Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L.
Abstract
:1. Introduction
2. Materiel and Methods
2.1. Plants Materials
2.2. Essential Oil Isolation
2.3. Gas Chromatography and Gas Chromatography–Mass Spectrometry
2.4. Determination of Bioactive Compounds
2.4.1. Extract Preparation
2.4.2. Quantity Composition of Polyphenol
2.4.3. Total Flavonoids Content
2.4.4. HPLC Analysis of Phenolic Profile
3. Statistical Methods
4. Results and Discussion
4.1. Qualitative Analysis of Essential Oil Composition and Population Structure
4.2. Analysis of Total Polyphenol
4.3. Individual Phenolic Acids Compounds in M. vulgare
4.4. Analysis of Flavonoids Composition
4.5. Structure of Population Based on Polyphenols and Flavonoids Content
4.6. PCA of Combined Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akther, N.; Shawl, A.S.; Sultana, S.; Chandan, B.K.; Akhter, M. Hepatoprotective activity of Marrubium vulgare against paracetamol induced toxicity. J. Pharm. Res. 2013, 7, 565. [Google Scholar] [CrossRef]
- de Olivera, P.A.; Santin, J.R.; Lemos, M.; Klein, L.C.J.; Couto, A.G.; Bittencourt, C.M.S.; Cechinel, F.; Valdir, F.A. Gastroprotective activity of methanol extract and marrubiin obtained from leaves of Marrubium vulgare L. (Lamiaceae). J. Pharm. Pharmacol. 2011, 63, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- El Bardai, S.; Lyoussi, B.; Wibo, M.; Morel, N. Comparative study of theantihypertensive activity of Marrubium vulgare and of the dihydropyridine calcium antagonist amlodipine in spontaneously hypertensive rat. Clin. Exp. Hypertens. 2004, 26, 465–474. [Google Scholar] [CrossRef]
- Zaouali, Y.; Messaoud, C.; Ben Salah, A.; Boussaïd, M. Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flavour Fragr. J. 2005, 20, 512–520. [Google Scholar] [CrossRef]
- Zaabat, N.; Hay, A.; Michalet, S.; Darbour, N.; Bayet, C.; Skandrani, I.; Chekir-Ghedira, L.; Akkal, S.; Dijoux-Franca, M. Antioxidant and antigenotoxic properties of compounds isolated from Marrubium deserti de Noé. Food Chem. Toxicol. 2011, 49, 3328–3335. [Google Scholar] [CrossRef] [PubMed]
- Pottier-Alapetite, G. Flore de la Tunisie, Angiospermes dicotyledones; Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture: Ouled Haffouz, Tunisia, 1981; 654p.
- Kadri, A.; Zarai, Z.; Ahmed Békir, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical composition and antioxidant activity of Marrubium vulgare L. essential oil from Tunisia. Afr. J. Biotechnol. 2011, 10, 3908–3914. [Google Scholar]
- Boudjelal, A.; Henchiri, C.; Siracusa, L.; Sari, M.; Ruberto, G. Compositional analysis and in vivo anti-diabetic activity of wild Algerian Marrubium vulgare L. infusion. Fitoterapia 2012, 83, 286–292. [Google Scholar] [CrossRef]
