Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical and Chemical Traits
2.2. Principal Component Analysis (PCA)
2.3. Factor Analysis (FA)
2.4. Z Score Estimation
2.5. Variance Analysis (ANOVA)
3. Materials and Methods
3.1. Plant Material
3.2. Chemical Reagents
3.3. Preparation of Samples
3.4. Color Evaluation
3.5. Determination of Vitamin C (VC), Soluble Solids (SS), Titratable Acidity (TA), Sugar/Acid Ratio (SAR), and Taste Index (TI)
3.6. Extract Preparation
3.7. Quantification of Total Polyphenols (TP)
3.8. Quantification of Total Flavonoids (TF)
3.9. Quantification of Total Carotenoids (TC)
3.10. Quantification of Total Anthocyanin Content (TAC)
3.11. Antioxidant Activity (AA)
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; Guedes, A.R.; Stafussa, A.P.; Bona, E.; Carpes, S.T. Chemical, antioxidant and antibacterial study of Brazilianfruits. Int. J. Food Sci. Technol. 2011, 46, 1529–1537. [Google Scholar] [CrossRef]
- Borges, L.L.; Conceição, E.C.; Silveira, D. Active compounds and medicinal properties of Myrciaria genus. Food Chem. 2014, 153, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feicán-Mejía, C.; Encalada-Alvarado, C.; Becerril-Román, A. Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum cav.). Agroproductividad 2016, 9, 78–86. [Google Scholar]
- Mutalib, M.A.; Rahmat, A.; Ali, F.; Othman, F.; Ramasamy, R. Nutritional compositions and antiproliferative activities of different solvent fractions from ethanol extract of Cyphomandra betacea (tamarillo) fruit. Malays. J. Med. Sci. 2017, 24, 19–32. [Google Scholar] [PubMed]
- Lenquiste, S.A.; Marineli, R.D.S.; Moraes, É.A.; Dionísio, A.P.; De Brito, E.S.; Maróstica, M.R. Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Res. Int. 2015, 77, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Zuo, Y.; Lu, X.; Anwar, F.; Hameed, S. Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chem. 2016, 190, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Batista, Â.G.; Cazarin, C.B.B.; Sandahl, M.; Turner, C.; Östman, E.; Junior, M.R.M. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chem. 2016, 211, 185–197. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef] [PubMed]
- Corbo, F.; Brunetti, G.; Crupi, P.; Bortolotti, S.; Storlino, G.; Piacente, L.; Carocci, A.; Catalano, A.; Milani, G.; Colaianni, G.; et al. Effects of sweet cherry polyphenols on enhanced osteoclastogenesis on enhanced osteoclastogenesis associated with childhood obesity. Front. Immunol. 2019, 10, 1001. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, M.D.; Martínez-Saez, N.; Amigo-Benavent, M.; Silvan, J.M. Phytochemomics and other omics for permitting health claims made on foods. Food Res. Int. 2013, 54, 1237–1249. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alañón, M.; Rodríguez-Robledo, V.; Pérez-Coello, M.S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M.C.; Jordán, J.; Galindo, M.; Arroyo-Jiménez, M. Bioactive flavonoids, antioxidant behaviour and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxid. Med. Cell. Longev. 2016, 2016, 8915729. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. The Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaswir, I.; Noviendri, D.; Hasrini, R.F.; Octavianti, F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 2011, 5, 7119–7131. [Google Scholar]
