Effect of Early Basal Leaf Removal on Phenolic and Volatile Composition and Sensory Properties of Aglianico Red Wines
Abstract
:1. Introduction
2. Results
2.1. Oenological Parameters
2.2. Analysis of Polyphenols
2.3. Wine Volatile Composition
2.4. Sensory Analysis
3. Materials and Methods
3.1. Vineyard, Leaf Removal Treatment and Vinification
3.2. Enological Parameters
3.3. Analysis of Polyphenols
3.4. Wine Volatile Composition
3.5. Sensory Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intrieri, C.; Filippetti, I.; Allegro, G.; Centinari, M.; Poni, S. Early defoliation (hand vs. mechanical) for improved crop control and grape composition in Sangiovese (Vitis vinifera L.). Aust. J. Grape Wine Res. 2008, 14, 25–32. [Google Scholar] [CrossRef]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am. J. Enol. Vitic. 2006, 57, 397–407. [Google Scholar]
- VanderWeide, J.; Gottschalk, C.; Schultze, S.R.; Nasrollahiazar, E.; Poni, S.; Sabbatini, P. Impacts of Pre-bloom Leaf Removal on Wine Grape Production and Quality Parameters: A Systematic Review and Meta-Analysis. Front. Plant Sci. 2021, 11, 621585. [Google Scholar] [CrossRef] [PubMed]
- Guidoni, S.; Oggero, G.; Cravero, S.; Rabino, M.; Cravero, M.C.; Balsari, P. Manual and mechanical leaf removal in the bunch zone (Vitis vinifera L., cv Barbera): Effects on berry composition, health, yield and wine quality, in a warm temperate area. OENO One 2008, 42, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Tardaguila, J.; de Toda, F.M.; Poni, S.; Diago, M.P. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Vitic. 2010, 61, 372–381. [Google Scholar]
- Pastore, C.; Zenoni, S.; Fasoli, M.; Pezzotti, M.; Tornielli, G.B.; Filippetti, I. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol. 2013, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Libelli, N. Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res. 2009, 15, 185–193. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Tardaguila, J. Effects of timing of manual and mechanical early defoliation on the aroma of Vitis vinifera L. tempranillo wine. Am. J. Enol. Vitic. 2010, 61, 382–391. [Google Scholar]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Yu, R.; Kaan Kurtural, S. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem. 2021, 343, 128447. [Google Scholar] [CrossRef]
- Pastore, C.; Allegro, G.; Valentini, G.; Muzzi, E.; Filippetti, I. Anthocyanin and flavonol composition response to veraison leaf removal on Cabernet Sauvignon, Nero d’Avola, Raboso Piave and Sangiovese Vitis vinifera L. cultivars. Sci. Hort. 2017, 218, 147–155. [Google Scholar] [CrossRef]
- Sivilotti, P.; Herrera, J.C.; Lisjak, K.; Baša Česnik, H.; Sabbatini, P.; Peterlunger, E.; Castellarin, S.D. Impact of Leaf Removal, Applied before and after Flowering, on Anthocyanin, Tannin, and Methoxypyrazine Concentrations in Merlot’ (Vitis vinifera L.) Grapes and Wines. J. Agric. Food Chem. 2016, 64, 4487–4496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hort. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Kurtural, S.K. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econon. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Xu, X.-Q.; Cheng, G.; Duan, L.-L.; Jiang, R.; Pan, Q.-H.; Duan, C.-Q.; Wang, J. Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chem. 2015, 181, 198–206. [Google Scholar] [CrossRef]
- Friedel, M.; Stoll, M.; Patz, C.D.; Will, F.; Dietrich, H. Impact of light exposure on fruit composition of white “Riesling” grape berries (Vitis vinifera L.). Vitis-J. Grapevine Res. 2015, 54, 107–116. [Google Scholar]
- Gregan, S.M.; Wargent, J.J.; Liu, L.; Shinkle, J.; Hofmann, R.; Winefield, C.; Trought, M.; Jordan, B. Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Aust. J. Grape Wine Res. 2012, 18, 227–238. [Google Scholar] [CrossRef]
