Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador
Abstract
:1. Introduction
2. Results
2.1. EO from Leaves of K. longipetiolata
2.1.1. Chemical Analysis
N. | Compounds | 5%-Phenyl-Methylpolysiloxane | Polyethylene Glycol | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LRI a | LRI b | % | σ | LRI c | LRI | Reference | % | σ | ||
1 | α-pinene | 925 | 932 | 0.3 | 0.01 | 1018 | 1025 | [25] | 1.1 | 0.99 |
2 | sabinene | 963 | 969 | Trace | - | 1119 | 1122 | [25] | Trace | - |
3 | β-pinene | 968 | 974 | Trace | - | 1108 | 1110 | [25] | 0.1 | 0.01 |
4 | dehydro-1.8-cineole | 986 | 988 | 0.2 | 0.10 | 1188 | 1187 | [26] | 0.1 | 0.01 |
5 | δ-2-carene | 995 | 1001 | 0.2 | 0.07 | 1128 | 1133 | [25] | 0.2 | 0.01 |
6 | α-phellandrene | 1003 | 1002 | 0.2 | 0.01 | 1162 | 1167 | [25] | 0.2 | 0.14 |
7 | p-cymene | 1020 | 1020 | 0.3 | 0.15 | 1270 | 1270 | [25] | 0.3 | 0.20 |
8 | limonene | 1024 | 1024 | Trace | - | 1198 | 1198 | [25] | Trace | - |
9 | β-phellandrene | 1043 | 1025 | Trace | - | 1207 | 1209 | [25] | Trace | - |
10 | (E)-β-ocimene | 1052 | 1044 | Trace | - | 1253 | 1250 | [25] | Trace | - |
11 | terpinolene | 1080 | 1086 | Trace | - | 1281 | 1282 | [25] | 0.1 | 0.01 |
12 | α-gurjunene | - | - | - | - | 1519 | 1529 | [25] | Trace | - |
13 | linalool | 1104 | 1095 | 0.1 | 0.01 | 1553 | 1543 | [25] | 0.2 | 0.06 |
14 | terpinen-4-ol | 1177 | 1174 | 0.2 | 0.06 | 1601 | 1601 | [25] | Trace | - |
15 | coahuilensol, methyl ether | 1218 | 1219 | 0.4 | 0.18 | 1674 | - | - | 0.1 | 0.05 |
16 | thymol, methyl ether | 1228 | 1232 | Trace | - | 1596 | 1587 | [25] | 0.2 | 0.01 |
17 | carvacrol, methyl ether | 1236 | 1241 | Trace | - | 1607 | 1599 | [25] | 0.1 | 0.01 |
18 | thymol | 1292 | 1289 | 0.4 | 0.13 | 2179 | 2164 | [25] | 1.6 | 0.48 |
19 | carvacrol | 1300 | 1298 | 0.7 | 0.30 | 2195 | 2210 | [25] | 1.2 | 0.46 |
20 | α-copaene | 1363 | 1374 | Trace | - | 1482 | 1491 | [25] | Trace | - |
21 | 2-epi-α-funebrene | 1380 | 1380 | 0.2 | 0.08 | 1533 | - | - | 0.2 | 0.08 |
22 | sesquithujene | 1396 | 1405 | Trace | - | 1563 | 1560 | [27] | 0.2 | 0.06 |
23 | (Z)-β-caryophyllene (4) | 1405 | 1408 | 3.0 | 0.55 | 1585 | 1588 | [25] | 3.1 | 0.26 |
24 | α-trans-bergamotene | 1425 | 1432 | 0.2 | 0.10 | 1579 | 1575 | [25] | 0.2 | 0.08 |
25 | alloaromadendrene | 1433 | 1432 d | Trace | - | 1651 | 1649 | [25] | 0.1 | 0.01 |
26 | α-humulene | 1440 | 1452 | 0.9 | 0.26 | 1658 | 1667 | [25] | 0.9 | 0.28 |
27 | (E)-β-farnesene | 1452 | 1454 | 0.2 | 0.12 | 1669 | 1664 | [25] | 0.2 | 0.10 |
28 | germacrene D | 1466 | 1481 | 0.9 | 0.57 | 1698 | 1708 | [25] | 1.4 | 0.36 |
29 | γ-curcumene | 1471 | 1481 | 0.3 | 0.13 | 1687 | 1692 | [25] | 0.3 | 0.17 |
30 | α-selinene | - | - | - | - | 1710 | 1725 | [25] | 0.1 | 0.01 |
31 | ar-curcumene (2) | 1477 | 1479 | 17.3 | 5.31 | 1772 | 1773 | [25] | 18.1 | 4.95 |
32 | 10-epi-β-acoradiene | 1481 | 1474 | 0.4 | 0.08 | 1722 | - | - | 0.2 | 0.05 |
33 | α-zingiberene (1) | 1491 | 1493 | 19.7 | 11.36 | 1718 | 1721 | [25] | 19.1 | 7.68 |
34 | sesquicineole | 1505 | 1515 | 0.5 | 0.19 | 1736 | 1733 | [28] | 0.7 | 0.29 |
35 | δ-cadinene | 1507 | 1522 | 0.4 | 0.11 | 1750 | 1756 | [25] | 0.4 | 0.18 |
36 | β-curcumene | 1510 | 1514 | 0.2 | 0.05 | 1724 | 1737 | [25] | Trace | - |
