Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity?
Abstract
:1. Introduction
2. Results
2.1. Climatic Data
2.2. Harvested Yield and Quality Characteristics
2.2.1. First Harvest (May)
2.2.2. Second Harvest (October)
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. Soil Characteristics
4.3. Experimental Design
4.4. Crop Management Practices
4.5. Yield Quality Characteristics Measures
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giannoulis, K.D.; Vlontzos, G.; Karyotis, T.; Bartzialis, D.; Danalatos, N.G. Economic Efficiency of Different Agricultural Practices of “Panicum virgatum L. (switchgrass)” for Fodder Production. J. Agric. Sci. 2013, 5, 132–144. [Google Scholar] [CrossRef]
- Allison, G.G.; Morris, C.; Lister, S.J.; Barraclough, T.; Yates, N.; Shield, I.; Donnison, I.S. Effect of nitrogen fertilizer application on cell wall composition in switchgrass and reed canary grass. Biomass Bioenergy 2012, 40, 19–26. [Google Scholar] [CrossRef]
- Keshwani, D.R.; Cheng, J.J. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 2009, 100, 1515–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemus, R.; Brummer, E.C.; Burras, C.L.; Moore, K.J.; Barker, M.F.; Molstad, N.E. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy 2008, 32, 1187–1194. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulou, E.; Zanetti, F.; Papazoglou, E.G.; Iordanoglou, K.; Monti, A. Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy 2020, 10, 923. [Google Scholar] [CrossRef]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C.; Mickelson, S.K. Nutrient and sediment removal by switchgrass and cool season grass filter strips in central Iowa, USA. Agroforest. Syst. 1998, 44, 121–132. [Google Scholar] [CrossRef]
- Mersie, W.; Seybold, C.; Tsegaye, T. Movement, adsorption and mineralization of atrazine in two soils with and without switchgrass (Panicum virgatum) roots. Eur. J. Soil Sci. 1998, 50, 343–349. [Google Scholar] [CrossRef]
- Adesanya, T.; Zvomuya, F.; Farenhorst, A. Phytoextraction of ciprofloxacin and sulfamethoxaxole by cattail and switchgrass. Chemosphere 2021, 279, 130534. [Google Scholar] [CrossRef]
- Jewett, J.G.; Schaeffer, C.C.; Moon, R.D.; Martin, N.P.; Barnes, D.K.; Breitbach, D.D.; Jordan, N.R. A survey of CRP land in Minnesota. I. Legume and grass persistence. J. Prod. Agric. 1996, 9, 528–534. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Danalatos, N.G. Switchgrass (Panicum virgatum L.) nutrients use efficiency and uptake characteristics, and biomass yield for solid biofuel production under Mediterranean conditions. Biomass Bioenergy 2014, 68, 24–31. [Google Scholar] [CrossRef]
- Schmer, M.R.; Liebig, M.A.; Vogel, K.P.; Mitchell, R. Field-scale soil property changes under switchgrass managed for bioenergy. GCB Bioenergy 2011, 3, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Kimura, E.; Fransen, S.C.; Collins, H.P.; Stanton, B.J.; Himes, A.; Smith, J.; Guy, S.O.; Johnston, W.J. Effect of intercropping hybrid poplar and switchgrass on biomass yield, forage quality, and land use efficiency for bioenergy production. Biomass Bioenergy 2018, 111, 31–38. [Google Scholar] [CrossRef]
- George, J.R.; Obermann, D. Spring defoliation to improve summer supply and quality of switchgrass. Agron. J. 1989, 81, 47–52. [Google Scholar] [CrossRef]