- Hurtado, N.; Pérez, M. Identificación, estabilidad y actividad antioxidante de las antocianinas aisladas de la cáscara del fruto de capulí (Prunus serotina spp. capuli (Cav) Mc. Vaug Cav). Inf. Tecnol. 2014, 25, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhullar, K.S.; Rupasinghe, H.P.V. Polyphenols: Multipotent therapeutic agents in neurodegene-rative diseases. Oxid. Med. Cell. Longev. 2013, 2013, 891748. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, K.; Ghasemi, Y.; Ebrahimzadeh, M.A. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 2009, 22, 277–281. [Google Scholar] [PubMed]
- Ochoa-Velasco, C.E.; García-Vidal, V.; Luna-Guevara, J.J.; Luna-Guevara, M.L.; Hernández-Carranza, P.; Guerrero-Beltrán, J.Á. Características antioxi-dantes, fisicoquímicas y microbiológicas de jugo fermentado y sin fermentar de tres variedades de pitahaya (Hylocereus spp). Sci. Agropecu. 2012, 3, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Noor-Atiqah, A.A.K.; Maisarah, A.M.; Asmah, R. Comparison of antioxidant properties of tamarillo (Cyphomandra betacea), cherry tomato (Solanum lycopersicum var. cerasiform) and tomato (Lycopersicon esulentum). Int. Food Res. J. 2014, 21, 2355–2362. [Google Scholar]
- Acosta-Quezada, P.G.; Raigon, M.D.; Riofrío-Cuenca, T.; García-Martínez, M.D.; Plazas, M.; Burneo, J.I.; Figueroa, J.G.; Vilanova, S.; Prohens, J. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 2015, 169, 327–335. [Google Scholar] [CrossRef]
- Diep, T.; Pook, C.; Yoo, M. Phenolic and anthocyanin compounds and antioxidant activity of tamarillo (Solanum betaceum Cav.). Antioxidants 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diep, T.; Rush, E.; Yeon, M. Tamarillo (Solanum betaceum Cav.): A review of physicochemical and bioactive properties and potential applications. Food Rev. Int. 2020, 36, 1–25. [Google Scholar] [CrossRef]
- Espín, S.; Gonzalez-Manzano, S.; Taco, V.; Poveda, C.; Ayuda-Durán, B.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem. 2016, 194, 1073–1780. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Bernal, L.J.; Melo, L.A.; Díaz Moreno, C. Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Rev. Fac. Nac. Agron. 2014, 67, 7209–7218. [Google Scholar] [CrossRef]
- Viera-Arroyo, W.F.; Sotomayor-Correa, A.V.; Tamba-Sandoval, M.V.; Vásquez-Castillo, W.A.; Martínez, A.; Viteri-Díaz, P.F.; Ron, L. Estimation of fruit quality parameters for tree tomato (Solanum betaceum Cav.) interspecific segregating in response to Antracnose (Colletotrichum acutatum J.H. Simmonds) resistance. Acta Agron. 2016, 65, 304–311. [Google Scholar] [CrossRef]
- Villares-Jibaja, M.X.; Sánchez-Morales, J.A.; Viera-Arroyo, W.F.; Soria-Idrovo, N.A.; Sotomayor-Correa, A.V.; Yanez-Silva, D.F.; Martínez-Mora, O. Morphological characterization of tree tomato (Solanum betaceum Cav.) fruits from a segregant population. Rev. Inv. Talent. 2018, 5, 9–19. [Google Scholar]
