Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Vegetal Material
2.2. Chemical Reagents
2.3. Preparation of the Samples
2.4. Color Assessment
2.5. Preparation of Extracts
2.6. Vitamin C
2.7. Total Polyphenol Content Quantification
2.8. Total Flavonoid Content
2.9. Total Carotenoid Content
2.10. Antioxidant Activity as Measured by the ABTS Method
2.11. Antioxidant Activity as Measured by the Ferric Reducing Power (FRAP) Method
2.12. Sugar Content
2.13. Organic Acids Quantification
2.14. Statistical Analysis
3. Results
3.1. Color Assessment of the Passion Fruit Pulp
3.2. Analysis of Variance (ANOVA)
3.2.1. Antioxidant Activity and Compounds
3.2.2. Sugar and Organic Acid Analysis
3.3. Correlation Analysis
3.4. K-Means Analysis
3.5. Principal Component Analysis (PCA)
4. Discussion
4.1. Pulp Color
4.2. Univariate Analysis
4.2.1. Polyphenols, Flavonoids, Carotenoids, Vitamin C and Antioxidant Activity
4.2.2. Sugar Content and Organic Acids
4.3. Correlation Analysis
4.4. Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, L.; Pesamosca, E.; Salvador, M.; Hickmann, S.; de Oliveira, A. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. Technol. 2018, 55, 2679–2691. [Google Scholar]
- Gómez, M. Mercado Mundial del Maracuyá. Revista Vinculando, 2005. Available online: https://vinculando.org/mercado/mercado_maracuya.html (accessed on 6 July 2021).
- Talcott, S.T.; Percival, S.S.; Pittet-Moore, J.; Celoria, C. Phytochemical composition and antioxidant stability of fortified yellow passion fruit (Passiflora edulis). J. Agric. Food Chem. 2003, 51, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Cazarin, C.B.; Silva, J.K.; Colomeu, T.C.; Zollner, R.L.; Junior, M.R. Capacidade antioxidante e composicao quimica da casca de maracuja (Passiflora edulis). Cienc. Rural. 2014, 44, 1699–1704. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Mishra, R.; Singh, A. Passion to profession: A review of passion fruit processing. Aptisi Trans. Technopreneurship 2021, 3, 48–57. [Google Scholar] [CrossRef]
- Da Silva, D.; Peixoto, J.; Souza, M.; Gelape, F.; Silva, K.; de Deus, R.; Nogueira, I. Agronomic descriptors and ornamental potential of passion fruit species. Ornam. Hort. 2017, 23, 357–362. [Google Scholar]
- Batista do Carmo, T.V.; Semen Martins, L.S.; dos Santos Musser, R.; Moura da Silva, M.; Oliveira Santos, J.P. Genetic diversity in accessions of Passiflora cincinnata mast. Based on morphoagronomic descriptors and molecular markers. Rev. Caatinga 2017, 30, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, N.; Ambachew, D.; Melgarejo, L.; Wohlgemuth, M. Morphological and agronomic variability among cultivars, landraces, and genebank accessions of purple passion fruit, Passiflora edulis f. edulis. HortScience 2020, 55, 768–777. [Google Scholar]
- Castro, J.; Paredes, C.; Muñoz, D. El Cultivo de Maracuyá; Gerencia Regional Agraria La Libertad: Trujillo, Peru, 2009; pp. 1–30. [Google Scholar]
- Viera, W.; Brito, B.; Zambrano, E.; Ron, L.; Merino, J.; Campaña, D.; Álvarez, H. Genotype x environment interaction in the yield and fruit quality of passion fruit germplasm grown in the Ecuadorian Littoral. Int. J. Fruit Sci. 2020, 20, S1829–S1844. [Google Scholar] [CrossRef]
- Santos, C.; Vieira, E.; Girardi, E.; Carriello, R.; Nunez, O. Fruit quality and production of yellow and ‘Sweet’ passion fruit in northern state of São Paulo. Rev. Bras. Frutic. 2018, 40, e968. [Google Scholar]
- Rinaldi, M.; Dianese, A.; Costa, A.; Assis, D.; Oliveira, T.; Assis, S. Post-harvest conservation of Passiflora alata fruits under ambient and refrigerated condition. Food Sci. Technol. 2019, 39, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Llerena, W.; Samaniego, I.; Angos, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds content prediction in ecuadorian fruits using a mathematical model. Foods 2019, 8, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atta, E.M.; Mohamed, N.H.; Abdelgawad, A.A.M. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull. 2017, 6, 365–375. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef] [Green Version]