- Anderson, B.; Matches, A.G. Forage yield, quality, and persistence of switchgrass and Caucasian bluestem. Agron. J. 1983, 75, 119–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Whish, J.P.M.; Bell, L.W.; Nan, Z. Forage production, quality and water use—Efficiency of four warm-season annual crops at three sowing times in the Loess Plateau region of China. Eur. J. Agron. 2017, 84, 84–94. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, L.; Meng, H.; Sun, L.; Yan, J. Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl. Energy 2009, 86, S77–S85. [Google Scholar] [CrossRef]
- Ameen, A.; Tang, C.; Han, L.; Xie, G.H. Short-term response of switchgrass to nitrogen, phosphorus, and potassium on semiarid sandy wasteland managed for biofuel feedstock. Bioenergy Res. 2018, 11, 228–238. [Google Scholar] [CrossRef]
- Anderson, E.K.; Parrish, A.S.; Voigt, T.B.; Owens, V.N.; Hong, C.; Lee, D.K. Nitrogen fertility and harvest management of switchgrass for sustainable bioenergy feedstock production in Illinois. Ind. Crops Prod. 2013, 48, 19–27. [Google Scholar] [CrossRef]
- Guretzky, J.A.; Biermacher, J.T.; Cook, B.J.; Kering, M.K.; Mosali, J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 2011, 339, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Ameen, A.; Liu, J.; Han, L.; Xie, G.X. Effects of nitrogen rate and harvest time on biomass yield and nutrient cycling of switchgrass and soil nitrogen balance in a semiarid sandy wasteland. Ind. Crops Prod. 2019, 136, 1–10. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Martin, N.P.; Adler, P. Biomass, energy, and industrial uses of forages. In Forages. The Science of Grassland Agriculture; The Iowa State Univ. Press: Ames, IA, USA, 2007; Volume 2, pp. 635–647. [Google Scholar]
- Kusvuran, A.; Nazli, R.I.; Tansi, V.; Ozturk, H.H.; Budak, D.B. Evaluation of harvest time effects on the combustion quality of warm- and cool-season perennial grasses in two contrasting semi-arid environments. Ind. Crops Prod. 2022, 186, 115260. [Google Scholar] [CrossRef]
- Waramit, N.; Moore, K.J.; Fales, S.L. Forage quality of native warm-season grasses in response to nitrogen fertilization and harvest date. Anim. Feed Sci. Technol. 2012, 174, 46–59. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Karyotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, L.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS-Wagen. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Muir, A.I.; Chamberlain, L.; Elshourbagy, N.A.; Michalovich, D.; Moore, D.J.; Calamari, A.; Szekeres, P.G.; Sarau, H.M.; Chabers, J.K.; Murdock, P.; et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem. 2001, 276, 28969–28975. [Google Scholar] [CrossRef] [Green Version]
- Madakadze, I.C.; Radiotis, T.; Li, J.; Smith, D.L. Kraft pulping characteristics and pulp properties of warm season grasses. Bioresour. Technol. 1999, 69, 75–85. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Miao, Y.; Li, J.; Shi, L.; Xu, J.; Ye, Y.; Liu, C.; Yang, Z.; et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Res. 2008, 105, 48–55. [Google Scholar] [CrossRef]
- Vogel, K.P.; Brejda, J.J.; Walters, D.T.; Buxton, D.R. Switchgrass biomass production in the Midwest USA: Harvest and nitrogen management. Agron. J. 2002, 94, 413–420. [Google Scholar] [CrossRef]