37 | β-sesquiphellandrene | 1516 | 1521 | 0.3 | 0.17 | 1764 | 1771 | [25] | 0.3 | 0.15 |
38 | γ-cuprenene | 1538 | 1532 | 0.3 | 0.14 | - | - | - | - | - |
39 | cis-sesquisabinene hydrate | 1549 | 1542 | 0.2 | 0.08 | 2112 | 2110 | [29] | 1.5 | 0.38 |
40 | (E)-nerolidol | 1560 | 1561 | 1.0 | 0.21 | 2048 | 2036 | [25] | 1.2 | 0.40 |
41 | Spathulenol (6) | 1564 | 1577 | 2.0 | 0.99 | 2117 | 2127 | [25] | 2.1 | 1.03 |
42 | (E)-β-ionone | - | - | - | - | 1934 | 1936 | [25] | 0.3 | 0.15 |
43 | caryophyllene oxide (3) | 1566 | 1558 | 5.3 | 2.55 | 1969 | 1966 | [30] | 5.1 | 2.34 |
44 | ar-turmerol | 1574 | 1582 | 0.5 | 0.15 | 2212 | 2214 | [31] | 0.6 | 0.24 |
45 | salvial-4(14)-en-1-one | 1578 | 1594 | 0.7 | 0.00 | 1995 | 1995 | [32] | 0.5 | 0.14 |
46 | humulene epoxide II | 1593 | 1608 | 1.0 | 0.51 | 2025 | 2026 | [29] | 1.3 | 0.65 |
47 | α-acorenol | 1616 | 1632 | 0.3 | 0.05 | 2169 | 2163 | [25] | 0.1 | 0.06 |
48 | isospathulenol | - | - | - | - | 2224 | 2230 | [25] | 0.3 | 0.06 |
49 | β-atlantol | 1619 | 1608 | 0.3 | 0.13 | 2229 | - | - | 1.0 | 0.32 |
50 | gossonorol | 1632 | 1636 | 0.8 | 0.22 | 2308 | 2312 | [33] | 1.2 | 0.38 |
51 | epi-α-muurolol | 1643 | 1640 | 1.0 | 0.37 | 2143 | 2153 | [34] | 0.2 | 0.08 |
52 | 14-hydroxy-9-epi-(E)-caryophyllene | 1659 | 1668 | 0.4 | 0.07 | 1962 | - | - | 0.6 | 0.44 |
53 | epi-β-bisabolol | 1662 | 1670 | 0.6 | 0.25 | 2149 | 2150 | [35] | 0.7 | 0.19 |
54 | khusinol | 1671 | 1679 | 0.4 | 0.16 | 2290 | - | - | 0.8 | 0.44 |
55 | eudesma-4(15),7-dien-1β-ol | 1676 | 1687 | 0.8 | 0.31 | 2357 | 2371 | [25] | 1.0 | 1.00 |
56 | epi-α-bisabolol | 1677 | 1683 | 0.2 | 0.10 | 2217 | 2214 | [25] | 0.4 | 0.08 |
57 | α-bisabolol | 1680 | 1685 | 1.1 | 0.50 | 2220 | 2213 | [25] | 0.2 | 0.05 |
58 | (2Z,6Z)-farnesal (5) | 1686 | 1684 | 2.6 | 0.44 | 2270 | - | - | 3.6 | 2.03 |
59 | γ- costol | - | - | - | - | 2516 | - | - | 0.3 | 0.13 |
60 | curcuphenol | 1716 | 1717 | 0.7 | 0.29 | 2617 | - | - | 0.8 | 0.49 |
61 | cryptomerione | 1730 | 1724 | 0.3 | 0.15 | 2480 | - | - | 0.6 | 0.23 |
62 | (6R,7R)-bisabolone | 1737 | 1740 | 0.4 | 0.22 | 2297 | - | - | 0.2 | 0.09 |
63 | xanthorrhizol | 1748 | 1751 | 1.2 | 0.36 | 2678 | 2674 | [32] | 1.5 | 0.30 |
64 | β-costol | 1756 | 1765 | 0.5 | 0.22 | 2578 | - | - | 0.5 | 0.25 |
65 | α-costol | 1761 | 1773 | 0.4 | 0.17 | 2574 | - | - | 0.4 | 0.18 |
66 | (Z)-nuciferol acetate | 1821 | 1830 | 0.2 | 0.07 | 2337 | - | - | 1.1 | 0.45 |
67 | Unidentified (MW 232) | 1882 | - | 5.2 | 1.30 | 2714 | - | - | 4.8 | 0.99 |
68 | Unidentified (mixture) | 1897 | - | 0.6 | 0.38 | 2794 | - | - | 0.5 | 0.18 |
69 | Unidentified (MW 230) | 1925 | - | 9.0 | 4.51 | 2831 | - | - | 7.3 | 1.84 |
70 | palmitic acid | 1972 | 1971 e | 2.3 | 2.15 | 2844 | - | - | - | - |
71 | phytol | 2111 | 2103 f | 0.3 | 0.10 | 2597 | 2603 | [36] | 0.8 | 0.46 |
72 | sempervirol | 2285 | 2282 | Trace | - | - | - | - | Trace | - |
Monoterpene hydrocarbons | 1.0 | 2.0 | ||||||||
Oxygenated monoterpenes | 1.9 | 3.5 | ||||||||
Sesquiterpene hydrocarbons | 44.3 | 44.8 | ||||||||
Oxygenated sesquiterpenes | 37.6 | 40.0 | ||||||||
Others | 2.7 | 2.2 | ||||||||
Total identified | 87.5 | 92.5 |
2.1.2. Enantioselective GC Analysis