- Barbosa de Oliveira, A.; de Almeida, M.M.; Herbster, C.F.; de Siqueira, L.; de Souza, K.O.; Filho, E.G.; Urban, L.; Alcântara, M.R. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Sci. Hortic. 2017, 222, 84–89. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.; de Araujo, F.; Neto, A.; de Freitas, S.; de Souza, J.; de Oliveira, S.; Brito, A.; Lima, M. Phytochemical compounds and antioxidant activity of the pulp of two brazilian passion fruit species: Passiflora cincinnata Mast. and Passiflora edulis Sims. Int. J. Fruit Sci. 2021, 21, 255–269. [Google Scholar] [CrossRef]
- Matute, N.; López, A.; Echeverría, A. Physico-chemical evaluation and antioxidant capacity of moringa (Moringa oleifera) and passion fruit (Passiflora edulis). Cumbres 2017, 4, 9–16. [Google Scholar]
- Pardo-Jumbo, A.; Matute, N.L.; Echavarria, A.P. Determination of bioactive compounds and antioxidant activity of the passion fruit pulp (Passiflora edulis). FACSALUD-UNEMI 2017, 1, 5–11. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H.; King, W.S.; Sahrir, M.A.S. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. J. Sci. Food Agric. 2012, 93, 1198–1205. [Google Scholar] [CrossRef]
- Fischer, G.; Melgarejo, L.M.; Cutler, J. Pre-harvest factors that influence the quality of passion fruit: A review. Agron. Colomb. 2018, 36, 217–226. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Katano, Y. Cardiovascular protective effects of polyphenols contained in passion fruit seeds namely piceatannol and scirpusin B: A review. Tokai J. Exp. Clin. Med. 2021, 46, 151–161. [Google Scholar]
- Carmona-Hernandez, J.C.; Taborda-Ocampo, G.; González-Correa, C.H. Folin-ciocalteu reaction alternatives for higher polyphenol quantitation in Colombian passion fruits. Int. J. Food Sci. 2021, 8871301, 1–10. [Google Scholar] [CrossRef]
- Krinsky, N.; Johnson, E. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hernández, B., Jr.; Martínez-Correa, H.A.; Andrade-Mahecha, M.M. Potencial agroindustrial del epicarpio de maracuyá como ingrediente alimenticio activo. Inf. Tecnol. 2019, 30, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Folador, G.; de Oliveira-Bicudo, M.; de Andrade, E.F.; Renard, C.M.G.C.; Bureau, S.; de Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. Food Sci. Technol. 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Kanayama, Y. Sugar metabolism and fruit development in the tomato. Hort. J. 2017, 86, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Mamede, A.; Soares, A.G.; Oliveira, E.J.; Farah, A. Volatile composition of sweet passion fruit (Passiflora alata Curtis). J. Chem. 2017, 3497216, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wei, X.; Ali, M.M.; Rizwan, H.M.; Li, B.; Li, H.; Jia, K.; Yang, X.; Ma, S.; Li, S.; et al. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. Int. J. Mol. Sci. 2021, 22, 5765. [Google Scholar] [CrossRef]
- Álvarez, H.; Pionce, J.; Castro, J.; Viera, W.; Sotomayor, A. Population densities and nitrogen fertilization in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.). Rev. Cient. Ecuat. 2018, 5, 1–6. [Google Scholar]
- Noriega, P.; de Freitas Mafud, D.; Strasser, M.; Myiake Kato, E.Y.; Bacchi, E.M. Passiflora alata Curtis: A Brazilian medicinal plant. Bol. Latinoam. Caribe Plantas Med. Aromat. 2011, 10, 398–413. [Google Scholar]
- Pinzón, I.; Fisher, G.; Corredor, G. Determination of the maturity stages of purple passion fruit (Passiflora edulis Sims.). Agron. Colomb. 2007, 25, 83–95. [Google Scholar]
- Vargas-Alfonso, J.A. Desarrollo de Una Alternativa Tecnológica para la Producción de Maracuyá (Passiflora edulis var. flavicarpa) en el Municipio de Borbur, Boyacá. 2018. Available online: https://ciencia.lasalle.edu.co/ingenieria_agronomica/123 (accessed on 18 August 2021).