- Bhatti, I.H.; Ahmad, R.; Jabbar, A.; Nadeem, M.; Khan, M.M.; Vains, S.N. Agronomic performance of mash bean as an intercrop in sesame under different planting patterns. Emir. J. Food Agric. 2013, 25, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Mndzebele, B.; Ncube, B.; Fessehazion, M.; Mabhaudhi, T.; Amoo, S.; du Plooy, C.; Venter, S.; Modi, A. Effects of Cowpea-Amaranth Intercropping and Fertiliser Application on Soil Phosphatase Activities, Available Soil Phosphorus, and Crop Growth Response. Agronomy 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Waktola, S.K. Intercropping soybean (Glycine max L. Merr.) at different population densities with maize (Zea mays L.) on yield component, yield and system productivity at Mizan Teferi, Ethiopia. J. Agric. Econ. Ext. Rural Dev. 2014, 1, 121–127. [Google Scholar]
- Eskandari, H.; Ghanbari, A.; Javanmard, A. Intercropping of cereals and legumes for forage production. Not. Sci. Biol. 2009, 1, 7–13. [Google Scholar] [CrossRef]
- Flores-Nájera, M.D.J.; Sánchez-Gutiérrez, R.A.; Echavarría-Cháirez, F.G.; Gutiérrez-Luna, R.; Rosales-Nieto, C.A.; Salinas-González, H. Producción y calidad de forraje en mezclas de veza común con cebada, avena y triticale en cuatro etapas fenológicas. Rev. Mex. Cienc. Pecu. 2016, 7, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Ambartsumova, K.A. Prospects for the Cultivation of Vicia sativa L. in Mixed Crops on Green Manure in Novgorod Region. IOP Conf. Ser. Earth Environ. Sci. 2021, 852, 012004. [Google Scholar] [CrossRef]
- Warwick, K.; Allen, F.L.; Keyser, P.D.; Ashworth, A.; Bates, G.E.; Tyler, D.D.; Lambdin, P.L.; Harper, C.A. Biomass and integrated forage/biomass yields of switchgrass as affected by intercropped cool- and warm-season legumes. J. Soil Water Conserv. 2016, 71, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Taranenko, A.; Kulyk, M.; Galytska, M.; Taranenko, S. Effect of cultivation technology on switchgrass (Panicum virgatum L.) productivity in marginal lands in Ukraine. Acta Agrobot. 2019, 72, 1786. [Google Scholar] [CrossRef]
- Hayden, J.K.; Smiley, R.A.; Alexander, M.; Kardong-Edgren, S.; Jeffries, P.R. The NCSBN national simulation study: A longitudinal, randomized, controlled study replacing clinical hours with simulation in prelicensure nursing education. J. Nurs. Regul. 2014, 5, S3–S40. [Google Scholar] [CrossRef]
- Giannoulis, K.; Bartzialis, D.; Skoufogianni, E.; Danalatos, N. Nutrients Use Efficiency and Uptake Characteristics of Panicum virgatum for Fodder Production. J. Agric. Sci. 2017, 9, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Erol, A.; Kaplan, M.; Kizilsimsek, M. Oats (Avena sativa)—Common vetch (Vicia sativa) mixtures grown on a low-input basis for a sustainable agriculture. Trop. Grassl. 2009, 43, 191–196. [Google Scholar]
- De Peters, E.J.; Medrano, J.F.; Bath, D.L. A Nutritional Evaluation of Mixed Winter Cereals with Vetch Utilized as Silage or Hay. J. Dairy Sci. 1989, 72, 3247–3254. [Google Scholar] [CrossRef]
- Jung, H.G. Forage Lignins and Their Effects on Fiber Digestibility. Agron. J. 1989, 81, 33–38. [Google Scholar] [CrossRef]
- Moore, K.J.; Jung, H.J.G. Lignin and fiber digestion. J. Range Manag. 2001, 54, 420–430. [Google Scholar] [CrossRef]
- Krause, A.D.; Lardner, H.A.; McKinnon, J.J.; Hendrick, S.; Larson, K.; Damiran, D. Comparison of grazing oat and pea crop residue versus feeding grass–legume hay on beef-cow performance, reproductive efficiency, and system cost. Prof. Anim. Sci. 2013, 29, 535–545. [Google Scholar] [CrossRef]