2.2. Non-Volatile Metabolites from Leaves of K. longipetiolata
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Distillation of the EO
4.3. Extract Preparation
4.4. Determination of Chemical Compositions
4.4.1. GC-MS and GC-FID Analyses
4.4.2. Enantioselective GC Analysis
4.4.3. Metabolite Purification and NMR Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef]
- Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 18 July 2022).
- Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Vita Finzi, P.; Zanoni, G.; Vidari, G. New Anthracene Derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905. [Google Scholar] [CrossRef]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; De Mendonça, S.; Oliveira, L.F.S.; Martin-Calero, M.J.; Vidari, G. Anti-secretory, Anti-inflammatory, and Anti-Helicobacter pylori Activities of Several Fractions Isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583. [Google Scholar]
- Gilardoni, G.; Tosi, S.; Mellerio, G.; Maldonado, M.E.; Chiriboga, X.; Vidari, G. Lipophilic Components from the Ecuadorian Plant Schistocarpha eupatorioides. Nat. Prod. Commun. 2011, 6, 767. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, G.; Malagon, O.; Morocho, V.; Negri, R.; Tosi, S.; Guglielminetti, M.; Vidari, G.; Vita Finzi, P. Phytochemical Research and Antimicrobial Activity of Clinopodium nubigenum Kunth (Kuntze) Raw Extracts. Rev. Bras. Farmacogn. 2011, 21, 850. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-Secocycloartane and 3,4-Secodammarane Triterpenes from the Ecuadorian Plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946. [Google Scholar] [CrossRef]
- Herrera, C.; Pérez, Y.; Morocho, V.; Armijos, C.; Malagón, O.; Brito, B.; Tacán, M.; Cartuche, L.; Gilardoni, G. Preliminary Phytochemical Study of the Ecuadorian Plant Croton elegans Kunth. (Euphorbiaceae). J. Chil. Chem. Soc. 2018, 63, 3788. [Google Scholar] [CrossRef] [Green Version]
- Morocho, V.; Valarezo, L.P.; Tapia, D.A.; Cartuche, L.; Cumbicus, N.; Gilardoni, G. A Rare Dirhamnosyl Flavonoid and Other Radical-scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem. Biodivers. 2021, 16, e2100260. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants 2021, 10, 2171. [Google Scholar] [CrossRef]
- Calvopiña, K.; Malagón, O.; Capetti, F.; Sgorbini, B.; Verdugo, V.; Gilardoni, G. A New Sesquiterpene Essential Oil from the Native Andean Species Jungia rugosa Less (Asteraceae): Chemical Analysis, Enantiomeric Evaluation, and Cholinergic Activity. Plants 2021, 10, 2102. [Google Scholar] [CrossRef]
- Ramírez, J.; Andrade, M.D.; Vidari, G.; Gilardoni, G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramírez, J.; Sgorbini, B.; Bicchi, C.; Cumbicus, N.; Gilardoni, G. A Novel Chemical Profile of a Selective In Vitro Cholinergic Essential Oil from Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), a Native Andean Species of Ecuador. Molecules 2021, 26, 45. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef]
- Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. [Google Scholar] [CrossRef]
- Bohlmann, F.; Kramp, W.; Gupta, R.K.; King, R.M.; Robinson, H. Four Guaianolides and Other Constituents from Three Kaunia Species. Phytochemistry 1981, 20, 2375. [Google Scholar] [CrossRef]