- Hussain, J.; Ullah, R.; Khan, A.; Mabood, F.; Shah, M.R.; Al-Harrasi, A.; Gilani, A.H. Antispasmodic and Ca++ antagonist potential of marrubiin, a labdane type diterpene from Phlomis bracteosa. J. Pharm. Res. 2011, 4, 178–180. [Google Scholar]
- Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Siddiqui, M.W.; Ayala-Zavala, J.F. Potential of Medicinal Plants as Antimicrobial and Antioxidant Agents in Food Industry: A Hypothesis. J. Food Sci. 2014, 79, 129–137. [Google Scholar] [CrossRef]
- Yousefi, K.; Soraya, H.; Fathiazad, F.; Khorrami, A.; Hamedeyazdan, S.; Maleki-Dizaji, N.; Garjani, A. Cardioprotective effect of methanolic extract of Marrubium vulgare L. on isoproterenol-induced acute myocardial infarction in rats. Indian J. Exp. Biol. 2013, 51, 653–660. [Google Scholar]
- Yildirim, A.B.; Karakas, F.P.; Turker, A.U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac. J. Trop. Med. 2013, 6, 616–624. [Google Scholar] [CrossRef]
- Daoudi, A.; Aarab, L.; Abdel-Sattar, E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol. Ind. Health 2013, 29, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Edziri, H.; Mastouri, M.; Aouni, M.; Verschaeve, L. Polyphenols content, antioxidant and antiviral activities of leaf extracts of Marrubium deserti growing in Tunisia. S. Afr. J. Bot. 2012, 80, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Masoodi, M.H.; Siddique, A.H.; Khan, S. A new monoterpene acid from Marrubium vulgare with potential antihepatotoxic activity. Nat. Prod. Res. 2010, 24, 1671–1680. [Google Scholar] [CrossRef]
- Stulzer, H.K.; Tagliari, M.P.; Zampirolo, J.A.; Cechinel, V.; Schlemper, V. Antioedematogenic effect of marrubiin obtained from Marrubium vulgare. J. Ethnopharmacol. 2006, 108, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Insecticidal activity of certain medicinal plants. Fitoterapia 2004, 75, 745–749. [Google Scholar] [CrossRef]
- Baccelli, C.; Navarro, I.; Block, S.; Abad, A.; Morel, N.; Quetin-Leclercq, J. Vasorelaxant activity of diterpenes from Croton zambesicus and synthetic trachylobanes and their structure-activity relationships. J. Nat. Prod. 2007, 70, 910–917. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Akkaya, A. Antibacterial Activities of Marrubium catariifolium and Phlomis pungens Var. Hirta Grown Wild in Eastern Anatolia, Turkey. Int. J. Agric. Biol. 2011, 13, 105–109. [Google Scholar]
- Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in vitro evaluation of antibacterial, antifungal, and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Emberger, L. Une classification biogeographique des climats. Recl. Trav. Lab. Bot. Géol. Zool. Fac. Sci. Univ. Montpel. 1966, 7, 143. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2004. [Google Scholar]
