Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Bulk Density
2.2. Soil Pore Space Distribution
2.3. Soil Water Retention Capacity
2.4. CO2 Emission and Volumetric Water Content Available to Plants
3. Material and Methods
3.1. Site Description
3.2. Experiment Design and Agricultural Practices
3.3. Meteorological Conditions
3.4. Methods and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Report EUR 25186 EN. The State of Soil in Europe. A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report; SOER: Luxembourg, 2012; p. 76. [Google Scholar]
- Feiza, V.; Feizienė, D.; Sinkevičienė, A.; Bogužas, V.; Putramentaitė, A.; Lazauskas, S.; Pranaitienė, S. Soil water capacity, pore-size distribution and CO2 e-flux in different soils after long-term no-till management. Zemdirb. Agric. 2015, 102, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Moldrup, P.; Chamindu Deepagoda, T.K.K.; Hamamoto, S.; Komatsu, T.; Kawamoto, K.; Rolston, D.E.; de Jonge, L.W. Structure-dependent water-induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil. Vadose Zone J. 2013, 12, vzj2013.01.0026. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma 2012, 181, 22–29. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R.; Ascough, I.I. JC Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Sarkar, S.; Paramanick, M.; Goswami, S.B. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Tillage Res. 2007, 93, 94–101. [Google Scholar] [CrossRef]
- Bastida, F.; Selevsek, N.; Torres, I.F.; Hernández, T.; García, C. Soil restoration with organic amendments: Linking cellular functionality and ecosystem processes. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kouwenhoven, J.K.; Perdok, U.D.; Boer, J.; Oomen, G.J.M. Soil management by shallow mouldboard ploughing in The Netherlands. Soil Tillage Res. 2002, 65, 125–139. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Steduto, P.; Fereres, E. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 2007, 25, 209–231. [Google Scholar] [CrossRef]
- Feizienė, D.; Feiza, V.; Kadžienė, G. The influence of meteorological conditions on soil water vapour exchange rate and CO2 emission under different tillage systems. Zemdirb. Agric. 2009, 96, 3–22. [Google Scholar]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Kochiieru, M.; Lamorski, K.; Feiza, V.; Feizienė, D.; Volungevičius, J. The effect of soil macroporosity, temperature and water content on CO2 efflux in the soils of different genesis and land management. Zemdirb. Agric. 2018, 105, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Weiske, A.; Michel, J. Greenhouse Gas Emissions and Mitigation Costs of Selected Mitigation Measures in Agricultural Production; Final Version 8 January 2007. Specific Targeted Research Project Nsspe-CT-2004-503604, MEACAP WP3 D15a; Institute for European Environmental Policy: London, UK, 2007; pp. 18–26. [Google Scholar]
- Reicosky, D.C.; Archer, D.W. Moldboard plow tillage depth and short-term carbon dioxide release. Soil Tillage Res. 2007, 94, 109–121. [Google Scholar] [CrossRef]
- Scala, L.A.N., Jr.; Bolonhezi, D.; Pereira, G.T. Shortterm soil CO2 emission after conventional and reduced tillage of a no till sugar cane area in Southern Brazil. Soil Tillage Res. 2006, 91, 244–248. [Google Scholar] [CrossRef]
- Forte, A.; Fiorentino, N.; Fagnano, M.; Fierro, A. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Tillage Res. 2017, 166, 167–178. [Google Scholar] [CrossRef]
- Gong, Y.; Li, P.; Lu, W.; Nishiwaki, J.; Komatsuzaki, M. Response of soil carbon dioxide emissions to no-tillage and moldboard plow systems on Andosols in a humid, subtropical climate, Japan. Geoderma 2021, 386, 114920. [Google Scholar] [CrossRef]
- Liu, X.J.; Mosier, A.R.; Halvorson, A.D.; Zhang, F.S. Impacts on nitrogen placement on NO, N2O, CH4 and CO2 fluxes from non-tilled soil compared with conventional-tilled soil. Plant Soil 2006, 280, 177–188. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Bogunović, I.; Kisić, I.; Jurisić, A. Soil compaction under different tillage system on Stagnic Luvisols. Agric. Conspec. Sci. 2014, 79, 57–63. [Google Scholar]
- Feiza, V.; Šimanskaitė, D.; Deveikytė, I. The possibility of reduction of primary tillage on sandy loam soil (summary)/Pagrindinio žemės dirbimo supaprastinimo galimybės lengvo priemolio dirvose. Agric. Sci. Artic. 2005, 92, 66–79. [Google Scholar]
- Romaneckas, K.; Šarauskis, E.; Avižienytė, D.; Buragienė, S.; Arney, D. The main physical properties of planosol in maize (Zea mays L.) cultivation under different long-term reduced tillage practices in the Baltic region. J. Integr. Agric. 2015, 14, 1309–1320. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Li, S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 2010, 393, 53–64. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B.; Zidar, T. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management. Geoderma 2016, 268, 52–59. [Google Scholar] [CrossRef]
- Helliwell, J.R.; Sturrock, C.J.; Grayling, K.M.; Tracy, S.R.; Flavel, R.J.; Young, I.M.; Mooney, S.J. Applications of Xray computed tomography for examining biophysical interactions and structural development in soil systems: A review. Eur. J. Soil Sci. 2013, 64, 279–297. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.C.; Li, X.Y.; Liu, L.Y. Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet Plateau. Geoderma 2016, 264, 244–251. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.Y.; Wang, P.; Liu, Y.; Wu, X.C.; Li, Z.C.; Liu, L.Y. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in northern China. Soil Tillage Res. 2019, 187, 21–30. [Google Scholar] [CrossRef]