- Haj Ayed, M.; Gonzalez, J.; Caballero, R.; Remedios Alvir, M. Effects of maturity on nutritive value of field-cured hays from common vetch and hairy vetch. Anim. Res. 2001, 50, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Karsli, M.A.; Akdeniz, H.; Levendoǧlu, T.; Terzioǧlu, Ö. Evaluation of the nutrient content and protein fractions of four different common vetch varieties. Turk. J. Vet. Anim. Sci. 2005, 29, 1291–1297. [Google Scholar]
- Larbi, A.; Abd El-Moneim, A.M.; Nakkoul, H.; Jammal, B.; Hassan, S. Intraspecies variations in yield and quality determinants in Vicia species: 3 common vetch (Vicia sativa ssp. sativa L.). Anim. Feed Sci. Technol. 2011, 164, 241–251. [Google Scholar] [CrossRef]
- Kumar, R.; Lardner, H.A.; Christensen, D.A.; McKinnon, J.J.; Damiran, D.; Larson. K. Comparison of alternative backgrounding systems on beef calf performance, feedlot finishing performance, carcass traits and system cost of gain. Prof. Anim. Sci. 2012, 28, 541–551. [Google Scholar] [CrossRef]
- Baron, V.S.; Dick, A.C.; McCartney, D.H.; Okine, E.K. Carrying capacity, utilization and weathering of swathed whole plant barley. Agron. J. 2006, 98, 714–721. [Google Scholar] [CrossRef]
- McCartney, D.; Okine, E.K.; Baron, V.S.; Depalme, A.J. Alternative fall and winter feeding systems for spring calving beef cows. Can. J. Anim. Sci. 2004, 84, 511–522. [Google Scholar] [CrossRef]
- Mackay, W.S.; Whittier, J.C.; Couch, D.; Schutz, D.N. Interseeding triticale with windrowed millet as a winter feeding program for developing heifers. Proc. West. Sec. Am. Soc. Anim. Sci. 2003, 54, 238–240. [Google Scholar]
- Sastre, C.M.; Maletta, E.; González-Arechavala, H.; Ciria, P.; Santos, A.M.; del Val, A.; Pérez, P.; Carrasco, J. Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments. Appl. Energy 2014, 114, 737–748. [Google Scholar] [CrossRef]
- Abbeddou, S.; Rihawi, S.; Hess, H.D.; Iniguez, L.; Mayer, A.C.; Kreuzer, M. Nutritional composition of lentil straw, vetch hay, olive leaves, and saltbush leaves and their digestibility as measured in fat-tailed sheep. Small Rumin. Res. 2011, 96, 126–135. [Google Scholar] [CrossRef]
- Vadiveloo, J. Nutritional properties of the leaf and stem of rice straw. Anim. Feed Sci. Technol. 2000, 83, 57–65. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Abdelraheem, N.; Li, F.; Guo, P.; Sun, Y.; Liu, Y.; Cheng, Y.; Hou, F. Oat hay as winter feed improves digestibility, nitrogen balance and energy utilization of Tibetan sheep (Ovis aries) in the Qinghai Tibetan Plateau. Livest. Sci. 2019, 230, 103854. [Google Scholar] [CrossRef]
- Mahmood, A.; Ullah, H.; Ijaz, M.; Javaid, M.M.; Shahzad, A.N.; Honermeier, B. Evaluation of sorghum hybrids for biomass and biogas production. Aust. J. Crop Sci. 2013, 7, 1456–1462. [Google Scholar]
- Filya, I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim. Feed Sci. Technol. 2004, 116, 141–150. [Google Scholar] [CrossRef]
- Da Silva Inácio, F.D.; de Rezende, C.A.S.; Silva, R.H.P.; Melo, M.M.; de Jesus Mendes, L.; Maruch, S.; da Costa Barcelos, K.; Lana, Â.Q.; Ralston, S.L. The use of sorghum silage in feeding weanling horses: Body development. Livest. Sci. 2018, 215, 46–48. [Google Scholar] [CrossRef]
- USDA (Soil Survey Staff). Soil Taxonomy. Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agricultural Handbook; USDA: Washington, DC, USA, 1975; Volume 466, p. 754. [Google Scholar]