- Mau, J.L.; Chao, G.R.; Wu, K.T. Antioxidant properties of methanolic extracts from several ear mushrooms. J. Agric. Food Chem. 2001, 49, 5461–5467. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouma, D.; Stocker, P.; Vidal, N. Antioxydant activity of some Algerian medicinal plant’s extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- SAS Institue Inc. SASSAS User’s Guide: SAS STAT, SAS BASIC. Version 6.2, 4th ed.; SAS circl, Box 8000 Cary, NC 27512-8000; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Chappell, J.; Coates, R.M. Natural Products Structural Diversity-I Secondary Metabolites: Organization and Biosynthesis. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Goodarzi, S.; Hadjiakhoondi, A.; Yassa, N.; Khanavi, M.; Tofighi, Z. New Benzodioxole Compounds from the Root Extract of Astrodaucus persicus. Iran J. Pharm. Res. 2016, 15, 901–906. [Google Scholar] [PubMed]
- Gupta, S.D.; Rao, G.B.; Bommaka, M.K.; Raghavendra, N.M.; Aleti, S. Eco-sustainable synthesis and biological evaluationof 2-phenyl 1,3-benzodioxole derivatives as, DNA binding and antibacterial agents. Arab. J. Chem. 2016, 9, S1875–S1883. [Google Scholar] [CrossRef] [Green Version]
- Rezgui, M.; Mabrouk, B.; Neng, N.; Nogueira, J.M.; Ben-Kaab, L.B.; Machado Araújo, M.E. Evaluation of Marrubium vulgare GrowingWild in Tunisia for Its Potential as a Dietary Supplement. Foods 2021, 10, 2864. [Google Scholar] [CrossRef] [PubMed]
- Morteza-Semnani, K.; Saeedi, M. The Essential Oil Composition of Marrubium astracanicum Jacq. Iran. J. Essent. 2004, 7, 239–242. [Google Scholar]
- Khanavi, M.; Ghasemian, L.; Hosseiny Motlagh, E.; Hadjiakhoondi, A.; Shafiee, A. Chemical composition of the essential oils of Marrubium parviflorum fisch. & C. A. Mey and Marrubium vulgare L. from Iran. Flavour Fragr. J. 2005, 20, 324–326. [Google Scholar]
- Asadipour, A.; Mehrabani, M.; Nazeri, V.; Tabarraii, M. Composition of the essential oil of Marrubium vulgare L. Pharm. Sci. 2005, 2, 77–82. [Google Scholar]
- Zawislak, G. The Chemical Composition of the Essential Oil of Marrubium Vulgare L. from Poland. Farmacia 2012, 60, 287–292. [Google Scholar]
- Nagy, M.; Svajdlenka, E. Comparison of Essential Oils from Marrubium vulgare L. and M. peregrinum L. J. Essent. Oil Res. 1998, 10, 585–587. [Google Scholar] [CrossRef]
- Weel, K.C.G.; Venskutonis, P.R.; PukalsKas, A.; Gruzdiene, D.; Linssen, J.P.H. Antioxidant activity of horehound (Marrubium vulgare) growing Lithuania. Eur. J. Lipid Sci. Technol. 1999, 101, 395–400. [Google Scholar]
- Mkaddem, M.; Boussaid, M.; Ben Fadhel, N. Variability of Volatiles in Tunisian Mentha pulegium L. (Lamiaceae). J. Essent. Oil Res. 2006, 19, 211–214. [Google Scholar] [CrossRef]