- Wang, S.; Zhu, F. Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends Food Sci. Technol. 2020, 95, 45–58. [Google Scholar] [CrossRef]
- Vasco, C.; Avila, J.; Ruales, J.; Svanberg, U.; Kamal-Eldin, A. Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). Int. J. Food Sci. Nutr. 2009, 60, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Ghosal, M. Antioxidant activities of different parts of tree tomato fruit. Int. J. Pharm. Sci. Rev. Res. 2012, 13, 39–47. [Google Scholar]
- Poiroux-Gonord, F.; Bidel, L.P.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Heatherbell, D.A. Identification of anthocyanins and distribution of flavonoids in tamarillo fruit (Cyphomandra betaceae (Cav.) Sendt.). J. Sci. Food Agric. 1974, 25, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Lister, C.; Morrison, S.; Kerkhofs, N.; Wright, K. The nutritional composition and health benefits of New Zealand tamarillos. Crop Food Res. Confid. Rep. 2005, 1281, 29. [Google Scholar]
- Rojas Benites, D.S.; Repo de Carrasco, R.; Encina Zelada, C.R. Determination of maximun retention of bioactive compounds and antioxidant capacity on nectar of tree tomato (Solanum betaceaum Cav.). Rev. Soc. Quim. Peru 2017, 83, 174–186. [Google Scholar]
- Atanassova, M.; Georgieva, S.; Ivanchev, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Mertz, C.; Gancel, A.-L.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.; Vaillant, F.; Perez, A.M.; Ruales, J.; Brat, P. Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J. Food Compos. Anal. 2009, 22, 381–387. [Google Scholar] [CrossRef]
- Diep, T.; Pook, C.; Rush, E.; Yeon Yoo, M. Quantification of carotenoids, α-tocopherol, and ascorbic acid in amber, mulligan, and laird’s large cultivars of New Zealand tamarillos (Solanum betaceum Cav.). Foods 2020, 9, 769. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, V.V.; Mercadante, A.Z. HPLC-PDA-MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. J. Agric. Food Chem. 2007, 55, 9135–9141. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, N.H.; Morales, A.L.; González-Miret, M.L.; Escudero-Gilete, M.L.; Heredia, F.J. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chem. 2009, 117, 88–93. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Benelli, P.; Ferreira, S.R.S.; Parada-Alfonso, F. Supercritical fluid extracts from tamarillo (Solanum betaceum Sendt.) epicarp and its application as protectors against lipid oxidation of cooked beef meat. J. Supercrit. Fluids 2013, 76, 17–24. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Huffman, L.; Sivakumaran, S.; Athar, N. The Concise New Zealand Food Composition Tables; New Zealand Institute for Plant & Food Research Limited: Auckland, New Zealand, 2015. [Google Scholar]
- Márquez, C.J.; OTERO, C.M.; Cortés, M. Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) en poscosecha. Vitae 2007, 14, 07–08. [Google Scholar]
- Sepúlveda, C.T.; Zapata, J.E. Efecto de la temperatura, el pH y el contenido en sólidos sobre los compuestos fenólicos y la actividad antioxidante del extracto de Bixa orellana L. Inf. Technol. 2019, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.C.; Kelso, C.; Price, W.E.; Probst, Y. Validated liquid chromatography separation methods for identification and quantification of anthocyanins in fruit and vegetables: A systematic review. Food Res. Int. 2020, 138, 109754. [Google Scholar]