- Sutradhar, A.K.; Miller, E.C.; Arnall, D.B.; Dunn, B.L.; Girma, K.; Raun, W.R. Switchgrass forage yield and biofuel quality with no-tillage interseeded winter legumes in the southern Great Plains. J. Plant Nutr. 2017, 40, 2382–2391. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 805. [Google Scholar] [CrossRef]
- Parissi, Z.; Irakli, M.; Tigka, E.; Papastylianou, P.; Dordas, C.; Tani, E.; Abraham, E.M.; Theodoropoulos, A.; Kargiotidou, A.; Kougiteas, L.; et al. Analysis of Genotypic and Environmental Effects on Biomass Yield, Nutritional and Antinutritional Factors in Common Vetch. Agronomy 2022, 12, 1678. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. In A Biometrical Approach, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1982; Volume 633. [Google Scholar]
Variables | Dry Weight (kg ha−1) | ||
---|---|---|---|
Treatments | 2019 | 2020 | |
Cover Crops | Switchgrass (S) | 1180 | 2560 |
Vetch (V) | 3770 | 7040 | |
Pea (P) | 4130 | 7690 | |
LSD.05 | 770 | 2909 | |
N-P-K (kg ha−1) | 0 | 2830 | 5500 |
40-40-40 | 2990 | 6270 | |
80-80-80 | 3260 | 5520 | |
LSD.05 | ns | ns | |
Interaction | S0 | 1170 | 2280 |
S40-40-40 | 1290 | 2480 | |
S80-80-80 | 1080 | 2920 | |
V0 | 3080 | 7080 | |
V40-40-40 | 3550 | 6830 | |
V80-80-80 | 4680 | 7210 | |
P0 | 4240 | 7140 | |
P40-40-40 | 4140 | 9490 | |
P80-80-80 | 4020 | 6430 | |
LSD.05 | ns | ns | |
CV (%) | 24.0 | 22.3 |
Variables | Protein | Ash | NDF | ADF | Crude Fiber | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Cover Crops | Switchgrass (S) | 5.30 | 5.17 | 5.19 | 4.68 | 48.10 | 47.65 | 27.99 | 28.22 | 32.01 | 32,12 |
Vetch (V) | 12.69 | 12.21 | 7.33 | 4.85 | 47.21 | 48.72 | 26.64 | 28.85 | 28.13 | 34.53 | |
Pea (P) | 11.86 | 13.73 | 6.60 | 4.32 | 44.97 | 48.02 | 25.19 | 28.43 | 29.30 | 35.86 | |
LSD.05 | 1.523 | 2.541 | 0.652 | ns | 2.321 | ns | 1.705 | ns | 2.452 | 2.423 | |
N-P-K (kg ha−1) | 0 | 9.59 | 9.89 | 6.38 | 4.5 | 47.30 | 48.03 | 27.03 | 28.43 | 30.13 | 34,71 |
40-40-40 | 9.89 | 10.82 | 6.27 | 4.66 | 46.45 | 47.01 | 26.40 | 28.23 | 29.89 | 33,91 | |
80-80-80 | 10.36 | 10.40 | 6.47 | 4.69 | 46.52 | 48.55 | 26.39 | 28.85 | 29.42 | 34,28 | |
LSD.05 | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | |
Interaction | S0 | 5.67 | 5.14 | 5.35 | 4.66 | 48.53 | 48.14 | 28.26 | 28.59 | 32.12 | 33.26 |
S40-40-40 | 5.45 | 5.34 | 5.23 | 4.69 | 48.30 | 46.72 | 28.12 | 27.5 | 32.43 | 30.87 | |
S80-80-80 | 4.77 | 5.02 | 4.99 | 4.7 | 47.48 | 48.1 | 27.59 | 28.58 | 31.47 | 32.22 | |
V0 | 11.89 | 10.95 | 7.27 | 4.79 | 47.93 | 49.17 | 27.18 | 29.2 | 29.07 | 34.99 | |
V40-40-40 | 12.45 | 12.87 | 7.00 | 4.85 | 45.54 | 48.36 | 25.50 | 28.52 | 27.17 | 35.21 | |
V80-80-80 | 13.72 | 12.80 | 7.70 | 4.91 | 48.17 | 48.62 | 27.24 | 28.84 | 28.14 | 34.58 | |
P0 | 11.22 | 13.57 | 6.52 | 4.04 | 45.45 | 46.78 | 25.64 | 27.52 | 29.20 | 35.89 | |
P40-40-40 | 11.76 | 14.23 | 6.58 | 4.44 | 45.52 | 48.35 | 25.58 | 28.66 | 30.05 | 35.65 | |
P80-80-80 | 12.60 | 13.39 | 6.71 | 4.48 | 43.92 | 48.94 | 24.34 | 29.12 | 28.64 | 36.03 | |
LSD.05 | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | |
CV (%) | 11.8 | 12.8 | 10.2 | 5.1 | 4.2 | 2.7 | 5.2 | 3.5 | 3.8 | 4.9 |
Variables | Dry Weight kg ha−1 | ||
---|---|---|---|
Treatments | 2019 | 2020 | |
Cover Crops | Switchgrass (S) | 4380 | 2850 |