- Ben El Hadj Ali, I.; Guetat, A.; Boussaid, M. Genetic diversity and structure of wild Tunisian Thymus capitatus (L.) Hoffm. et Link. (Lamiaceae) assessed using isozyme markers. Afr. J. Ecol. 2012, 50, 140–151. [Google Scholar] [CrossRef]
- Nevo, E. Genetic Diversity in Nature. Evol. Biol. 1988, 23, 217–246. [Google Scholar]
- Prober, S.M.; Brown, A.H.D. Conservation of the Grassy White Box Woodlands: Population Genetics and Fragmentation of Eucalyptus albens. Conserv. Biol. 1994, 8, 1003–1013. [Google Scholar] [CrossRef]
- Zaouali, Y.; Boussaid, M. Isoenzyme markers and volatiles in Tunisian Rosmarinus Officinalis L. (Lamiaceae): A comparative analysis of population structure. Biochem. Syst. Ecol. 2007, 36, 11–21. [Google Scholar] [CrossRef]
- Chouaieb, H.; Ayadi, I.; Zouari, S.; Fakhfakh, N.; Zaidi, S.; Zouari, N. Effect of Phenological Stage and Geographical Location on Antioxidant Activities of Tunisian Horehound: Marrubium vulgare L. (Lamiaceae). J. Biol. Act. Prod. 2012, 2, 232–238. [Google Scholar]
- Boulila, A.; Sanaa, A.; Salem, I.B.; Rokbeni, N.; M’rabet, Y.; Hosni, K.; Fernandez, X. Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare L. (Lamiaceae). Ind. Crops Prod. 2015, 76, 616–622. [Google Scholar] [CrossRef]
- Wink, M.; Carey, D. Variability of quinolizidine alkaloid profiles of Lupinus argenteus (Fabaceae) from North America. Biochem. Syst. Ecol. 1994, 22, 663–666. [Google Scholar] [CrossRef]
- Zaouali, Y.; Chograni, H.; Trimech, R.; Boussaid, M. Genetic diversity and population structure among Rosmarinus officinalis L. (Lamiaceae) varieties: Var. typicus Batt. and var. troglodytorum Maire. based on multiple traits. Ind. Crops Prod. 2012, 38, 166–176. [Google Scholar] [CrossRef]
- Fawole, O.A.; Ndhlala, A.R.; Amoo, S.O.; Finnie, J.F.; Van Staden, J. Anti-inflammatory, and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa. J. Ethnopharmacol. 2009, 123, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. varscolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Lisiewska, Z.; Kmiecik, W.; Korus, A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Comp. Analyse. 2006, 19, 134–140. [Google Scholar] [CrossRef]
- Yokoi, N.; Fujiwara, Y.; Wang, H.Y.; Kitao, M.; Hayashi, C.; Someya, T.; Tanamori, M.; Oiso, Y.; Tajima, N.; Yamada, Y.; et al. Identification, and functional analysis of CBLB mutation in type 1 diabetes. Biochem. Biophis. Res. 2008, 368, 37–42. [Google Scholar] [CrossRef]
- Aćimović, M.; Jeremić, K.; Salaj, N.; Gavarić, N.; Kiprovski, B.; Sikora, V.; Zeremski, T. Marrubium vulgare L.: A Phytochemical and Pharmacological Overview. Molecules 2020, 12, 2898. [Google Scholar] [CrossRef]
