Effect of Different Tillage Practices on Sunflower (Helianthus annuus) Cultivation in a Crop Rotation System with Intercropping Triticosecale-Pisum sativum
Abstract
:1. Introduction
2. Results
2.1. Meteorological Data
2.2. Plant Height
2.3. Leaf Area Index (LAI) and Specific Leaf Area (SLA)
2.4. Total Nitrogen Content in Plants
2.5. Protein Content
2.6. N-Uptake
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Soil Analyses
4.3. Field Experiment
4.4. Experimental Measurements
4.4.1. Plant Height
4.4.2. Leaf Area Index (LAI) and Specific Leaf Area (SLA)
4.4.3. Total Nitrogen and Proteins in Plants
4.4.4. N-Uptake
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernández-Martínez, J.M.; Pérez-Vich, B.; Velasco, L. Oil crops. In Handbook of Plant Breeding; Vollmann, J., Rajcan, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 4. [Google Scholar] [CrossRef]
- Mohammadi, K.; Heidari, G.; Javaheri, M.; Rokhzadi, A.; Nezhad, M.T.K.; Sohrabi, Y.; Talebi, R. Fertilization affects the agronomic traits of high oleic sunflower hybrid in different tillage systems. Ind. Crops Prod. 2012, 44, 446–451. [Google Scholar] [CrossRef]
- Meydani, S.N.; Lichtenstein, S.N.; White, P.J.; Goodnight, S.H.; Elson, C.E.; Woods, M.; Gorbach, S.L.; Schaefer, E.J. Food use and health effects of soybean and sunflower oils. J. Am. Coll. Nutr. 1991, 10, 406–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, P.; Ghalavand, A.; ModarresSanavy, A.M.; Alikhani, M.A. The effect of biofertilizers, nitrogen fertilizer and farmyard manure on grain yield and seed quality of sunflower (Helianthus annus L.). J. Agric. Technol. 2011, 7, 173–184. [Google Scholar]
- Coêlho, E.D.D.; Souza, A.R.E.D.; Lins, H.A.; Santos, M.G.D.; Freitas Souza, M.D.; Lima Tartaglia, D.; Oliveira, A.K.S.D.; Lopes, A.R.W.D.; Silveira, L.M.; Mendonça, V.; et al. Efficiency of Nitrogen use in Sunflower. Plants 2022, 11, 2390. [Google Scholar] [CrossRef]
- Blanco-Sepúlveda, R.; Enríquez-Narváez, F.; Lima, F. Effectiveness of conservation agriculture (tillage vs. vegetal soil cover) to reduce water erosion in maize cultivation (Zea mays L.): An experimental study in the sub-humid uplands of Guatemala. Geoderma 2021, 404, 115336. [Google Scholar] [CrossRef]
- Wolschick, N.H.; Bertol, I.; Barbosa, F.T.; Bagio, B.; Biasiolo, L.A. Remaining effect of long-term soil tillage on plant biomass yield and water erosion in a Cambisol after transition to no-tillage. Soil Tillage Res. 2021, 213, 105149. [Google Scholar] [CrossRef]
- Pittelkow, M.C.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Rodney, T.; Venterea, R.T.; et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Cavalli, M.; Masin, R. High-resolution morphologic characterization of conservation agriculture. Catena 2019, 172, 846–856. [Google Scholar] [CrossRef]
- Zubillaga, M.M.; Aristi, J.P.; Lavado, R.S. Effect of Phosporus and Nitrogen Fertilization on Sunflower (Helianthus annuus L.) Nitrogen Uptake and Yield. J. Agron. Crop Sci. 2002, 188, 267–274. [Google Scholar] [CrossRef]
- Rasool, K.; Wajid, A.; Ghaffar, A.; Shoaib, M.; Arshad, M.; Abbas, S. Optimizing nitrogen rate and planting density for sunflower under irrigated conditions of Punjab. SAARC J. Agric. 2015, 13, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Mujeeb-ul-Haq, M.; Hassan, M.; Ali, A.; Adnan, M.; Asif, M.; Hayyat, M.H.; Khan, B.A.; Amin, M.M.; Raza, A.; Nazeer, S.; et al. Influence of nitrogen application on phenology, growth and yield of sunflower (Helianthus annuus L.). Int. J. Biosci. 2020, 17, 9–16. [Google Scholar]