- Hue, C.; Brat, P.; Gunata, Z.; Samaniego, I.; Servent, A.; Morel, G.; Davrieux, F. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature. J. Agric. Food Chem. 2014, 62, 10136–10142. [Google Scholar] [CrossRef] [PubMed]
- Samaniego, I.; Brito, B.; Viera, W.; Cabrera, A.; Llerena, W.; Kannangara, T.; Vilcacundo, R.; Angós, I.; Carrillo, W. Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four Andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants 2020, 9, 1027. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. Phenol sulfuric total sugar. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Espín, S.; Samaniego, I. Manual para el Análisis de Parámetros Químicos, Asociados a la Calidad del Cacao; INIAP: Quito, Ecuador, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 24 June 2021).
- Baba, K.; Shibata, R.; Sibuya, M. Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 2004, 46, 657–664. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 2nd International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 9 November 2017; IOP Publishing: Bristol, UK, 2018; Volume 336, pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Glevitzky, I.; Dumitrel, G.A.; Glevitzky, M.; Pasca, B.; Otrisal, P.; Bungau, S.; Cioca, G.; Pantis, C.; Popa, M. Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Rev. Chim. 2019, 70, 3103–3107. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 202, 30528–30550. [Google Scholar] [CrossRef]
- Gitea, M.A.; Gitea, D.; Tit, D.M.; Purza, L.; Samuel, A.D.; Bungau, S.; Badea, G.E.; Aleya, L. Orchard management under the effects of climate change: Implications for apple, plum, and almond growing. Environ. Sci. Pollut. Res. 2019, 26, 9908–9915. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agric. 2011, 91, 1855–1862. [Google Scholar] [CrossRef]
- Kalt, W.; McRae, K.B.; Hamilton, L.C. Relationship between surface color and other maturity indices in wild lowbush blueberries. Can. J. Plant Sci. 1995, 75, 485–490. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tresserra, R.A.; Lamuela, R.R.M.; Moreno, J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 2018, 156, 186–195. [Google Scholar] [CrossRef]
- Pham, N.M.; Do, V.V.; Lee, A.H. Polyphenol-rich foods and risk of gestational diabetes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2019, 73, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med. 2018, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G. Effects of polyphenol-rich foods on human health. Nutrients 2018, 10, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Socorro, S.; Libonati, R.M.F.; Sabaa-Srur, A.U.O.; Luo, R.; Shejwalkar, P.; Hara, K.; Dobbs, T.; Smith, R.E. Evaluation of the effects of passion fruit peel flour (Passiflora edulis fo. flavicarpa) on metabolic changes in HIV patients with lipodystrophy syndrome secondary to antiretroviral therapy. Rev. Bras. Farmacogn. 2016, 26, 420–426. [Google Scholar] [CrossRef]
- Brat, P.; Georgé, S.; Bellamy, A.; Du Chaffaut, L.; Scalbert, A.; Mennen, L.; Arnault, N.; Amiot, M.J. Daily polyphenol intake in France from fruit and vegetables. J. Nutr. 2006, 136, 2368–2373. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.M.R.; Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Septembre-Malaterre, A.; Stanislas, G.; Douraguia, E.; Gonthier, M. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016, 212, 225–233. [Google Scholar] [CrossRef]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Carmona-Hernández, J.C.; Taborda-Ocampo, G.; Valdez, J.C.; Bolling, B.W.; González-Correa, C.H. Polyphenol extracts from three colombian passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of caco-2 cells. Molecules 2019, 24, 4614. [Google Scholar] [CrossRef] [Green Version]