- Li, X.Y.; Hu, X.; Zhang, Z.H.; Peng, H.Y.; Zhang, S.Y.; Li, G.Y.; Ma, Y.J. Shrub hydropedology: Preferential water availability to deep soil layer. Vadose Zone J. 2013, 12, vzj2013-01. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.L.; Liu, Y.; Yang, Z.; Cui, Z.; Deng, L.; Chang, X.F.; Shi, Z.H. Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. J. Hydrol. 2017, 546, 133–139. [Google Scholar] [CrossRef]
- Musso, A.; Lamorski, K.; Sławiński, C.; Geitner, C.; Hunt, A.; Greinwald, K.; Egli, M. Evolution of soil pores and their characteristics in a siliceous and calcareous proglacial area. Catena 2019, 182, 104154. [Google Scholar] [CrossRef]
- Jemai, I.; Aissa, N.B.; Guirat, S.B.; Ben-Hammouda, M.; Gallali, T. Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid Tunisian climate. Soil Tillage Res. 2013, 126, 26–33. [Google Scholar] [CrossRef]
- Sonnleitner, E.; Hagens, S.; Rosenau, F.; Wilhelm, S.; Habel, A.; Jäger, K.E.; Bläsi, U. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 2003, 35, 217–228. [Google Scholar] [CrossRef]
- Sandin, M.; Koestel, J.; Jarvis, N.; Larsbo, M. Post-tillage evolution of structural pore space and saturated and near-saturated hydraulic conductivity in a clay loam soil. Soil Tillage Res. 2017, 165, 161–168. [Google Scholar] [CrossRef]
- Idoko Haruna, S.; Vakanda Nkongolo, N. Effects of tillage, rotation and cover crop on the physical properties of a silt-loam soil. Int. Agrophysics 2015, 29, 137–142. [Google Scholar] [CrossRef]
- Zúñiga, F.; Horn, R.; Rostek, J.; Peth, S.; Uteau, D.; Dörner, J. Anisotropy of intensity–capacity parameters on Aquands with contrasting swelling–shrinkage cycles. Soil Tillage Res. 2019, 193, 101–113. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Çelik, İ.; Günal, H.; Acar, M.; Acir, N.; Barut, Z.B.; Budak, M. Strategic tillage may sustain the benefits of long-term no-till in a Vertisol under Mediterranean climate. Soil Tillage Res. 2019, 185, 17–28. [Google Scholar] [CrossRef]
- Vizioli, B.; Cavalieri-Polizeli KM, V.; Tormena, C.A.; Barth, G. Effects of long-term tillage systems on soil physical quality and crop yield in a Brazilian Ferralsol. Soil Tillage Res. 2021, 209, 104935. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Han, C.R.; Groffman, P.M. Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations. Soil Tillage Res. 1988, 12, 135–148. [Google Scholar] [CrossRef]
- Vinten AJ, A.; Ball, B.C.; O’sullivan, M.F.; Henshall, J.K. The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. J. Agric. Sci. 2002, 139, 231–243. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ball, B.C. Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation. Eur. J. Soil Sci. 2013, 64, 357–373. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, J.D. Income and CO2 emissions: Evidence from panel unit root and cointegration tests. Energy Policy 2009, 37, 413–423. [Google Scholar] [CrossRef]
- Morell, F.J.; Álvaro-Fuentes, J.; Lampurlanés, J.; Cantero-Martínez, C. Soil CO2 fluxes following tillage and rainfall events in a semiarid Mediterranean agroecosystem: Effects of tillage systems and nitrogen fertilization. Agric. Ecosyst. Environ. 2010, 139, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, P.E.; Seiler, J.R. Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. For. Ecol. Manag. 2004, 192, 297–311. [Google Scholar] [CrossRef]
- Lopes de Gerenyu, V.O.; Rozanova, L.N.; Kudeyarov, V.N. Effect of soil temperature and moisture on O2 evolution rate of cultivated Phaeozem: Analyses of a long-term field experiment. Plant Soil Environ. 2005, 5, 2013–2219. [Google Scholar]
- Guzzetti, L.; Fiorini, A.; Panzeri, D.; Tommasi, N.; Grassi, F.; Taskin, E.; Labra, M. Sustainability perspectives of Vigna unguiculata L. Walp. Cultivation under no tillage and water stress conditions. Plants 2020, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Riley, H. Grain yields and soil properties on loam soil after three decades with conservation tillage in southeast Norway. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2014, 64, 185–202. [Google Scholar] [CrossRef]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Skinulienė, L.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirb. Agric. 2018, 105, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Adjuik, T.A.; Davis, S.C. Machine Learning Approach to Simulate Soil CO2 Fluxes under Cropping Systems. Agronomy 2022, 12, 197. [Google Scholar] [CrossRef]
- Bogužas, V.; Kairytė, A.; Jodaugienė, D. Soil physical properties and earthworms as affected by soil tillage systems, straw and green manure management. Zemdirb. Agric. 2010, 97, 3–14. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report; FAO: Rome, Italy, 2014; Volume 106, p. 188. [Google Scholar]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar] [CrossRef]
- Schjønning, P.; Munkholm, L.J.; Moldrup, P.; Jacobsen, O.H. Modelling soil pore characteristics from measurements of air exchange: The long-term effects of fertilization and crop rotation. Eur. J. Soil Sci. 2002, 53, 331–339. [Google Scholar] [CrossRef]
- Kadžienė, G.; Munkholm, L.J.; Mutegi, J.K. Root growth conditions in the topsoil as affected by tillage intensity. Geoderma 2011, 166, 66–73. [Google Scholar] [CrossRef]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef]
- SPSS Instant 10. Statistics I; IBM: Armonk, NY, USA, 2000; p. 663.
