The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil CO2 Emissions, Temperature, and Humidity
2.2. Number and Mass of Earthworms in the Soil
2.3. Cereal Productivity
3. Materials and Methods
3.1. Field Condition and Crop Rotations
3.2. Agronomic Management
3.3. Meteorological Conditions
3.4. Methods and Analysis
3.5. Statistical Analysis of the Experimental Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciais, P.; Rayner, P.; Chevallier, F.; Bousquet, P.; Logan, M.; Peylin, P.; Ramonet, M. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives. Clim. Change 2010, 103, 69–92. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Sieling, K.; Christen, O. Crop rotation effects on yield of oilseed rape, wheat and barley and residual effects on the subsequent wheat. Arch. Agron. Soil Sci. 2015, 61, 1531–1549. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Grandy, A.S. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- DuPont, S.T.; Ferris, H.; Van Horn, M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl. Soil Ecol. 2009, 41, 157–167. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Parkin, T.B.; Jaynes, D.B.; Cambardella, C.A.; Meek, D.W.; Jung, Y.S. Examining changes in soil organic carbon with oat and rye cover crops using terrain covariates. Soil Sci. Soc. Am. J. 2006, 70, 1168–1177. [Google Scholar] [CrossRef]
- Studnicki, M.; Macholdt, J.; Macdonald, A.; Stępień, W. Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye. Agronomy 2021, 11, 519. [Google Scholar] [CrossRef]
- Negassa, W.; Price, R.F.; Basir, A.; Snapp, S.S.; Kravchenko, A. Cover crop and tillage systems effect on soil CO2 and N2O fluxes in contrasting topographic positions. Soil Tillage Res. 2015, 154, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Sosulski, T.; Szymanska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2021, 11, 21. [Google Scholar] [CrossRef]
- Haei, M.; Öquist, M.G.; Kreyling, J.; Ilstedt, U.; Laudon, H. Winter climate controls soil carbon dynamics during summer in boreal forests. Environ. Res. Lett. 2013, 8, 024017. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, H. Effects of soil temperature, flooding, and organic matter addition on N2O emissions from a soil of Hongze Lake Wetland, China. Sci. World J. 2014, 2014, 272684. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Muñoz-Sabater, J.; Haiden, T.; Balsamo, G.; Beljaars, A.; Isaksen, L.; de Rosnay, P.; Sandu, I.; Wedi, N. Soil temperature at ECMWF: An assessment using ground-based observations. J. Geophys. Res.—Atmos. 2015, 120, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Curry, J.P.; Schmidt, O. The feeding ecology of earthworms—A review. Pedobiologia 2007, 50, 463–477. [Google Scholar] [CrossRef]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Swift, S. Sequestration of carbon by soil. Soil Sci. 2011, 166, 858–871. [Google Scholar] [CrossRef]
- Koechy, M.; Hiederer, R.; Freibauer, A. Global distribution of soil organic C—part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost region, wetlands, and the world. Soil 2015, 1, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Bahn, M.; Reichstein, M.; Davidson, E.A.; Grünzweig, J.; Jung, M.; Carbone, M.S.; Epron, D.; Misson, L.; Nouvellon, Y.; Roupsard, O.; et al. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeoscience 2010, 7, 2147–2157. [Google Scholar] [CrossRef] [Green Version]
- Kuzyakov, Y.; Gavrichkova, O. Time lag between photosynthesis and CO2 efflux from soil: A review. Glob. Chang. Biol. 2010, 11, 7184. [Google Scholar] [CrossRef]
- Holka, M.; Bienkowski, J. Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Kravchenko, A.N. Effects of cover crops on soil CO2 and N2O emissions across topographically diverse agricultural landscapes in corn-soybean-wheat organic transition. Eur. J. Agron. 2021, 122, 126189. [Google Scholar] [CrossRef]