- Bohlmann, F.; Trinks, C.; Jakupovic, J.; King, R.M.; Robinson, H. A Further Guaianolide from Kaunia arbuscularis. Planta Med. 1984, 50, 284. [Google Scholar] [CrossRef] [Green Version]
- De Gutierrez, A.N.; Sigstad, E.E.; Catalán, C.A.N.; Gutierrez, A.B.; Herz, W. Guaianolides from Kaunia lasiophthalma. Phytochemistry 1990, 29, 1219. [Google Scholar] [CrossRef]
- Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; p. 291. [Google Scholar]
- Viera Barreto, J.N.; Sancho, G. Taxonomic revision of Kaunia (Eupatorieae, Asteraceae), an Andean genus with presence in eastern South America. Ann. Mo. Bot. Gard. 2019, 104, 664–703. [Google Scholar] [CrossRef] [Green Version]
- Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org (accessed on 18 July 2022).
- WFO The World Flora Online. Available online: www.worldfloraonline.org (accessed on 5 September 2022).
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Blanc, M.C.; Muselli, A.; Bradesi, P.; Casanova, J. Chemical composition and variability of the essential oil of Inula graveolens from Corsica. Flavour Fragr. J. 2004, 19, 314. [Google Scholar] [CrossRef]
- Ngassoum, M.B.; Yonkeu, S.; Jirovetz, L.; Buchbauer, G.; Schmaus, G.; Hammerschmidt, F.J. Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar. Flavour Fragr. J. 1999, 14, 245. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Tomi, F.; Bernardini, A.F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532. [Google Scholar] [CrossRef]
- Lopez-Arze, J.B.; Collin, G.; Garneau, F.X.; Jean, F.I.; Gagnon, H. Essential Oils from Bolivia II. Asteraceae: Ophryosporus heptanthus (Wedd.) H. Rob. et King. J. Essent. Oil Res. 2004, 16, 374. [Google Scholar] [CrossRef]
- Flamini, G.; Tebano, M.; Cioni, P.L.; Bagci, Y.; Dural, H.; Ertugrul, K.; Uysal, T.; Savran, A. A multivariate statistical approach to Centaurea classification using essential oil composition data of some species from Turkey. Plant Syst. Evol. 2006, 261, 217. [Google Scholar] [CrossRef]
- Tabanca, N.; Kirimer, N.; Demirci, B.; Demirci, F.; Can-Başer, K.H. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food Chem. 2001, 49, 4300. [Google Scholar] [CrossRef]
- Polini, J.; Tomi, P.; Bernardini, A.F.; Bradesi, P.; Casanova, J.; Kaloustian, J. Detailed analysis of the essential oil from Cistus albidus L. by combination of GC/RI, GC/MS and 13C-NMR spectroscopy. Nat. Prod. Res. 2008, 22, 1270. [Google Scholar] [CrossRef]
- Sylvestre, M.; Pichette, A.; Longtin, A.; Nagau, F.; Legault, J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J. Ethnopharmacol. 2006, 103, 99. [Google Scholar] [CrossRef]
- Mondello, L.; Zappia, G.; Cotroneo, A.; Bonaccorsi, I.; Chowdhury, J.U.; Yusuf, M.; Dugo, G. Studies on the essential oil-bearing plants of Bangladesh. Part VIII. Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. Flavour Fragr. J. 2002, 17, 335. [Google Scholar] [CrossRef]
- Bisio, A.; Ciarallo, G.; Romussi, G.; Fontana, N.; Mascolo, N.; Capasso, R.; Biscardi, D. Chemical Composition of Essential Oils from some Salvia species. Phytother. Res. 1998, 12, s117. [Google Scholar] [CrossRef]