Vetch (V) | 6080 | 4340 | |
Pea (P) | 7210 | 5400 | |
LSD.05 | ns | 677 | |
Nitrogen (kg ha−1) | 0 | 3980 | 3880 |
50 | 5530 | 4350 | |
100 | 8160 | 4360 | |
LSD.05 | 1769 | ns | |
Interaction | S0 | 3390 | 2590 |
S50 | 4900 | 2500 | |
S100 | 4850 | 3470 | |
V0 | 4240 | 4280 | |
V50 | 5770 | 3870 | |
V100 | 8210 | 4850 | |
P0 | 4310 | 4760 | |
P50 | 5920 | 6670 | |
P100 | 11,410 | 4770 | |
LSD.05 | ns | ns | |
CV (%) | 29.2 | 32.7 |
Variables | Protein | Ash | NDF | ADF | Crude Fiber | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Cover Crops | Switchgrass (S) | 5.03 | 5.50 | 4.23 | 8.01 | 50.47 | 60.06 | 29.76 | 38.88 | 34.27 | 28.44 |
Vetch (V) | 5.15 | 6.47 | 4.22 | 7.64 | 51.10 | 59.60 | 30.29 | 39.04 | 35.38 | 29.37 | |
Pea (P) | 5.04 | 5.30 | 4.19 | 7.40 | 51.55 | 60.05 | 30.59 | 39.55 | 35.69 | 30.04 | |
LSD.05 | ns | ns | ns | 0.460 | ns | ns | ns | ns | ns | 1.34 | |
Nitrogen (kg ha−1) | 0 | 5.05 | 5.43 | 4.14 | 7.54 | 49.68 | 59.54 | 29.17 | 39.27 | 34.15 | 29.41 |
50 | 5.09 | 6.02 | 4.24 | 8.00 | 50.97 | 60.41 | 30.18 | 38.96 | 35.05 | 29.01 | |
100 | 5.08 | 5.82 | 4.27 | 7.51 | 52.47 | 59.76 | 31.30 | 39.77 | 36.13 | 29.44 | |
LSD.05 | ns | ns | ns | 0.486 | 1.385 | ns | 1.769 | ns | 1.116 | 1.579 | |
Interaction | S0 | 5.04 | 5.17 | 4.26 | 7.60 | 49.74 | 58.89 | 29.17 | 38.58 | 33.41 | 29.11 |
S50 | 5.14 | 6.25 | 4.26 | 8.79 | 49.97 | 60.68 | 29.39 | 38.29 | 33.82 | 28.29 | |
S100 | 4.90 | 5.09 | 4.18 | 7.65 | 51.70 | 60.61 | 30.73 | 39.77 | 35.57 | 27.93 | |
V0 | 5.10 | 5.86 | 4.23 | 7.46 | 50.29 | 59.77 | 29.67 | 39.34 | 34.63 | 29.81 | |
V50 | 5.27 | 7.62 | 4.31 | 7.91 | 50.97 | 59.05 | 30.21 | 38.30 | 35.02 | 28.61 | |
V100 | 5.07 | 5.92 | 4.13 | 7.66 | 52.03 | 59.98 | 31.01 | 39.49 | 36.49 | 29.68 | |
P0 | 5.01 | 5.28 | 3.92 | 7.57 | 49.00 | 59.97 | 28.67 | 39.89 | 34.40 | 29.30 | |
P50 | 4.85 | 4.18 | 4.16 | 7.41 | 51.97 | 61.50 | 30.95 | 40.29 | 36.32 | 30.12 | |
P100 | 5.26 | 6.44 | 4.50 | 7.22 | 53.69 | 58.69 | 32.16 | 38.46 | 36.34 | 30.70 | |
LSD.05 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
CV (%) | 7.9 | 27.3 | 6.0 | 6.2 | 2.6 | 3.3 | 3.3 | 3.4 | 3.1 | 5.2 |
pH | Composition | Organic Matter % | Bulk Density | Cation Exchange Capacity cmol kg−1 | C/N | |||
---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | ||||||
0–30 cm | 7.6 | 26.8 | 31.3 | 41.9 | 2.91 | 1.27 | 8 | 8.8 |
30–60 cm | 7.9 | 25.9 | 30.9 | 43.1 | 1.86 | 1.27 | 4 | 8.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoulis, K.D.; Bartzialis, D.; Skoufogianni, E.; Gintsioudis, I.; Danalatos, N.G. Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity? Plants 2022, 11, 2970. https://doi.org/10.3390/plants11212970
Giannoulis KD, Bartzialis D, Skoufogianni E, Gintsioudis I, Danalatos NG. Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity? Plants. 2022; 11(21):2970. https://doi.org/10.3390/plants11212970
Chicago/Turabian StyleGiannoulis, Kyriakos D., Dimitrios Bartzialis, Elpiniki Skoufogianni, Ippolitos Gintsioudis, and Nicholaos G. Danalatos. 2022. "Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity?" Plants 11, no. 21: 2970. https://doi.org/10.3390/plants11212970
APA StyleGiannoulis, K. D., Bartzialis, D., Skoufogianni, E., Gintsioudis, I., & Danalatos, N. G. (2022). Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity? Plants, 11(21), 2970. https://doi.org/10.3390/plants11212970