- Toti, E.; Chen, C.Y.O.; Palmery, M.; Villaño Valencia, D.; Peluso, I. Non-provitamin A and provitamin A carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition? Oxid. Med. Cell. Longev. 2018, 4637861, 1–20. [Google Scholar] [CrossRef]
- De Freitas, J.P.X.; de Oliveira, E.J.; da Cruz Neto, A.J.; dos Santos, L.R. Evaluation of genetic resources of yellow passion fruit. Pesq. Agropec. Bras. 2011, 46, 1013–1020. [Google Scholar]
- Pertuzatti, P.B.; Sganzerla, M.; Jacques, A.C.; Barcia, M.T.; Zambiazi, R.C. Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. Food Sci. Technol. 2015, 64, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Britton, G. Carotenoidresearch:History and new perspectives for chemistry in biological systems. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158699. [Google Scholar] [CrossRef] [PubMed]
- Wondracek, D.C.; Faleiro, F.G.; Sano, S.M.; Vieira, R.F.; Agostini-Costa, T.S. Composição de carotenoides em Passifloras do Cerrado. Rev. Bras. Fruticul. 2011, 33, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.R.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; Carneiro, J.D.S. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Rowe, S. The emerging role of vitamin c in the prevention and treatment of covid-19. Nutrients 2020, 12, 3286. [Google Scholar] [CrossRef]
- Carvajal, L.M.; Turbay, S.; Rojano, B.; Álvarez, L.M.; Luz-Restrepo, S.; Álvarez, J.M.; Bonilla, K.C.; Ochoa, C.; Sánchez, N. Some Passiflora species and their antioxidant capacity. Rev. Cub. Plantas Med. 2011, 16, 354–363. [Google Scholar]
- Lovrić, V.; Putnik, P.; Bursać Kovačević, D.; Jukić, M.; Dragović-Uzelac, V. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technol. Biotechnol. 2017, 55, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, C.H.; Karabagias, J.K.; Gatzias, I.; Kontakos, S.; Badeka, A.; Kontominas, M.G. Differentiation of fresh greek orange juice of the Merlin cultivar according to geographical origin based on the combination of organic acid and sugar content as well as physicochemical parameters using chemometrics christos. Food Anal. Methods 2017, 10, 2217–2228. [Google Scholar] [CrossRef]
- Asencio, A.D.; Serrano, M.; García-Martínez, S.; de Pretel, M.T. Organic acids, sugars, antioxidant activity, sensorial and other fruit characteristics of nine traditional Spanish citrus fruits. Eur. Food Res. Technol. 2018, 244, 1497–1508. [Google Scholar] [CrossRef]
- Shinohara, T.; Usui, M.; Higa, Y.; Igarashi, D.; Inoue, T. Effect of accumulated minimum temperature on sugar and organic acid content in passion fruit. J. Int. Soc. Southeast Asian Agricul. Sci. 2013, 19, 1–7. [Google Scholar]
- Janzantti, N.S.; Macoris, M.S.; Garruti, D.S.; Monteiro, M. Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. Food Sci. Technol. 2012, 46, 511–518. [Google Scholar] [CrossRef]
- Macoris, M.S.; de Marchi, R.; Janzantti, N.S.; Monteiro, M. The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp. J. Sci. Food Agric. 2012, 92, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Jafarpour, D. Ultrasound and malic acid treatment of sweet lemon juice: Microbial inactivation and quality changes. J. Food Process. Preserv. 2020, 44, 14866. [Google Scholar] [CrossRef]
- Sommers, C.H.; Fan, X.T.; Handel, A.P.; Sokorai, K.B. Effect of citric acid on the radiation resistance of Listeria monocytogenes and frankfurter quality factors. Meat Sci. 2003, 63, 407–415. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Gardini, F.; Lanciotti, R. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol. 2015, 46, 311–319. [Google Scholar] [CrossRef]
