria ciliata L. sens. lat. Bull. Soc. Bot. Suisse 1963, 73, 161–178. [Google Scholar]
- Wyse-Jackson, M.B.; Parnell, J.A.N. A biometric study of the Arenaria ciliata L. complex (Caryophyllaceae). Watsonia 1987, 16, 373–382. [Google Scholar]
- Abukrees, F.; Kozlowski, G.; Meade, C. Characterization of diverse ploidy in the arctic-alpine Arenaria ciliata species complex (Caryophyllaceae) using shoot meristem staining and flow cytometry analysis of archived frozen tissue. Plant Spec. Biol. 2018, 33, 144–152. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Fay, M.F.; Chase, M.W. Plants of the world: An Illustrated Encyclopedia of Vascular Plants; University of Chicago Press: Chicago, IL, USA, 2017; ISBN 0-226-53670-X. [Google Scholar]
- Dang, X.D.; Kelleher, C.T.; Howard-Williams, E.; Meade, C. Rapid identification of chloroplast haplotypes using High Resolution Melting analysis. Mol. Ecol. Resour. 2012, 12, 894–908. [Google Scholar] [CrossRef] [Green Version]
- Berthouzoz, M.; Maendly, S.; Bétrisey, S.; Mangili, S.; Prunier, S.; Lexer, C.; Kozlowski, G. Some like it cold: Distribution, ecology and phylogeny of Arenaria bernensis Favarger (Caryophyllaceae) from western Prealps in Switzerland. Alpine Bot. 2013, 123, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.; Howard-Williams, E.; Meade, C. The distribution and ecology of Arenaria norvegica Gunn. in Ireland. Irish Nat. J. 2013, 32, 1–13. [Google Scholar]
- Svalbard Flora. Available online: https://www.svalbardflora.no (accessed on 9 November 2022).
- Panarctic Flora. Available online: http://panarcticflora.org/3701 (accessed on 9 November 2022).
- Lauber, K.; Wagner, G.; Gygax, A. Flora Helvetica. 6. Ausfabe; Haupt: Bern, Switzerland, 2018. [Google Scholar]
- Eggenberg, S.; Landolt, E. Für welche Pflanzenarten hat die Schweiz eine internationale Verantwortung? Bot. Helv. 2006, 116, 119–133. [Google Scholar] [CrossRef]
- Gerber, E.; Kozlowski, G.; Mariéthoz, A.-S. La Flore des Préalpes du lac de Thun au Léman; Rossolis: Bussigny, Switzerland, 2010. [Google Scholar]
- Parisod, C. Plant speciation in the face of recent climate changes in the Alps. Alpine Bot. 2022, 132, 21–28. [Google Scholar] [CrossRef]
- Favarger, C.; Contandriopoulos, J. Essai sur l’endémisme. Bull. Soc. Bot. Suisse 1961, 71, 384–408. [Google Scholar]
- Tralau, H. On the distribution of Arenaria gothica Fries and the significance of postglacial plant migration. Ber. Schweiz. Bot. Ges. 1959, 69, 342–345. [Google Scholar]
- Duckert-Henriod, M.-M. Sur l’Arenaria gothica Fries de la Vallée de Joux. Bull. Soc. Neuch. Sc. Nat. 1962, 85, 97–101. [Google Scholar]
- Aeschimann, D.; Lauber, K.; Moser, D.; Theurillat, J. Flora Alpina; Haupt: Bern, Switzerland, 2004; Volume 1. [Google Scholar]
- Hörandl, E. Novel approaches for species concepts and delimitation in polyploids and hybrids. Plants 2022, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Siljak-Yakovlev, S.; Pustahija, F.; Šolic, E.M.; Bogunic, F.; Muratovic, E.; Bašic, N.; Catrice, O.; Brown, S.C. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Adv. Sci. Lett. 2010, 3, 190–213. [Google Scholar] [CrossRef]
- Daoud, M. Genetic and Phenotypic Patterns of Variablities in Arenaria grandiflora L. Species Complex (Caryophyllaceae). New Elements for Taxonomy and Conservation. Ph.D. Thesis, Museum National d’Histoire Naturelle, Paris, France, 2017; pp. 1–180. [Google Scholar]
- Bennett, M.D.; Smith, J.B. Nuclear DNA amounts in Angiosperms. Philos. T. Roy. Soc. B. 1991, 334, 309–345. [Google Scholar] [CrossRef]