- Boussaada, O.; Ammar, S.; Saidana, D.; Chriaa, J.; Chraif, I.; Daami, M.; Helal, A.N.; Mighri, Z. Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiol. Res. 2008, 163, 87. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas. Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Marongiu, B.; Piras, A.; Porcedda, S.; Scorciapino, A. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J. Agric. Food Chem. 2005, 53, 7939. [Google Scholar] [CrossRef]
- Kukić, J.; Petrović, S.; Pavlović, M.; Couladis, M.; Tzakou, O.; Niketić, M. Composition of essential oil of Stachys alpina L. ssp. dinarica Murb. Flavour Fragr. J. 2006, 21, 539. [Google Scholar] [CrossRef]
- Zheng, C.; Kim, T.; Kim, K.; Leem, Y.; Lee, H. Characterization of potent aroma compounds in Chrysanthemum coronarium L. (Garland) using aroma extract dilution analysis. Flavour Fragr. J. 2004, 19, 401. [Google Scholar] [CrossRef]
- Irwin, M.A.; Geismann, T.A. Novanin: A germacranolide from Artemisia nova. Phytochemistry 1973, 12, 875. [Google Scholar] [CrossRef]
- Huneck, S.; Zdero, C.; Bohlmann, F. Seco-guaianolides and other constituents from Artemisia species. Phytochemistry 1986, 25, 883. [Google Scholar] [CrossRef]
- Jakupovic, L.; Chau-Thi, T.V.; Warning, U.; Bohlmann, F.; Greger, H. 11β,13-Dihydroguaianolides from Artemisia douglasiana and a thiophene acetylene from A. schmidtiana. Phytochemistry 1986, 25, 1663. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Bermejo Barrera, J.; Diaz, J.G.; Zaragoza Garcia, T.; de Paz, P.P. Distribution of Acetylenes and Sesquiterpene Lactones in Argyranthemum from Tenerife. Biochem. Syst. Ecol. 1988, 16, 17. [Google Scholar] [CrossRef]
- Sy, L.K.; Brown, G.D. Oxygenated Bisabolanes from Alpinia densibracteata. Phytochemistry 1997, 45, 537. [Google Scholar]
- Khajuria, R.K.; Suri, K.A.; Suri, O.M.; Atal, C.K. 3,5,4′-Trihydroxy-6,7-dimethoxyflavone-3-glucoside from Sesuvium portulacastrum. Phytochemistry 1982, 21, 1179. [Google Scholar] [CrossRef]
- Wald, B.; Wray, V.; Galensa, R.; Herrmann, K. Malonated Flavonol Glycosides and 3,5-Dicafeoylquinic Acid from Pears. Phytochemistry 1989, 28, 663. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and Characterization of Foliar Polyphenolic Composition in Sweetpotato (Ipomoea batatas L.) Genotypes. J. Agric. Food Chem. 2002, 50, 3718. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesomo, M.C.; Corazza, M.L.; Ndiaye, P.M.; Dalla Santa, O.R.; Cardozo, L.; de Paula Scheer, A. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. J. Supercrit. Fluid 2013, 80, 44. [Google Scholar] [CrossRef]
- El-Baroty, G.S.; El-Baky, H.A.; Farag, R.S.; Saleh, M.A. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr. J. Biochem. Res. 2010, 4, 167. [Google Scholar]
- Sasidharan, I.; Nirmala, M. Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res. 2010, 2, 40. [Google Scholar]
- Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Studies on essential oils, Part 42: Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J. 2005, 20, 1. [Google Scholar] [CrossRef]
- Bou, D.D.; Lago, J.H.G.; Figueiredo, C.R.; Matsuo, A.L.; Guadagnin, R.C.; Soares, M.G.; Sartorelli, P. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules 2013, 18, 9477. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe. Toxicol. Res. 2016, 32, 225. [Google Scholar] [CrossRef] [Green Version]