- Pilizota, V.; Sapers, G.M. Novel browning inhibitor formulation for fresh-cut apples. J. Food Sci. 2004, 69, 140–143. [Google Scholar] [CrossRef]
- Christopher, J.M.; Emma, S.V.A.; Wayne, M.P. Enzyme-based amperometric biosensors for malic acid—A review. Anal. Chimica Acta 2021, 1156, 338218. [Google Scholar]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Rotta, E.M.; Rodrigues, C.A.; Sales-Fontes, I.C.; Maldaner, L.; Visentainer, J.V. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. Food Sci. Technol. 2019, 100, 397–403. [Google Scholar] [CrossRef]
- Robles-Sánchez, M.; Gorinstein, S.; Martín-Belloso, O.; Astiazarán-García, H.; González-Aguilar, G.; Cruz-Valenzuela, R. Minimal processing of tropical fruits: Antioxidant potential and its impact on human health. Interciencia 2007, 32, 227–232. [Google Scholar]
- Genard, M.; Reich, M.; Lobit, P.; Besset, J. Correlations between sugar and acid content and peach growth. J. Hortic. Sci. Biotechnol. 1999, 74, 772–776. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Oliveira, J.; Pathania, S.; Almeida, A.S.; Brites, C. Rice quality profiling to classify germplasm in breeding programs. J. Cereal Sci. 2017, 76, 17–27. [Google Scholar] [CrossRef]
- Granato, D.; Putnik, P.; Kovacevíc, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Da Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in chemometrics: Food authentication, microbiology, and effects of processing. Comp. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Composit. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Aubert, C.; Chalot, G. Physicochemical characteristics, vitamin C, and polyphenolic composition of four European commercial blood-flesh peach cultivars (Prunus persica L. Batsch). J. Food Composit. Anal. 2020, 86, 103337. [Google Scholar] [CrossRef]
Species | Name | Type of Germplasm 1 | Site | Province | Latitude (South) | Longitude (West) | Altitude (masl) | Annual Precipitation (mm) | Annual Average Temperature (°C) | Heliophany (Hours/Year) |
---|---|---|---|---|---|---|---|---|---|---|
Passiflora edulis f. flavicarpa | INIAP 2009 | EV | Portoviejo | Manabí | 01°09′43″ | 80°23′06″ | 52 | 852 | 26 | 1385 |
Passiflora edulis f. flavicarpa | P10 | BG | ||||||||
Passiflora sp. | Criollo POR1 | ELG | ||||||||
Passiflora sp. | Sweet PF | IG | Quevedo | Los Ríos | 01°04′24″ | 79°29′14″ | 74 | 1200 | 25 | 920 |
Passiflora edulis f. edulis | Criollo PICH1 | ELG | ||||||||
Passiflora alata | Gulupa | IG | Tumbaco | Pichincha | 00°12′57″ | 78°24′43″ | 2348 | 892 | 17 | 2039 |
Germplasm | Fruit | Lyophilized Pulp | a* (+Red, −Green) | b* (+Yellow, −Blue) |
---|---|---|---|---|
INIAP 2009 | 4.54 ± 0.48 c | 41.15 ± 0.55 b | ||
P10 | 2.35 ± 0.06 d | 47.56 ± 1.14 a | ||
Sweet passion fruit | −0.46 ± 0.02 e | 13.21 ± 0.17 d | ||
Gulupa | 6.44 ± 0.20 b | 36.17 ± 0.25 c | ||
Criollo POR1 | 3.53 ± 0.03 c | 38.00 ± 1.19 b | ||
Criollo PICH1 | 9.67 ± 0.20 a | 46.75 ± 0.24 a |
Germplasm | L* Lightness | C* Chroma | H° Hue |
---|---|---|---|
INIAP 2009 | 44.02 ± 0.48 ab | 41.41 ± 0.51 b | 1.46 ± 0.01 b |
P10 | 42.98 ± 0.60 b | 47.62 ± 1.13 a | 1.52 ± 0.01 a |
Sweet passion fruit | 45.37 ± 0.13 a | 13.21 ± 0.17 d | −1.54 ± 0.01 d |
Gulupa | 45.59 ± 0.35 a | 36.74 ± 0.21 c | 1.39 ± 0.01 c |
Criollo POR1 | 38.25 ± 0.22 c | 38.16 ± 1.18 bc | 1.48 ± 0.01 b |
Criollo PICH1 | 44.29 ± 0.23 ab | 47.73 ± 1.13 a | 1.37 ± 0.01 c |