- Muhammad, I.A.; Amjed, A.; Liang, H.; Abdul, L. Nitrogen effects on sunflower growth: A review. Inter. J. Biosci. 2018, 12, 91–101. [Google Scholar] [CrossRef]
- Haugaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Interspecific competition, N use and interference with weeds in pea barley intercropping. Field Crops Res. 2001, 70, 101–109. [Google Scholar] [CrossRef]
- Miller, P.; Buschana, D.E.; Jones, C.A.; Holmes, J.A. Transition from Intensive Tillage to No-Tillage and Organic Diversified Annual Cropping Systems. Agron. J. 2008, 100, 591–599. [Google Scholar] [CrossRef]
- Babec, B.; Seremesic, S.; Hladni, N.; Terzic, S.; Vojnov, B.; Cuk, N.; Gvozdenac, S. Effect of intercropping sunflower with legumes on some sunflower morphological traits. Ratar. Povrt. 2020, 57, 61–67. [Google Scholar] [CrossRef]
- Skoufogianni, E.; Danalatos, N.G.; Dimoyiannis, D.; Efthimiadis, P. Effects of pea cultivation as cover crop on nitrogen-use efficiency and nitrogen uptake by subsequent maize and sunflower crops in a sandy soil in Central Greece. Comm. Soil Sci. Plant Anal. 2013, 44, 861–868. [Google Scholar] [CrossRef]
- Dang, Y.P.; Moody, P.W.; Bell, M.J.; Seymour, N.P.; Dalal, R.C.; Freebairn, D.M.; Walker, S.R. Strategic tillage in no-till farming systems in Australia’s northern grainsgrowing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res. 2015, 152, 115–123. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, L.D.C.M.D.; Melo, L.B.B.D.; Azevedo, R.P.; Araújo, B.C.L.; Carvalho, T.S.D.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in no-tillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 14887. [Google Scholar] [CrossRef]
- Carretta, L.; Tarolli, P.; Cardinali, A.; Nasta, P.; Romano, N.; Masin, R. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 2021, 197, 104972. [Google Scholar] [CrossRef]
- Sessiz, A.; Sogut, T.; Alp, A.; Esgici, R. Tillage effects on sunflower (Helianthus annuus L.) emergence, yield, quality, and fuel consumption in double cropping system. J. Cent. Eur. Agric. 2009, 9, 697–709. [Google Scholar]
- Mourad, A.K.; Nawar, I.A.; Khalil, E.H. Sunflower Growth Performance under Tillage or no Tillage Practice, Irrigation Intervals and Nitrogen Fertilization Rates. Alex. J. Agric. Sci. 2020, 65, 223–232. [Google Scholar] [CrossRef]
- Aboudrare, A.; Debaeke, P.; Bouaziz, A.; Chekli, H. Effects of soil tillage and fallow management on soil water storage and sunflower production in a semi—Arid Mediterranean climate. Agric. Water Manag. 2006, 83, 183–196. [Google Scholar] [CrossRef]
- Murillo, J.M.; Mereno, F.; Pelegrin, F.; Fernandez, J.E. Responses of sunflower to traditional and conservation tillage under rainfed conditions in Southern Spain. Soil Tillage Res. 1998, 49, 233–241. [Google Scholar] [CrossRef]
- Schneiner, J.D.; Gutierrez, F.H.; Lavado, S. Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina. Eur. J. Agron. 2002, 17, 73–79. [Google Scholar] [CrossRef]
- Eltarabily, M.G.; Burke, J.M.; Bali, K.M. Effect of Deficit irrigation on Nitrogen Uptake of Sunflower in the Low Desert Region of California. Water 2019, 11, 2340. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Bellido, R.; Lopez-Bellido, L.; Castillo, J.E.; Lopez-Bellido, F.J. Nitrogen uptake by sunflower as affected by tillage and soil residual nitrogen in a wheat-sunflower rotation under rainfed Mediterranean conditions. Soil Tillage Res. 2003, 72, 43–51. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Group UK Ltd.: London, UK, 1994. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 1119–1123. [Google Scholar]