- Loureiro, J.; Castro, M.; Cerca de Oliveira, J.; Mota, L.; Torices, R. Genome size variation and polyploidy incidence in the alpine flora from Spain. Ann. Jard. Bot. Madrid 2013, 70, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Bou Dagher-Kharrat, M.; Abdel-Samad, N.; Douaihy, B.; Bourge, M.; Fridlender, A.; Siljak-Yakovlev, S.; Brown, S.C. Nuclear DNA C-values for biodiversity screening: Case of the Lebanese flora. Plant Biosyst. 2013, 147, 1228–1237. [Google Scholar] [CrossRef]
- Halliday, G. The identity of Arenaria gothica auct. angl. Watsonia 1960, 4, 207–210. [Google Scholar]
- Delarze, R.; Druart, P.; Kozlowski, G.; Moret, J.-L.; Prunier, P.; Gmür, P. Arenaria gothica et autres plantes rares des rives lacustres de la Vallée de Joux (Vaud, Suisse). Quelques observations récentes et premières données autoécologiques. Bull. Soc. Vaude. Sc. Nat. 2004, 89, 1–11. [Google Scholar]
- Favarger, C. Recherches cytotaxonomiques sur les populations alpines d’Arenaria ciliata L. (sens. lat.). Bull. Soc. Bot. Suisse 1960, 70, 126–140. [Google Scholar]
- Favarger, C. A striking polyploid complex in the alpine flora: Arenaria ciliata L. Bot. Notiser 1965, 118, 273–280. [Google Scholar]
- Aeschimann, D.; Heitz, C. Index Synonymique de la Flore de Suisse et Territoires Limitrophes (ISFS); Documenta Floristicae Helvetiae: Geneva, Switzerland, 2005. [Google Scholar]
- Bétrisey, S.; Kozlowski, G. Arenaria bernensis: Vers la fin d’une longue controverse. FloraCH 2013, 2013, 29–37. [Google Scholar]
- Watts, S.H.; Mardon, D.K.; Mercer, C.; Watson, D.; Cole, H.; Shaw, R.F.; Jump, A.S. Riding the elevator to extinction: Disjunct arctic-alpine plants of open habitats decline as their more competitive neighbours expand. Biol. Conserv. 2022, 272, 109620. [Google Scholar] [CrossRef]
- Körner, C.; Hiltbrunner, E. Why is the Alpine flora comparatively robust against climatic warming? Diversity 2021, 13, 383. [Google Scholar] [CrossRef]
Taxon | Genome Size (pg) Mean (±SD) | Estimated Ploidy Level |
---|---|---|
A. ciliata subsp. bernensis Favarger | 6.91 (±0.33) | 2n = 20x = 200 |
A. gothica Fr. | 3.69 (±0.07) | 2n = 10x = 100 |
A. ciliata s.str. L. | 1.71 (±0.06) | 2n = 2x = 40 |
A. multicaulis L. | 1.57 (±0.04) | 2n = 2x = 40 |
Taxon | Basic Chrom. Number | Ploidy Level | 2n Chrom. Count | 2c (pg) | References |
---|---|---|---|---|---|
A. leptoclados (Rchb.) Guss | x = 10 | 2x | 20 | 0.79 | [13] |
A. gracilis Waldst. and Kit. | x = 12 | 2x | 24 | 1.19 | [32] |
A. grandiflora L. complex | x = 12 | 2x | 24 | 2.11–2.70 | [33] |
A. serpyllifolia L. | x = 10 | 2x | 40 | 1.41–1.60 | [12,13,34] |
A. tetraquetra subsp. amabilis (Bory) H.Lindb. | x = 10 | 2x | 40 | 1.29 | [35] |
A. grandiflora L. complex | x = 12 | 2x | 44 | 4.24–5.27 | [12,33] |
A. deflexa Decne. * | - | - | - | 2.04 | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlowski, G.; Fragnière, Y.; Clément, B.; Meade, C. Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on A. ciliata subsp. bernensis, a Narrow Endemic of the Swiss Northern Alps. Plants 2022, 11, 3489. https://doi.org/10.3390/plants11243489
Kozlowski G, Fragnière Y, Clément B, Meade C. Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on A. ciliata subsp. bernensis, a Narrow Endemic of the Swiss Northern Alps. Plants. 2022; 11(24):3489. https://doi.org/10.3390/plants11243489
Chicago/Turabian StyleKozlowski, Gregor, Yann Fragnière, Benoît Clément, and Conor Meade. 2022. "Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on A. ciliata subsp. bernensis, a Narrow Endemic of the Swiss Northern Alps" Plants 11, no. 24: 3489. https://doi.org/10.3390/plants11243489
APA StyleKozlowski, G., Fragnière, Y., Clément, B., & Meade, C. (2022). Genome Size in the Arenaria ciliata Species Complex (Caryophyllaceae), with Special Focus on A. ciliata subsp. bernensis, a Narrow Endemic of the Swiss Northern Alps. Plants, 11(24), 3489. https://doi.org/10.3390/plants11243489