- Matkowski, A.; Piotrowska, M. Antioxidant, and free radical scavenging activities of some medicinal plants from the Lamiaceae. Fitoterapia 2006, 5, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Amri, B.; Martino, E.; Vitulol, F.; Corana, F.; Ben-Kaâb, L.B.; Rui, M.; Rossi, D.; Mori, M.; Rossi, S.; Collina, S. Marrubium vulgare L. Leave Extract: Phytochemical Composition, Antioxidant and Wound Healing Properties. Molecules 2017, 22, 1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanković, M.S. Total phenolic, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac. J. Sci. 2011, 33, 63–72. [Google Scholar]
- Djahral, A.B.; Bordjiba, O.; Benkherara, S. Activité antibactérienne des flavonoides d’une plante médicinale spontanée Marrubium vulgare L. de la région d’El Tarf (Nord-Est Algérien). Rev. Sci. Technol. 2012, 24, 29–37. [Google Scholar]
Populations | Code | Bioclimatic Zone | Variant Climatic | Rainfall (mm/year) | Altitude | Longitude | Latitude |
---|---|---|---|---|---|---|---|
Emdjez elbeb (Beja) | 1 | Sub-humid | Hivers doux | 640 | 480 | 36°74′ | 9°14′ |
Sidi Othmen (Bizerte) | 2 | Sub-humid | Hivers doux | 610 | 508 | 37°16′ | 9°65′ |
Hammamet (Nabeul) | 3 | Inferior semi-arid | Hivers doux | 300–400 | 90 | 36°4′ | 10°58′ |
Bouficha (Sousse) | 4 | Inferior semi-arid | Hivers doux | 339 | 25 | 35°83′ | 10°64′ |
Zagouan | 5 | Higher semi-arid | Hivers frais | 527 | 390 | 36°4′ | 10°14′ |
Kef | 6 | Inferior semi-arid | Hivers frais | 400–500 | 350 | 36°17′ | 8°7′ |
Tala (Kasserine) | 7 | Inferior semi-arid | Hivers frais | 130–200 | 966 | 35°34′ | 8°40′ |
Matmata (Gabes) | 8 | Arid | Hivers doux | 100–150 | 354 | 10°04′ | 33°28′ |
Compounds | RT a | IK b | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | Mean c ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|
δ-terpinene | 6.26 | 1057 | 0.18 ± 0.003 | - | - | - | - | - | - | - | 0.04 ± 0.0003 |
Camphor | 7.64 | 1143 | 1.08 ± 0.02 | - | - | - | - | - | - | - | 0.07 ± 0.002 |
Borneol | 7.96 | 1166 | 0.82 ± 0.03 | - | - | - | - | - | - | - | 0.06 ± 0.003 |
α-terpineol | 8.10 | 1185 | 1.56 ± 0.005 | - | - | - | - | - | - | - | 0.22 ± 0.0006 |
Pentadecanone | 8.89 | 1671 | - | - | 17.05 ± 0.01 | - | - | - | - | - | 1.90 ± 0.001 ** |
Bornyl Acetate | 9.61 | 1285 | 3.01 ± 0.04 a | - | - | - | - | - | - | 0.4 ± 0.1 b | 0.45 ± 0.01 |
α-copaene | 10.86 | 1388 | 2.7 ± 0.07 a | - | - | - | - | 3.22 ± 0.0 a | - | - | 0.70 ± 0.01 |
β-elemene | 11.06 | 1389 | 3.01 ± 0.03 b | - | - | - | - | 6.14 ± 0.05 a | - | - | 1.13 ± 0.01 |
Isocaryophyllene | 11.29 | 1414 | - | - | - | - | - | - | - | 3.71 ± 0.02 | 0.43 ± 0.002 |
β-Caryophyllene | 11.47 | 1415 | 7.26 ± 0.015 b | 9.51 ± 0.18 a | 7.4 ± 0.5 b | 6.01 ± 0.0 b | 3.74 ± 0.1 c | 9.4 ± 0.2 a | - | 3.07 ± 0.0 b | 4.93 ± 0.2 ** |