- Denyer, C.V.; Jackson, P.; Loakes, D.M.; Ellis, M.R.; Young, D.A.B. Isolation of Antirhinoviral Sesquiterpenes from Ginger (Zingiber officinale). J. Nat. Prod. 1994, 57, 658. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.A.; Silva, R.F.; de Moura, F.B.R.; Narduchi, C.T.; Deconte, S.R.; Sartorelli, P.; Tomiosso, T.C.; Lago, J.H.G.; Araújo, F.A. α-Zingiberene, a sesquiterpene from essential oil from leaves of Casearia sylvestris, suppresses inflammatory angiogenesis and stimulates collagen deposition in subcutaneous implants in mice. Nat Prod Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Hirayama, F.; Funakoshi, K.; Takeya, K. Studies on the antitumor bisabolane sesquiterpenoids isolated from Curcuma xanthorrhiza. Chem. Pharmacol. Bull. 1985, 33, 3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamahara, J.; Hatakeyama, S.; Tamiguchi, K.; Kawamura, M.; Yoshikawa, M. Stomachic principles in ginger. II. Pungent and anti-ulcer effects of low polar constituents isolated from ginger, the dried rhizoma of Zingiber officinale Roscoe cultivated in Taiwan. The absolute stereostructure of a new diarylheptanoid. J. Pharm. Soc. Jpn. 1992, 112, 645. [Google Scholar] [CrossRef]
- Al Shebly, M.M.; AlQahtani, F.S.; Govindarajan, M.; Gopinath, K.; Vijayan, P.; Benelli, G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2017, 137, 149. [Google Scholar] [CrossRef]
- Podlogar, J.A.; Verspohl, E.J. Antiinflammatory Effects of Ginger and Some of its Components in Human Bronchial Epithelial (BEAS-2B) Cells. Phytother. Res. 2012, 26, 333. [Google Scholar] [CrossRef]
- Mayer, R.J.; Allihn, P.W.A.; Hampel, N.; Mayer, P.; Sieber, S.A.; Armin, R.; Ofial, A.R. Electrophilic reactivities of cyclic enones and α,β-unsaturated lactones. Chem. Sci. 2021, 12, 4850. [Google Scholar] [CrossRef]
- Lagoutte, R.; Winssinger, N. Following the Lead from Nature with Covalent Inhibitors. Chimia 2017, 71, 703. [Google Scholar] [CrossRef]
- Simonsen, H.T.; Weitzel, C.; Christensen, S.B. Guaianolide Sesquiterpenoids: Pharmacology and Biosynthesis. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3069–3098. [Google Scholar]
- Fadayomi, I.; Sari, S.; Kitchena, M.; Reynissona, J.; Forsytha, N.; Li, W.-W. Sesquiterpene Lactones Modulated DNA Methylation through Inhibition of DNMTs in Ovarian Cancer Cells. Pharmacol. Res. Modern Chin. Med. 2022, 3, 100074. [Google Scholar] [CrossRef]
- de Heluani, C.S.; de Lampasona, M.P.; Catalán, C.A.N.; Goedken, V.L.; Gutiérrez, A.B.; Herz, W. Guaianolides, heliangolides and other constituents from Stevia alpina. Phytochemistry 1989, 28. [Google Scholar] [CrossRef]
- Nogueira de Melo, G.A.; Grespan, R.; Fonseca, J.P.; Farinha, T.O.; da Silva, E.L.; Romero, A.L.; Cuman, R.K.N. Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. J. Nat. Med. 2011, 65, 241. [Google Scholar] [CrossRef] [PubMed]
- Mery, D.E.; Compadre, A.J.; Ordóñez, P.E.; Selvik, E.J.; Morocho, V.; Contreras, J.; Malagón, O.; Jones, D.E.; Breen, P.J.; Balick, M.J.; et al. Analysis of Plant–Plant Interactions Reveals the Presence of Potent Antileukemic Compounds. Molecules 2022, 27, 2928. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, P.E.; Mery, D.E.; Sharma, K.K.; Nemu, S.; Reynolds, W.F.; Enriquez, R.G.; Burns, D.C.; Malagón, O.; Jones, D.E.; Guzman, M.L.; et al. Synthesis, Crystallography, and Anti-Leukemic Activity of the Amino Adducts of Dehydroleucodine. Molecules 2020, 25, 4825. [Google Scholar] [CrossRef]