- Alves-Santana, E.; Lima, D.D.; de Souza, C.; Figueiredo-Neto, A.; Lucena-Cavalcante, I.H.; dos Santos Melo de Sousa, K. Post-harvest storage of ‘Paluma’ guavas produced by plants fertirrigated with nitrogen and biofertilizer. Comun. Sci. 2020, 11, e3121. [Google Scholar]
- Acosta-Quezada, P.G.; Vilanoba, S.; Martínez-Laborde, J.B.; Prohens, J. Variation among tree tomato (Solanum betaceum Cav.) accessions from different cultivar groups: Implications for conservation of genetic resources and breeding. Genet. Resour. Crop. Evol. 2011, 58, 943–960. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Quezada, P.G.; Martínez-Laborde, J.B.; Prohens, J. Genetic diversity and relationships in accessions from different cultivar groups and origins in the tree tomato (Solanum betaceum Cav.). Euphytica 2012, 187, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Viera, W.; Sotomayor, A.; Viteri, P. Breeding of three Andean fruit crops in Ecuador. Chron. Hortic. 2019, 59, 20–29. [Google Scholar]
- Sotomayor, A.; Merino, J.; Viera, W. Determining conditions for best pollen quality of red-purple tree tomato (Solanum betaceum Cav.) germplasm. Bionatura 2021, 6, 2222–2227. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Kekina, H.G.; Engalichev, M.R.; Antoshkina, M.S.; Nadezhkin, S.M.; Caruso, G. Yield, quality, antioxidants and mineral nutrients of Physalis angulata L. and Physalis pubescens L. fruits as affected by genotype under organic management. Adv. Hort. Sci. 2018, 32, 541–548. [Google Scholar]
- Zaouay, F.; Mars, M. Phenotypic variation and estimation of genetic parameters to improve fruit quality in Tunisian pomegranate (Punica granatum L.) accessions. J. Hort. Sci. Biot. 2014, 89, 221–228. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Frutas Frescas, Tomate de Árbol, Especificaciones; INCOTEC: Caldas, Colombia, 1997; pp. 1–16. [Google Scholar]
- Brito, B.; Vásquez, W. Control de Calidad en la Pre-y pos Cosecha de las Frutas; INIAP: Quito, Ecuador, 2013; pp. 24–27. [Google Scholar]
- Navez, B.; Letard, M.; Graselly, D.; Jost, M. Les criteres de qualite de la tomate. Infos-Ctifl. 1999, 155, 41–47. [Google Scholar]
- Hue, C.; Brat, P.; Gunata, Z.; Samaniego, I.; Servent, A.; Morel, G.; Davrieux, F. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature. J. Agric. Food Chem. 2014, 62, 10136–10142. [Google Scholar] [CrossRef] [PubMed]
- Samaniego, I.; Brito, B.; Viera, W.; Cabrera, A.; Llerena, W.; Kannangara, T.; Vilcacundo, R.; Angós, I.; Carrillo, W. Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four Andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants 2020, 9, 1027. [Google Scholar] [CrossRef] [PubMed]
- Llerena, W.; Samaniego, I.; Navarro, M.; Ortíz, J.; Angós, I.; Carrillo, W. Effect of modified atmosphere packaging (MAP) in the antioxidant capacity of arazá (Eugenia stipitata McVaugh), naranjilla (Solanum quitoense Lam.), and tree tomato (Solanum betaceum Cav.) fruits from Ecuador. J. Food Process. Preserv. 2020, 44, 14757. [Google Scholar] [CrossRef]