- Leonavičienė, T. SPSS Programų Paketo Taikymas Statistiniuose Tyrimuose; Lithuanian University of Educational Sciences: Vilnius, Lithuanian, 2007; p. 126. ISBN 978-9955-20-222-6. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
Soil Depths, cm | Factor A | Factor B | |||
---|---|---|---|---|---|
R | S | CP | GMR | NT | |
5–10 | 1.52 | 1.51 | 1.57 | 1.52 | 1.53 |
15–20 | 1.53 | 1.50 | 1.53 | 1.53 | 1.49 |
30–35 | 1.52 | 1.48 | 1.56 | 1.47 | 1.47 |
Indices | Year | Factor A | Factor B | |||
---|---|---|---|---|---|---|
R | S | CP | GMR | NT | ||
CO2 emission, μmol s−1 | 2013 | 3.93 | 3.85 | 3.95 | 3.90 | 3.95 |
2019 | 3.73 | 3.68 | 3.67 | 3.47 | 3.68 | |
Volumetric water content, m3 m−3 | 2013 | 0.193 | 0.194 | 0.184 | 0.194 | 0.191 |
2019 | 0.210 | 0.188 | 0.177 | 0.233 | 0.186 |
Index | Average Value |
---|---|
Sand % | 35.6 |
Clay % | 19.0 |
Silt % | 45.4 |
pHKCl | 7.7 |
Soil organic carbon (SOC) g kg−1 | 16.6 |
Available phosphorus (P2O5) mg kg−1 | 116.0 |
Available potassium (K2O) mg kg−1 | 111.0 |
Year/Month | 04 | 05 | 06 | 07 | 08 | SAT |
---|---|---|---|---|---|---|
2013 | 6.1 | 12.3 | 15.6 | 17.6 | 16.6 | 1675.6 |
2019 | 9.1 | 13.0 | 19.8 | 17.1 | 18.1 | 1800.2 |
Long-term average 1974–2019 | 6.9 | 13.2 | 16.1 | 18.7 | 17.3 | 1918.5 |
Year/Month | 04 | 05 | 06 | 07 | 08 | Sum |
---|---|---|---|---|---|---|
2013 | 56.5 | 63.8 | 45.9 | 118.5 | 67.2 | 351.9 |
2019 | 0.6 | 29.9 | 49.4 | 60.1 | 68.2 | 208.2 |
Long-term average 1974–2019 | 41.3 | 61.7 | 76.9 | 96.6 | 88.9 | 365.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steponavičienė, V.; Bogužas, V.; Sinkevičienė, A.; Skinulienė, L.; Vaisvalavičius, R.; Sinkevičius, A. Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants 2022, 11, 614. https://doi.org/10.3390/plants11050614
Steponavičienė V, Bogužas V, Sinkevičienė A, Skinulienė L, Vaisvalavičius R, Sinkevičius A. Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants. 2022; 11(5):614. https://doi.org/10.3390/plants11050614
Chicago/Turabian StyleSteponavičienė, Vaida, Vaclovas Bogužas, Aušra Sinkevičienė, Lina Skinulienė, Rimantas Vaisvalavičius, and Alfredas Sinkevičius. 2022. "Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention" Plants 11, no. 5: 614. https://doi.org/10.3390/plants11050614
APA StyleSteponavičienė, V., Bogužas, V., Sinkevičienė, A., Skinulienė, L., Vaisvalavičius, R., & Sinkevičius, A. (2022). Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants, 11(5), 614. https://doi.org/10.3390/plants11050614