Germplasm | Polyphenols * (mg GAE g−1) | Flavonoids * (mg catechin g−1) | Carotenoids * (µg β carotene g−1) | Vitamin C ** (mg 100 g pulp−1) | ABTS * (µmol TE g−1) | FRAP * (µmol TE g−1) |
---|---|---|---|---|---|---|
INIAP 2009 | 2.09 ± 0.01 a | 0.55 ± 0.01 ab | 42.51 ± 0.31 bc | 25.57 ± 0.58 bc | 43.00 ± 0.93 a | 53.61 ± 1.16 a |
P10 | 2.22 ± 0.03 a | 0.56 ± 0.01 ab | 35.20 ± 2.19 c | 23.24 ± 0.38 c | 39.80 ± 0.70 ab | 50.71 ± 0.89 a |
Sweet passion fruit | 2.08 ± 0.01 a | 0.44 ± 0.04 bc | 22.80 ± 0.95 d | 6.07 ± 0.12 d | 35.84 ± 0.43 c | 42.18 ± 0.51 b |
Gulupa | 1.64 ± 0.03 b | 0.45 ± 0.02 abc | 49.19 ± 2.58 b | 30.44 ± 0.89 a | 36.80 ± 0.03 bc | 41.69 ± 0.86 b |
Criollo POR1 | 1.61 ± 0.12 b | 0.38 ± 0.05 c | 45.37 ± 0.44 b | 25.96 ± 0.22 b | 37.35 ± 1.20 bc | 36.27 ± 1.52 c |
Criollo PICH1 | 1.41 ± 0.01 b | 0.62 ± 0.06 a | 67.73 ± 1.37 a | 23.52 ± 0.44 c | 30.32 ± 0.06 d | 32.14 ± 0.27 c |
Sugar Composition | Total Sugar (g 100 g−1) | Reducing Sugar (g 100 g−1) | Non-Reducing Sugars (g 100 g−1) | Citric Acid (g 100 g−1) | Malic Acid (g 100 g−1) |
---|---|---|---|---|---|
INIAP 2009 | 37.77 ± 0.74 d | 31.20 ± 0.31 e | 6.57 ± 1.05 ab | 22.50 ± 0.01 b | 3.43 ± 0.02 d |
P10 | 41.83 ± 0.77 bc | 31.94 ± 0.51 e | 9.90 ± 1.28 a | 31.77 ± 0.25 a | 5.19 ± 0.04 a |
Sweet passion fruit | 52.47 ± 0.36 a | 51.03 ± 0.34 a | 1.43 ± 0.02 c | 2.46 ± 0.02 d | 4.75 ± 0.05 b |
Gulupa | 43.86 ± 0.33 b | 40.25 ± 0.69 c | 3.61 ± 0.36 bc | 12.29 ± 0.17 c | 4.51 ± 0.04 b |
Criollo POR1 | 41.01 ± 0.31 c | 35.44 ± 0.11 d | 5.56 ± 0.41 b | 22.41 ± 0.10 b | 4.05 ± 0.05 c |
Criollo PICH1 | 51.47 ± 0.23 a | 48.27 ± 0.44 b | 3.19 ± 0.21 bc | 12.03 ± 0.07 c | 4.16 ± 0.13 c |
Vitamin C | Polyphenols | Flavonoids | ABTS | FRAP | Carotenoids | Total Sugars | Reducing Sugars | Non-Reducing Sugars | Citric Acid | Malic Acid | |
---|---|---|---|---|---|---|---|---|---|---|---|
Vitamin C | - | −0.40 | 0.12 | 0.18 | 0.03 | 0.63 * | −0.64 * | −0.62 * | 0.42 | 0.56 | −0.34 |
Polyphenols | −0.40 | - | 0.12 | 0.65 * | 0.85 ** | −0.79 ** | −0.27 | −0.36 | 0.43 | 0.30 | 0.29 |
Flavonoids | 0.05 | 0.37 | - | −0.16 | 0.16 | 0.42 | 0.08 | −0.03 | 0.24 | 0.21 | −0.08 |
ABTS | −0.09 | −0.34 | −0.29 | - | 0.87 | −0.50 | −0.78 ** | −0.79 ** | 0.61 | 0.56 | −0.19 |
FRAP | 0.26 | 0.62 * | 0.39 | 0.68 ** | - | −0.54 | −0.58 | −0.65 * | 0.61 | 0.48 | 0.02 |
Carotenoids | 0.62 * | −0.35 | 0.42 | −0.26 | 0.06 | - | 0.06 | 0.07 | −0.06 | 0.04 | −0.40 |
Total sugars | −0.09 | −0.15 | −0.31 | −0.19 | 0.31 | 0.06 | - | 0.96 *** | −0.65 | −0.78 ** | 0.37 |
Reducing sugars | 0.09 | 0.15 | 0.31 | 0.19 | −0.31 | −0.06 | 1.00 *** | - | −0.84 ** | −0.90 *** | 0.21 |
Non-reducing sugars | 0.09 | 0.15 | 0.31 | 0.19 | −0.31 | −0.06 | 1.00 *** | −1.00 *** | - | 0.91 *** | 0.14 |
Citric acid | −0.41 | 0.01 | 0.36 | −0.03 | −0.35 | 0.22 | 0.05 | −0.05 | −0.05 | - | 0.01 |
Malic acid | 0.71 ** | 0.10 | −0.30 | −0.37 | 0.18 | −0.63 | −0.26 | 0.26 | 0.26 | 0.46 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. https://doi.org/10.3390/plants11030328
Viera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L, Suárez-Tapia A, Koshio K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants. 2022; 11(3):328. https://doi.org/10.3390/plants11030328
Chicago/Turabian StyleViera, William, Takashi Shinohara, Iván Samaniego, Atsushi Sanada, Naoki Terada, Lenin Ron, Alfonso Suárez-Tapia, and Kaihei Koshio. 2022. "Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador" Plants 11, no. 3: 328. https://doi.org/10.3390/plants11030328
APA StyleViera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants, 11(3), 328. https://doi.org/10.3390/plants11030328