- Rapisarda, P.; Fanella, F.; Maccarone, E. Reliability of analytical methods for determining anthocyanins in blood orange juices. J. Agric. Food Chem. 2000, 48, 2249–2252. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 9 May 2021).
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef] [Green Version]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Elvira-Torales, L.I.; García-Alonso, J.; Periago-Castón, M.J. nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants 2019, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behboodian, J.; Asgharzadeh, A. On the distribution of Z-scores. Iran. J. Sci. Technol. Trans. 2008, 32, 71–78. [Google Scholar]
Statistical Parameter | L | a | b | TA | SS | SAR | TI | TP * | TF * | TC * | TAC * | VC | FRAP * | ABTS * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average | 65.54 | 9.52 | 41.20 | 1.13 | 10.61 | 9.75 | 1.62 | 8.47 | 2.99 | 223.38 | 38.08 | 209.80 | 167.68 | 128.06 |
Minimum | 33.54 | 3.12 | 3.65 | 0.68 | 7.00 | 6.07 | 1.20 | 5.11 | 1.24 | 50.39 | 1.06 | 78.29 | 52.43 | 49.51 |
Maximum | 77.35 | 19.11 | 55.99 | 1.63 | 12.90 | 16.97 | 2.02 | 16.59 | 6.70 | 460.72 | 240.49 | 428.16 | 361.70 | 312.30 |
Variation (%) | 56.64 | 83.67 | 93.48 | 58.28 | 45.74 | 64.23 | 68.3 | 69.20 | 81.49 | 89.06 | 99.56 | 81.71 | 85.50 | 84.15 |
Categories | |||
---|---|---|---|
Chemical Parameter | Low | Medium | High |
Polyphenols * (mg GAE g−1) | 5.11–8.39 | 8.40–8.54 | 8.55–16.59 |
Flavonoids * (mg cat g−1) | 1.24–2.59 | 2.60–3.36 | 3.37–6.70 |
Carotenoids * (µg β-carotene g−1) | 50.30–183.38 | 183.39–263.35 | 263.36–460.76 |
Anthocyanins * (mg cy-3-glu 100 g−1) | 1.06–21.78 | 21.79–54.36 | 54.37–240.49 |
Vitamin C (mg 100 g−1) | 78.29–183.91 | 183.92–235.67 | 235.68–428.16 |
FRAP * (µm Trolox g−1) | 52.43–167.59 | 167.60–167.74 | 167.75–361.70 |
ABTS * (µm Trolox g−1) | 49.51–127.97 | 127.98–128.12 | 128.13–312.30 |
Soluble solids (°Brix) | 7.00–10.52 | 10.53–10.67 | 10.68–12.9 |
Trititable acidity (%) | 0.68–1.05 | 1.05–1.12 | 1.20–1.63 |
Factors | |||
---|---|---|---|
Variable | Antioxidant Capacity | Appearance | Maturity |
ABTS | 0.98 | ||
FRAP | 0.94 | ||
TC | −0.80 | ||
SS | −0.91 | ||
L | 0.94 | ||
b | 0.92 | ||
TAC | −0.93 | ||
TA | 0.89 | ||
SAR | −0.96 |
Segregant | TP | TF | TC | TAC | FRAP | ABTS | VC | SS | TA | SAR | TI |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 0.62 | −0.45 | 2.00 | 0.76 | −0.92 | −0.60 | 1.06 | 0.87 | 0.56 | −0.22 | 0.70 |
5 | 0.10 | −1.18 | 1.39 | 1.47 | −1.04 | −0.90 | 2.05 | 0.51 | 2.15 | −1.25 | 2.24 |
6 | 2.00 | 0.19 | 1.02 | 4.26 | −0.53 | 0.06 | 0.55 | 0.94 | −0.08 | 0.40 | 0.21 |
7 | 1.09 | −0.10 | 1.90 | 1.65 | −0.86 | −0.59 | 2.49 | 1.02 | 1.55 | −0.80 | 1.69 |
10 | 1.66 | 2.35 | 1.04 | 1.17 | −0.26 | −0.43 | 0.44 | 0.94 | 1.21 | −0.58 | 1.31 |
13 | 0.79 | −0.48 | 1.57 | 1.71 | −0.78 | −0.77 | 2.19 | 1.46 | 2.15 | −0.94 | 2.48 |
14 | 1.73 | 0.91 | 2.02 | 1.29 | −0.58 | −0.51 | 1.52 | 0.58 | 0.43 | −0.22 | 0.45 |
15 | 0.82 | −0.08 | 0.48 | 0.82 | −0.73 | −0.84 | 2.89 | 0.58 | 2.02 | −1.20 | 2.12 |