α-humulene | 11.92 | 1454 | 3.04 ± 0.079 a | - | - | - | - | - | - | 2.05 ± 0.01 a | 0.73 ± 0.002 |
Germacrene D | 12.26 | 1480 | 14.57 ± 0.24 a | - | 17.05 ± 0.04 a | 7.62 ± 0.01 c | - | 11.2 ± 0.1 b | - | - | 10.51 ± 0.2 ** |
Trans-β-ionone | 12.28 | 1534 | - | - | - | - | - | - | - | 6.2 ± 0.5 | 0.72 ± 0.031 |
β-Bisabolene | 12.50 | 1544 | 32 ± 1.90 b | 32.1 ± 0.91 b | 32.21 ± 0.01 b | 38.13 ± 0.1 b | 65.2 ± 0.3 a | 27.8 ± 0.70 c | 2.32 ± 0.02 d | 46.1 ± 0.08 e | 38.21 ± 0.50 ** |
δ-cadinene | 12.72 | 1559 | 7.773 ± 0.94 b | - | 2.08 ± 0.028 b | - | - | 12.8 ± 1.2 a | - | 5.2 ± 0.0 | 5.1 ± 0.3 |
8-Epi-11-Nordriman-9one | 13.24 | 1614 | - | - | - | - | - | - | - | 2.9 ± 0.01 | 0.20 ± 0.001 |
Vulgarol B | 13.24 | 1688 | - | - | - | - | - | - | - | 2.12 ± 0.02 | 0.30 ± 0.002 |
β-Trans isolimonene | 13.33 | 983 | - | - | - | - | - | - | - | 2.01 ± 0.06 | 0.27 ± 0.007 |
Camphene | 13.34 | 954 | 1.67 ± 0.06 | - | - | - | - | - | - | - | 0.14 ± 0.007 |
Naphtalene | 14.73 | 1179 | - | 8.16 ± 0.3 b | - | 14.401 ± 0.02 a | - | - | - | - | 2.02 ± 0.04 ** |
Thunbergol | 14.28 | 2032 | - | 7.01 ± 0.1 a | - | - | - | 5.3 ± 0.21 a | - | - | 1.5 ± 0.038 |
β-H-Pregna | 14.76 | 2061 | - | - | - | - | - | - | 2.02 ± 0.02 | - | 0.31 ± 0.002 |
Junipene | 14.82 | 1555 | - | - | - | - | - | - | 13.02 ± 0.7 | - | 1.2 ± 0.01 ** |
Caryophyllene oxyde | 14.28 | 1580 | 2.59 ± 0.12 b | - | - | - | 5.07 ± 0.2 a | 4.04 ± 0.04 a | - | - | 1.3 ± 0.06 |
α-Eudesmol | 14.37 | 1650 | 1.38 ± 0.02 | - | - | - | - | - | - | - | 0.22 ± 0.002 |
Cedrenol | 14.37 | 1604 | - | - | - | - | - | - | - | 2.5 ± 0.01 | 0.32 ± 0.001 |
Phenol-2-methoxy-4propenyl | 10.69 | 2250 | - | - | - | - | - | - | - | 3.0 ± 0.06 | 0.24 ± 0.007 |
Benzodioxole | 13.02 | 1530 | - | - | - | - | - | - | 50.14 ± 0.4 | - | 8.6 ± 0.017 |
Imidazole | 13.56 | 1055 | - | - | - | - | - | - | - | 5.58 ± 0.1 | 0.39 ± 0.8 |
Trans-Isodillapiole | 13.65 | 1706 | - | - | - | - | - | - | 24.2 ± 0.5 | - | 3.08 ± 0.1 ** |
3-buten-2-ol-benzoate | 14.29 | 1036 | 9.08 ± 0.2 a | - | 3.5 ± 0.2 b | 5.05 ± 0.05 b | - | - | - | - | 1.70 ± 0.056 |
Benzenedicarboxilic acid | 14.50 | - | - | 6.7 ± 0.21 b | 16.01 ± 0.02 a | - | - | - | - | 3.02 ± 0.2 ** | |
Ethanoate | 15.39 | 807 | 1.84 ± 0.01 b | - | - | 7.04 ± 0.01 a | - | - | - | - | 1.27 ± 0.002 |
Hexadecanoic acid | 14.62 | 1984 | - | 17.02 ± 0.8 a | - | - | 13.33 ± 0.7 b | - | - | - | 3.70 ± 0.6 ** |
Tridecanoic acid | 14.66 | 1746 | - | 13.11 ± 0.2 | - | - | - | - | - | - | 1.05 ± 0.01 ** |
Octadecanoic acid | 14.66 | 2240 | - | - | - | - | 12.6 ± 0.1 a | - | 12.6 ± 0. 3 b | - | 3 ± 0.02 ** |
Tetradecanoic acid | 14.69 | 2275 | 1.74 ± 0.01 | - | - | - | - | - | - | - | 0.21 ± 0.001 |
Propane | 14.83 | 810 | - | - | 7.01 ± 0.3 | - | - | - | - | - | 1.09 ± 0.1 ** |