Total Nitrogen, % | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 4.388 | c | 8.15 |
CTC-PAC | 4.251 | b | 3.22 |
NTC-PEC | 4.250 | b | 1.76 |
CTC-PEC | 4.153 | a | 6.15 |
LSD | 0.0263 |
Total Nitrogen, % | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 4.435 | c | 6.75 |
CTC-PAC | 4.320 | b | 2.25 |
NTC-PEC | 4.310 | b | 8.55 |
CTC-PEC | 4.175 | a | 4.31 |
LSD | 0.0245 |
Protein Content, % | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 27.43 | c | 8.15 |
CTC-PAC | 26.57 | b | 3.22 |
NTC-PEC | 26.56 | b | 1.76 |
CTC-PEC | 25.97 | a | 6.15 |
LSD | 0.1642 |
Protein Content, % | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 27.72 | c | 6.75 |
CTC-PAC | 27.00 | b | 2.25 |
NTC-PEC | 26.94 | b | 8.55 |
CTC-PEC | 26.09 | a | 4.31 |
LSD | 0.1523 |
N-Uptake, kg ha−1 | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 235 | c | 2.76 |
CTC-PAC | 222 | bc | 8.17 |
NTC-PEC | 210 | b | 6.55 |
CTC-PEC | 156 | a | 3.69 |
LSD | 6.4528 |
N-Utake, kg kg−1 | CV% | ||
---|---|---|---|
Treatment | Helianthus annuus | ||
NTC-PAC | 265 | c | 9.15 |
CTC-PAC | 231 | b | 2.45 |
NTC-PEC | 217 | b | 7.65 |
CTC-PEC | 192 | a | 4.55 |
LSD | 4.5947 |
Cultivation Year | pH | E.C. (μS cm−1) | CaCO3 | Organic Matter (%) | Total Nitrogen (%) | Olsen P (mg kg−1) | Exchangeable Κ (mg kg−1) | Sand (%) | Clay (%) | Silt (%) |
---|---|---|---|---|---|---|---|---|---|---|
2015 | 8.21 | 435 | 16.5 | 1.65 | 0.08 | 21.24 | 216.06 | 38.41 | 36.11 | 25.48 |
2016 | 8.1 | 454 | 15.6 | 1.6 | 0.085 | 6.8 | 198.5 | 39.63 | 36.5 | 23.88 |
LARISSA | ||
---|---|---|
2015 | 2016 | |
Incorporation date | 8 June 2015 | 25 May 2016 |
Date of sowing | 30 June 2015 | 12 June 2016 |
Date of flowering | 20 August 2015 | 10 August 2016 |
LAI—SLA measurement | 28 July 2015, 27 August 2015, 15 September 2015 | 18 July 2016, 16 August 2016, 4 September 2016 |
Date of harvest | 17 October 2015 | 16 October 2016 |
Treatments | 2015 | 2016 | ||||
---|---|---|---|---|---|---|
Yield | Total Nitrogen | N-Uptake | Yield | Total Nitrogen | N-Uptake | |
kg ha−1 | % | kg N ha−1 | kg N ha−1 | |||
NTC-PAC | 3030 c | 6.932 b | 93.71 c | 3240 d | 7.03 b | 101.57 d |
CTC-PAC | 2510 b | 7.619 c | 86.72 c | 2650 c | 7.59 c | 91.79 c |
NTC-PEC | 2280 a | 6.981 b | 66.76 b | 2410 b | 6.95 b | 71.31 b |
CTC-PEC | 2120 a | 6.146 a | 49.89 a | 2230 a | 6.04 a | 52.81 a |
LSD | 59.7 | 0.1312 | 3.07 | 4.43 | 0.077 | 2.242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molla, A.; Charvalas, G.; Dereka, M.; Skoufogianni, E. Effect of Different Tillage Practices on Sunflower (Helianthus annuus) Cultivation in a Crop Rotation System with Intercropping Triticosecale-Pisum sativum. Plants 2022, 11, 3500. https://doi.org/10.3390/plants11243500
Molla A, Charvalas G, Dereka M, Skoufogianni E. Effect of Different Tillage Practices on Sunflower (Helianthus annuus) Cultivation in a Crop Rotation System with Intercropping Triticosecale-Pisum sativum. Plants. 2022; 11(24):3500. https://doi.org/10.3390/plants11243500
Chicago/Turabian StyleMolla, Aikaterini, Georgios Charvalas, Maria Dereka, and Elpiniki Skoufogianni. 2022. "Effect of Different Tillage Practices on Sunflower (Helianthus annuus) Cultivation in a Crop Rotation System with Intercropping Triticosecale-Pisum sativum" Plants 11, no. 24: 3500. https://doi.org/10.3390/plants11243500
APA StyleMolla, A., Charvalas, G., Dereka, M., & Skoufogianni, E. (2022). Effect of Different Tillage Practices on Sunflower (Helianthus annuus) Cultivation in a Crop Rotation System with Intercropping Triticosecale-Pisum sativum. Plants, 11(24), 3500. https://doi.org/10.3390/plants11243500