- Bailon-Moscoso, N.; Gonzalez-Arevalo, G.; Velasquez-Rojas, G.; Malagon, O.; Vidari, G.; Zentella-Dehesa, A.; Ratovitski, E.A.; Ostrosky-Wegman, P. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS ONE 2015, 10, e0136527, Correction in PLoS ONE 2017, 12, e0173648. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, P.E.; Sharma, K.K.; Bystrom, L.M.; Alas, M.A.; Enriquez, R.G.; Malagon, O.; Jones, D.E.; Guzman, M.L.; Compadre, C.M. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells. J. Nat. Prod. 2016, 79, 691. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, P.E.; Quave, C.L.; Reynolds, W.F.; Varughese, K.I.; Berry, B.; Breen, P.J.; Malagon, O.; Smeltzer, M.S.; Compadre, C.M. Sesquiterpene Lactones from Gynoxys verrucosa and Their Anti-MRSA Activity. J. Ethnopharmacol. 2011, 137, 1055. [Google Scholar] [CrossRef] [Green Version]
- Compadre, C.M.; Ordonez, P.E.; Guzman, M.L.; Jones, D.E.; Malagon, O.; Vidari, G.; Crooks, P. Dehydroleucodine Derivatives for Treatment of Cancer. U.S. Patent WO2015006715A1, 15 January 2015. [Google Scholar]
- Delle Monache, G.; Delle Monache, F.; Becerra, J.; Silva, M.; Menichini, F. Thymol Derivatives from Eupatorium glechonophyllum. Phytochemistry 1984, 23, 1947. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457. [Google Scholar] [CrossRef]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290. [Google Scholar] [CrossRef]
LRIs | Enantiomers | Enantiomeric Distribution (%) | ee (%) |
---|---|---|---|
932 | (1R,5R)-(+)-α-pinene | 100 | 100 |
960 | (1R,5R)-(+)-β-pinene (7) | 82.5 | 65.0 |
969 | (1S,5S)-(−)-β-pinene (8) | 17.5 | |
989 | (1R,5R)-(+)-sabinene | 100 | 100 |
1029 | (R)-(−)-α-phellandrene (9) | 97.3 | 94.6 |
1036 | (S)-(+)-α-phellandrene (10) | 2.7 | |
1064 | (S)-(−)-limonene | 100 | 100 |
1070 | (S)-(+)-β-phellandrene | 100 | 100 |
1199 | (R)-(−)-linalool | 42.5 | 15.0 |
1209 | (S)-(+)-linalool | 57.5 | |
1270 | (S)-(+)-terpinen-4-ol (11) | 33.1 | 33.8 |
1272 | (R)-(−)-terpinen-4-ol (12) | 66.9 | |
1332 | (1R,2S,6S,7S,8S)-(−)-α-copaene | 100 | 100 |
1473 | (R)-(+)-germacrene D | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagón, O.; Bravo, C.; Vidari, G.; Cumbicus, N.; Gilardoni, G. Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador. Plants 2022, 11, 2972. https://doi.org/10.3390/plants11212972
Malagón O, Bravo C, Vidari G, Cumbicus N, Gilardoni G. Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador. Plants. 2022; 11(21):2972. https://doi.org/10.3390/plants11212972
Chicago/Turabian StyleMalagón, Omar, Cinthia Bravo, Giovanni Vidari, Nixon Cumbicus, and Gianluca Gilardoni. 2022. "Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador" Plants 11, no. 21: 2972. https://doi.org/10.3390/plants11212972
APA StyleMalagón, O., Bravo, C., Vidari, G., Cumbicus, N., & Gilardoni, G. (2022). Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador. Plants, 11(21), 2972. https://doi.org/10.3390/plants11212972