Hexadecane | 11.80 | 1600 | - | 13.09 ± 0.3 a | 7.0 ± 0.25 b | - | - | 6.26 ± 0.3 b | - | 9.07 ± 0.7 b | 4.02 ± 0.3 ** |
Decane | 11.81 | 999 | 5.23 ± 0.441 b | - | - | 5.76 ± 0.04 b | - | 14.28 ± 0.8 a | - | - | 2.45 ± 0.1 ** |
Hexavinyldisilethylene | 15.39 | 2076 | - | - | - | - | - | - | - | 4.99 ± 0.05 | 0.67 ± 0.006 |
% Alcane | 45.23 ± 0.11 | 13.09 ± 0.075 | 14.01 ± 0.137 | 45.76 ± 0.01 | - | 20.54 ± 0.275 | - | 14.06 ± 0.187 | 8.23 ± 0.126 | ||
% Monoterpenes hydrocarbons | 1.85 ± 0.015 | 8.16 ± 0.075 | - | 14.01 ± 0.005 | - | - | - | 2.401 ± 0.015 | 2.47 ± 0.01 | ||
% Monoterpenes oxygenated | 6.47 ± 0.019 | - | - | - | - | - | - | 6.6 ± 0.12 | 7.45 ± 0.008 | ||
% Diterpenes | - | 7.01 ± 0.033 | - | - | - | 5.43 ± 0.07 | - | 5.02 ± 0.01 | 1 ± 0.014 | ||
% Sesquiterpenes hydrocarbons | 70.75 ± 0.327 | 41.61 ± 0.108 | 58.74 ± 0.578 | 51.76 ± 0.011 | 68.94 ± 0.04 | 67.02 ± 0.225 | 17.36 ± 0.074 | 26.33 ± 0.09 | 63.24 ± 0.071 | ||
% Sesquiterpenes oxygenated | 3.97 ± 0.125 | - | 17.05 ± 0.002 | - | 5.07 ± 0.05 | 4.04 ± 0.01 | - | 2.50.002 | 3.43 ± 0.015 | ||
% Phenolics | 10.92 ± 0.03 | - | 10.4 ± 0.058 | 26.06 ± 0.011 | - | - | 71.6 ± 0.128 | 48.58 ± 0.22 | 18.3 ± 0.16 | ||
% Fatty Acid | 1.74 ± 0.002 | 20.13 ± 0.25 | - | - | 13.90 ± 0.2 | - | 12.6 ± 0.075 | - | 7.90 ± 0.157 | ||
Yields of extraction (%) | 0.02 | 0.02 | 0.018 | 0.015 | 0.04 | 0.03 | 0.037 | 0.025 | 0.021 |
Code | Populations | Total Polyphenols (mg GAE/g DW) | Total Flavonoids (mg RE/g DW) |
---|---|---|---|
1 | Beja | 39.77 ± 0.985 a | 31.53 ± 0.471 a |
2 | Bizerte | 35.56 ± 0.819 b | 22.62 ± 1.114 b |
3 | Nabeul | 20.80 ± 0.602 c | 8.91 ± 0.537 c |
4 | Sousse | 21.10 ± 1.180 c | 15.75 ± 0.461 c |
5 | Zagouan | 34.86 ± 1.204 b | 24.43 ± 1.306 b |
6 | Kef | 42.16 ± 2.29 a | 37.48 ± 1.266 a |
7 | Kasserine | 44.65 ± 1.46 a | 31.20 ± 1.66 a |
8 | Gabes | 36.42 ± 1.73 b | 17.20 ± 0.789 c |
Caffeic Acid | Ferulic Acid | Protocatechuic Acid | Catechin | p-Coumaric Acid | Syringic Acid | Quercetin | Myricetin | Apigenin | Luteolin | Rutin | Ellagic Acid | Eugenol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beja | 0.83 ± 0.01 b | 31.622 ± 6.077 c | 16.779 ± 3.955 c | 6.543 ± 2.099 c | 17.849 c ± 5.911 | 8.647 ± 1.265 d | 23.780 ± 4.790 b | 0.741 ± 0.106 b | 2.313 ± 0.332 ab | 3.706 ± 0.746 c | 16.888 ± 3.617 b | 0.090 ± 0.010 c | 0.069 ± 0.005 c |
Bizerte | 0.66 ± 0.05 c | 50.222 ± 3.618 a | 24448 ± 4.474 a | 9.323 ± 0.579 b | 22.446 ± 6.261 b | 13.973 ± 1.266 c | 33.896 ± 6.357 a | 1.023 ± 0.221 a | 3.100 ± 0.689 a | 5.141 ± 0.948 b | 23.442 ± 4.171 a | 0.122 ± 0.038 b | 0.095 ± 0.036 b |