22 | 0.17 | −0.90 | 2.04 | −0.69 | −0.82 | −0.60 | −0.33 | 1.68 | −1.59 | 3.25 | −0.04 |
26 | 0.06 | −0.25 | 1.40 | −0.71 | −0.80 | −0.79 | 1.59 | 0.94 | 2.15 | −1.11 | 2.36 |
29 | −0.63 | −0.47 | 2.03 | −0.69 | −1.01 | −0.94 | −0.99 | 1.02 | −0.55 | 0.98 | −0.10 |
35 | 0.26 | 2.02 | −0.01 | 0.03 | −0.74 | −0.65 | −0.68 | 0.65 | 0.48 | −0.22 | 0.51 |
36 | −0.31 | 1.35 | 0.49 | −0.69 | −0.79 | −0.79 | −0.99 | 0.65 | −1.93 | 3.17 | −0.53 |
37 | −0.20 | 1.35 | −0.07 | −0.57 | −0.83 | −0.84 | −1.36 | 0.94 | −1.37 | 2.14 | −0.47 |
42 | 1.08 | 3.25 | 1.39 | −0.73 | −0.60 | −0.60 | −1.49 | 0.80 | −0.21 | 0.49 | 0.02 |
47 | 2.60 | 2.99 | −0.03 | 3.91 | 0.02 | −0.04 | 0.62 | 0.94 | −0.68 | 1.07 | −0.22 |
48 | 1.97 | 1.49 | −0.57 | 4.19 | −0.11 | −0.12 | 1.85 | 1.02 | −0.12 | 0.49 | 0.21 |
49 | 1.02 | 1.99 | 0.40 | 2.02 | −0.32 | −0.58 | −0.75 | 0.72 | −0.85 | 1.20 | −0.41 |
57 | −0.22 | −0.46 | −0.28 | 0.02 | 0.95 | 0.83 | 2.12 | −1.54 | −0.55 | −0.58 | −1.15 |
68 | 1.41 | −0.10 | −0.87 | 0.40 | 1.61 | 2.36 | 0.20 | −0.59 | −1.67 | 1.52 | −1.33 |
71 | 1.46 | −0.16 | −0.67 | 0.10 | 1.03 | 2.27 | 0.24 | −0.66 | −1.20 | 0.76 | −1.27 |
84 | 4.27 | 2.99 | −0.62 | 0.18 | 2.16 | 2.84 | 0.55 | −2.64 | −1.80 | 0.00 | −2.57 |
Segregant | Z Sscore TP ∗ TC ∗ VC | a | b | Pulp Color | °H | C | TI |
---|---|---|---|---|---|---|---|
4 | 1.12 | 12.05 | 32.19 | Orange | −1.97 | 34.37 | 1.73 |
6 | 1.42 | 12.63 | 7.56 | Purple red | 1.47 | 14.72 | 1.65 |
7 | 1.62 | 17.90 | 21.01 | Purple red | 0.42 | 27.60 | 1.89 |
10 | 1.23 | 12.35 | 25.62 | Purple red | −0.55 | 28.44 | 1.83 |
13 | 1.30 | 16.70 | 20.15 | Purple red | 0.38 | 26.17 | 2.02 |
14 | 1.78 | 9.52 | 22.52 | Purple red | −1.02 | 24.45 | 1.69 |
15 | 1.14 | 14.31 | 26.69 | Purple red | −0.30 | 30.28 | 1.96 |
47 | 1.41 | 13.64 | 4.19 | Red | 3.15 | 14.27 | 1.58 |
48 | 1.19 | 13.69 | 3.65 | Red | 3.66 | 14.17 | 1.65 |
84 | 2.06 | 7.77 | 44.92 | Yellow | −1.82 | 45.59 | 1.20 |
Group | Segregant | TP * | TF * | TC * | TAC * | VC | TA | SS | SAR | TI | FRAP * | ABTS * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 53, 58, 59, 60, 61, 62, 63, 67, 68, 70, 71, 73, 75, 83, 84, 85, 86, 87 | 9.96 | ab | 3.21 | abc | 114.97 | de | 41.73 | c | 220.83 | c | 1.03 | c | 9.16 | b | 9.48 | b | 1.49 | d | 292.81 | a | 224.77 | a |
2 | 6, 47, 48 | 12.64 | a | 4.76 | a | 239.62 | bc | 233.79 | a | 285.85 | bc | 1.06 | bc | 11.93 | a | 11.27 | ab | 1.63 | bcd | 149.16 | c | 125.81 | c |
3 | 4, 5, 7, 13, 14, 15, 26 | 9.89 | abc | 2.72 | abc | 402.39 | a | 85.51 | b | 358.49 | a | 1.50 | a | 11.77 | a | 7.96 | b | 1.90 | a | 94.49 | d | 81.63 | d |
4 | 1, 2, 3, 8, 21, 22, 23, 25, 29, 30, 40, 42 | 7.91 | cd | 2.84 | abc | 389.35 | a | 3.71 | e | 148.25 | d | 1.03 | c | 11.77 | a | 11.84 | a | 1.62 | cd | 84.93 | d | 75.88 | d |
5 | 51, 52, 54, 55, 56, 64, 65, 66, 69, 74, 76, 77, 78, 82, 89 | 6.85 | d | 2.19 | c | 100.44 | e | 33.86 | cd | 175.20 | d | 1.09 | bc | 9.30 | b | 8.93 | b | 1.53 | cd | 230.98 | b | 157.59 | bc |
6 | 57, 72, 79, 80, 81, 88, 90 | 8.60 | bcd | 2.48 | bc | 160.19 | cd | 39.96 | cd | 288.22 | b | 1.10 | bc | 9.38 | b | 8.63 | b | 1.54 | cd | 245.08 | b | 183.64 | b |