- Boincean, B.; Dent, D. Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils; Springer: Cham, Switzerland, 2019; p. 226. ISBN 978-3-030-22533-9. [Google Scholar]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Wu, L.F.; Li, B.; Qin, Y.; Gregorich, E. Soil CO2 emission and carbon budget of a wheat/maize annual double-cropped system in response to tillage and residue management in the North China Plain. Int. J. Agric. Sustain. 2017, 15, 253–263. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, G.B.; Xu, H.; Cai, Z.C.; Yagi, K. Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide. Nutr. Cycl. Agroecosystems 2009, 85, 31–40. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.; Huda, A.; Islam, M.R.; Sanabria, J.; Satter, M.A.; Islam, M.R.; Biswas, J.C.; Jahiruddin, M.; et al. Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutr. Cycl. Agroecosystems 2018, 110, 277–291. [Google Scholar] [CrossRef]
- Rose, T.J.; Quin, P.; Morris, S.G.; Kearney, L.J.; Kimber, S.; Rose, M.T.; van Zwieten, L. No evidence for higher agronomic N use efficiency or lower nitrous oxide emissions from enhanced efficiency fertilisers in aerobic subtropical rice. Field Crops Res. 2018, 225, 47–54. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N. Practices for reducing greenhouse gas emissions from rice production in Northeast Thailand. Agriculture 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Xing, X.; Li, G.; Ding, Y.; Dou, F.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L. Effects of different controlled-release nitrogen fertilizers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crops Res. 2017, 205, 147–156. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Nayak, A.K.; Mohanty, S.; Tripathi, R.; Shahid, M.; Kumar, A.; Raja, R.; Panda, B.B.; Roy, K.S.; Neogi, S.; et al. Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res. 2013, 129, 93–105. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Hu, R.; Lin, S.; Hatano, R.; Feng, M.; Lu, L.; Ahamadou, B.; Du, L. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agric. Ecosyst. Environ. 2009, 131, 292–302. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, P.; Lu, P.; Wang, Y.S.; Lin, Y.B.; Rao, X.Q. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agric. Ecosyst. Environ. 2008, 124, 125–135. [Google Scholar] [CrossRef]
- Yan, X.; Yagi, K.; Akiyama, H.; Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Chang. Biol. 2005, 11, 1131–1141. [Google Scholar] [CrossRef]
- Domínguez, G.E.; Fedele, G.; Languasco, L.; Rossi, V. Interactions among fungicides applied at different timings for the control of Botrytis bunch rot in grapevine. Crop Prot. 2019, 120, 30–33. [Google Scholar] [CrossRef]
- Kliszcz, A.; Puła, J. The Change of pH Value and Octolasion cyaneum Savigny Earthworms’ Activity under Stubble Crops after Spring Triticale Continuous Cultivation. Soil Syst. 2020, 4, 39. [Google Scholar] [CrossRef]
- Tripolskaja, L.; Šidlauskas, G. The influence of catch crops for green manure and straw on the infiltration of atmospheric precipitation and nitrogen leaching. Zemdirb. Agric. 2010, 97, 83–92. [Google Scholar]
- Haimi, J. Decomposer animals and bioremediation of soils. Environ. Pollut. 2000, 107, 233–238. [Google Scholar] [CrossRef]
- Santana, A.L.; Queiros, L.D.; Maetinez, J.; Macedo, G.A. Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food Bioprod. Process. 2019, 117, 194–202. [Google Scholar] [CrossRef]
- Buivydaitė, V.V.; Vaičys, M.; Motuzas, A.J. Lithuanian Soil Classification; Lietuvos Mokslas: Vilnius, Lithuania, 2001; p. 139. ISBN 9986795118. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden, II: Chemische Extractionsmetoden zu Phosphorund Kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Carter, M.R. Soil Sampling Methods and Analysis; Canadian Society of Soil Science: Pinawa, MB, Canada; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 359–371. [Google Scholar]