Nabeul | 0.32 ± 0.11 d | 24.782 ± 1.824 c | 12.115 ± 2.113 c | 4.623 ± 0.247 c | 12.589 ± 0.735 c | 7.011 ± 0.556 d | 14.242 ± 4.488 c | 0.445 ± 0.139 c | 1.391 ± 0.433 b | 2.220 ± 0.699 c | 10.106 ± 3.204 c | 0.055 ± 0.017 | 0.042 ± 0.014 d |
Sousse | 0.44 ± 0.04 d | 25.583 ± 0.959 c | 14.083 ± 2.526 c | 4.888 ± 0.080 c | 13.192 ± 0.195 c | 7.205 ± 0.329 d | 17.522 ± 8.178 c | 0.530 ± 0.225 c | 1.654 ± 0.701 b | 2.731 ± 1.275 c | 12.521 ± 5.958 c | 0.064 ± 0.025 | 0.047 ± 0.016 d |
Zagouan | 0.43 ± 0.01 d | 42.038 ± 0,302 b | 20.300 ± 4.438 a | 8779 ± 0.477 b | 24.150 ± 3.858 a | 13.750 ± 1.521 b | 20.624 ± 0.600 b | 0.686 ± 0.063 bc | 2.143 ± 0.178 | 7.500 ± 0.107 b | 14.437 ± 0.171 bc | 0.140 ± 0.042 b | 0.098 ± 0.028 b |
Kef | 1.51 ± 0.05 a | 18.153 ± 3.630 d | 6.300 ± 0.280 d | 145.320 ± 14.131 a | 0.140 ± 0.000 d | 17.080 ± 2.461 a | 1.493 ± 0.081 d | 1.633 ± 0.081 a | 2.660 ± 0.370 ab | 12.180 ± 1.960 a | 4.573 ± 0.820 d | 0.056 ± 0.000 | 0.047 ± 0.008 d |
Kasserine | 0.47 ± 0.01 d | 45.506 ± 0.992 b | 23.764 ± 2.284 ab | 9.341 ± 0.436 b | 24.704 ± 2.675 a | 15.516 ± 0.686 ab | 32.361 ± 9.275 a | 1.151 ± 0.390 a | 3.258 ± 0.852 a | 11.868 ± 3.481 a | 22.876 ± 6.735 a | 0.266 ± 0.042 a | 0.182 ± 0.028 a |
Gabes | 0.46 ± 0.01 d | 44.971 ± 0.328 b | 31.667 ± 4.817 a | 8.492 ± 0.518 b | 17.837 ± 4.187 c | 18.225 ± 1.651 a | 21.084 ± 0.651 b | 0.881 ± 0.068 b | 1.940 ± 0.193 b | 7.908 ± 0.116 b | 15.298 ± 0.186 b | 0.392 ± 0.042 a | 0.266 a ± 0.028 |
RT (mn) | 20.500 | 26.400 | 27.800 | 21.500 | 25.100 | 21.700 | 36.870 | 34.270 | 39.450 | 29.450 | 30.610 | 39.400 | 37.400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedri Mkaddem, M.; Zrig, A.; Ben Abdallah, M.; Romdhane, M.; Okla, M.K.; Al-Hashimi, A.; Alwase, Y.A.; Hegab, M.Y.; Madany, M.M.Y.; Hassan, A.H.A.; et al. Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L. Plants 2022, 11, 612. https://doi.org/10.3390/plants11050612
Guedri Mkaddem M, Zrig A, Ben Abdallah M, Romdhane M, Okla MK, Al-Hashimi A, Alwase YA, Hegab MY, Madany MMY, Hassan AHA, et al. Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L. Plants. 2022; 11(5):612. https://doi.org/10.3390/plants11050612
Chicago/Turabian StyleGuedri Mkaddem, Mounira, Ahlem Zrig, Mariem Ben Abdallah, Mehrez Romdhane, Mohammad K. Okla, Abdulrahman Al-Hashimi, Yasmeen A. Alwase, Momtaz Y. Hegab, Mahmoud M. Y. Madany, Abdelrahim H. A. Hassan, and et al. 2022. "Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L." Plants 11, no. 5: 612. https://doi.org/10.3390/plants11050612
APA StyleGuedri Mkaddem, M., Zrig, A., Ben Abdallah, M., Romdhane, M., Okla, M. K., Al-Hashimi, A., Alwase, Y. A., Hegab, M. Y., Madany, M. M. Y., Hassan, A. H. A., Beemster, G. T. S., & AbdElgawad, H. (2022). Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L. Plants, 11(5), 612. https://doi.org/10.3390/plants11050612