7 | 16, 17, 18, 19, 20, 32, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 49, 50 | 7.65 | d | 3.56 | ab | 234.67 | c | 14.02 | de | 147.54 | d | 1.11 | bc | 11.51 | a | 10.78 | ab | 1.64 | bc | 92.11 | d | 70.48 | d |
8 | 9, 10, 11, 12, 24, 27, 28, 31, 33 | 8.07 | cd | 2.88 | abc | 304.44 | b | 30.83 | cde | 256.95 | bc | 1.34 | ab | 11.83 | a | 8.93 | b | 1.78 | ab | 84.65 | d | 70.19 | d |
Group | Segregant | TP * | TF * | TC * | TAC * | VC | TA | SS | SAR | TI | FRAP * | ABTS * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33, 37, 42, 54, 55, 56, 63, 65, 69, 70, 73, 84 | 8.59 | bc | 3.42 | ab | 155.10 | bc | 31.11 | cd | 175.44 | bc | 0.98 | b | 9.66 | ab | 10.17 | ab | 1.49 | b | 219.24 | ab | 160.72 | ab |
2 | 35, 51, 66, 71, 72, 74, 78, 87, 90 | 8.32 | bc | 2.87 | ab | 131.54 | c | .39.16 | c | 190.71 | bc | 1.08 | b | 9.26 | b | 8.83 | ab | 1.52 | b | 233.92 | ab | 175.59 | ab |
3 | 1, 2, 3, 8, 12, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 36, 40, 41, 52, 64, 67, 68, 75, 76, 77, 79, 80, 83, 88, T89 | 7.87 | c | 2.45 | b | 259.14 | ab | 15.37 | de | 200.64 | bc | 1.10 | b | 11.05 | a | 10.63 | a | 1.63 | ab | 142.52 | b | 110.72 | ab |
4 | 53, 58, 59, 62 | 8.91 | abc | 3.23 | ab | 114.67 | c | 52.04 | c | 229.79 | abc | 1.29 | ab | 9.10 | b | 7.10 | ab | 1.64 | ab | 295.59 | a | 206.83 | a |
5 | 6, 47, 48 | 12.64 | a | 4.76 | a | 239.62 | abc | 233.79 | a | 285.85 | ab | 1.06 | b | 11.93 | a | 11.27 | a | 1.63 | ab | 149.16 | ab | 125.81 | ab |
6 | 4, 9, 15, 57, 6061 | 8.99 | abc | 2.63 | ab | 241.77 | abc | 50.99 | c | 311.57 | a | 1.26 | ab | 10.45 | ab | 8.40 | ab | 1.68 | ab | 178.75 | ab | 142.20 | ab |
7 | 20, 31, 34, 38, 39, 43, 44, 45, 46, 50, 82, 85, 86 | 7.80 | c | 3.45 | ab | 203.35 | abc | 9.74 | e | 157.84 | c | 1.14 | ab | 10.88 | a | 9.68 | ab | 1.62 | ab | 127.68 | b | 100.52 | b |
8 | 5, 7, 10, 11, 13, 14, 49, 81 | 10.02 | ab | 3.57 | ab | 339.66 | a | 102.67 | b | 292.49 | a | 1.37 | a | 11.58 | a | 8.76 | ab | 1.80 | a | 125.54 | b | 97.03 | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viera, W.; Samaniego, I.; Camacho, D.; Habibi, N.; Ron, L.; Sediqui, N.; Álvarez, J.; Viteri, P.; Sotomayor, A.; Merino, J.; et al. Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants 2022, 11, 268. https://doi.org/10.3390/plants11030268
Viera W, Samaniego I, Camacho D, Habibi N, Ron L, Sediqui N, Álvarez J, Viteri P, Sotomayor A, Merino J, et al. Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants. 2022; 11(3):268. https://doi.org/10.3390/plants11030268
Chicago/Turabian StyleViera, William, Iván Samaniego, Diana Camacho, Nasratullah Habibi, Lenin Ron, Naveedullah Sediqui, Javier Álvarez, Pablo Viteri, Andrea Sotomayor, Jorge Merino, and et al. 2022. "Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador" Plants 11, no. 3: 268. https://doi.org/10.3390/plants11030268
APA StyleViera, W., Samaniego, I., Camacho, D., Habibi, N., Ron, L., Sediqui, N., Álvarez, J., Viteri, P., Sotomayor, A., Merino, J., Vásquez-Castillo, W., & Brito, B. (2022). Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants, 11(3), 268. https://doi.org/10.3390/plants11030268