- SPSS Instant 10. Statistics I; National Opinion Research Center: Chicago, IL, USA, 2000; 663p. [Google Scholar]
- Leonavičienė, T. SPSS Programų Paketo Taikymas Statistiniuose Tyrimuose; Lithuanian University of Educational Sciences: Vilnius, Lithuanian, 2007; p. 126. ISBN 978-9955-20-222-6. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb.-Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
Crop Rotation | Crop Rotation Components |
---|---|
Intensive | (1) Vetch-oat (Vicia sativa L. + Avena sativa L.) mixture for fodder + undersow; (2) Perennial grasses (Trifolium pratense L.+Phleum pratense L.) (first year); (3) Winter rye (Secale cereale L.) and, after an intermediate crop, winter rape (Brassica napus L.); (4) Potatoes (Solanum tuberosum L.) and, after an intermediate crop, winter rye (Secale cereale L.) for fodder; (5) Corn (Zea mays L.); (6) Spring barley (Hordeum vulgare L.) and, after an intermediate crop, oil radishes (Raphanus sativus L.). |
Field rotation with row crops | (1) Winter wheat (Triticum aestivum L.) + undersow; (2) Perennial grasses grasses (Trifolium pratense L. + Phleum pratense L.) (first year); (3) Perennial grasses grasses (Trifolium pratense L. + Phleum pratense L.) (second year); (4) Winter rye (Secale cereale L.); (5) Sugar beet (Beta vulgaris L.); (6) Spring barley (Hordeum vulgare L.); (7) Oat (Avena sativa L.); (8) Black fallow. |
Rye monoculture | (1) Winter rye (Secale cereale L.). |
Green manure | (1) Lupines (Lupinus angustifolius L.) for green manure; (2) Winter rye (Secale cereale L.); (3) Winter rape (Brassica napus L.) for green manure; (4) Winter rye (Secale cereale L.); (5) Potatoes (Solanum tuberosum L.); (6) Spring barley (Hordeum vulgare L.). |
Three-course | (1) Black fallow; (2) Winter rye (Secale cereale L.); (3) Oat (Avena sativa L.). |
Crop Rotations | CROPS | SOURCE of Organic Matter | |||
---|---|---|---|---|---|
MANURE (55 t ha−1) | STRAW | Green Manure | Perennial Grasses | ||
Intensive | Winter rye | + | + | + | + |
Field with row crops | Winter rye | + | + | + | |
Rye monoculture | Winter rye | + | |||
For green manure | Winter rye | + | + | ||
Three-course | Winter rye | + |
Year/Month | 09 | 10 | 11 | 12 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | SAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–2016 | 14.3 | 6.2 | 4.9 | 2.6 | −7.1 | 0.6 | 2.1 | 7.4 | 15.7 | 17.2 | 17.9 | 16.9 | 2544.7 |
2016–2017 | 13.5 | 5.3 | 1.2 | 1.2 | −3.7 | −1.5 | 3.7 | 5.6 | 12.9 | 13.4 | 16.8 | 17.5 | 2331.5 |
Long-term average 1974–2018 | 12.6 | 6.8 | 2.8 | −2.8 | −3.7 | −4.7 | 0.3 | 6.9 | 13.2 | 16.1 | 18.7 | 17.3 | - |
Year/Month | 09 | 10 | 11 | 12 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–2016 | 56.6 | 18.2 | 95.6 | 61.3 | 41.6 | 68.4 | 47.2 | 41.2 | 36.4 | 83.9 | 162.9 | 114.9 | 828.2 |
2016–2017 | 22.5 | 101.5 | 66.8 | 56.5 | 18.4 | 31.3 | 53.1 | 73.7 | 10.5 | 80.2 | 79.6 | 5.5 | 599.6 |
Long-term average 1974–2018 | 60.0 | 51.0 | 51.0 | 41.9 | 38.1 | 35.1 | 37.2 | 41.3 | 61.7 | 76.9 | 96.6 | 88.9 | 679.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. https://doi.org/10.3390/plants11030431
Bogužas V, Skinulienė L, Butkevičienė LM, Steponavičienė V, Petrauskas E, Maršalkienė N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants. 2022; 11(3):431. https://doi.org/10.3390/plants11030431
Chicago/Turabian StyleBogužas, Vaclovas, Lina Skinulienė, Lina Marija Butkevičienė, Vaida Steponavičienė, Ernestas Petrauskas, and Nijolė Maršalkienė. 2022. "The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period" Plants 11, no. 3: 431. https://doi.org/10.3390/plants11030431
APA StyleBogužas, V., Skinulienė, L., Butkevičienė, L. M., Steponavičienė, V., Petrauskas, E., & Maršalkienė, N. (2022). The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants, 11(3), 431. https://doi.org/10.3390/plants11030431