- Kozina, B.; Karoglan, M.; Herjavec, S.; Jeromel, A.; Orlic, S. Influence of basal leaf removal on the chemical composition of Sauvignon Blanc and Riesling wines. J. Food Agric. Environ. 2008, 6, 28–33. [Google Scholar]
- Šuklje, K.; Antalick, G.; Buica, A.; Langlois, J.; Coetzee, Z.A.; Gouot, J.; Schmidtke, L.M.; Deloire, A. Clonal differences and impact of defoliation on Sauvignon blanc (Vitis vinifera L.) wines: A chemical and sensory investigation. J. Sci. Food Agric. 2016, 96, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Skinkis, P.A.; Qian, M.C. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Food Chem. 2017, 214, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Verzera, A.; Tripodi, G.; Dima, G.; Condurso, C.; Scacco, A.; Cincotta, F.; Giglio, D.M.L.; Santangelo, T.; Sparacio, A. Leaf removal and wine composition of Vitis vinifera L. cv. Nero d’Avola: The volatile aroma constituents. J. Sci. Food Agric. 2016, 96, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A.; Mentana, A.; Quinto, M.; Centonze, D.; Previtali, M.A.; Varva, G.; Del Nobile, M.A.; De Palma, L. Volatile composition and sensory profile of wines obtained from partially defoliated vines: The case of Nero di Troia wine. Eur. Food Res. Technol. 2017, 243, 247–261. [Google Scholar] [CrossRef]
- Vilanova, M.; Diago, M.P.; Genisheva, Z.; Oliveira, J.M.; Tardaguila, J. Early leaf removal impact on volatile composition of Tempranillo wines. J. Sci. Food Agric. 2012, 92, 935–942. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Meilgaard, M.; Vance Civille, G.; Thomas Carr, B. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Stone, H.; Sidel, J.L. Quantitative descriptive analysis: Developments, applications and the future. Food Technol. J. 1998, 52, 48–52. [Google Scholar]
- Vilanova, M.; Campo, E.; Escudero, A.; Graña, M.; Masa, A.; Cacho, J. Volatile composition and sensory properties of Vitis vinifera red cultivars from North West Spain: Correlation between sensory and instrumental analysis. Anal. Chim. Acta 2012, 720, 104–111. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
- Vilanova, M.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Yuste, J. Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv. Verdejo. Aust. J. Grape Wine Res. 2019, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Verdenal, T.; Zufferey, V.; Dienes-Nagy, A.; Bourdin, G.; Gindro, K.; Viret, O.; Spring, J.L. Timing and intensity of grapevine defoliation: An extensive overview on five cultivars in Switzerland. Am. J. Enol. Vitic. 2019, 70, 427–434. [Google Scholar] [CrossRef]
- Suriano, S.; Alba, V.; Tarricone, L.; Di Gennaro, D. Maceration with stems contact fermentation: Effect on proanthocyanidins compounds and color in Primitivo red wines. Food Chem. 2015, 15, 382–389. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, G.; Rustioni, L.; Parisi, S.G.; Zoli, F.; Brancadoro, L. Anthocyanin biosynthesis during berry development in corvina grape. Sci. Hortic. 2016, 212, 74–80. [Google Scholar] [CrossRef]
- Czemmel, S.; Heppel, S.C.; Bogs, J. R2R3 MYB transcription factors: Key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 2012, 249, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Tarricone, L.; Faccia, M.; Masi, G.; Gambacorta, G. The Impact of Early Basal Leaf Removal at Different Sides of the Canopy on Aglianico Grape Quality. Agriculture 2020, 10, 630. [Google Scholar] [CrossRef]
- Sternad Lemut, M.; Trost, K.; Sivilotti, P.; Arapitsas, P.; Vrhovsek, U. Early versus late leaf removal strategies for Pinot Noir (Vitis vinifera L.): Effect on colour-related phenolics in young wines following alcoholic fermentation. J. Sci. Food Agric. 2013, 93, 3670–3681. [Google Scholar] [CrossRef]
- Kemp, B.S.; Harrison, R.; Creasy, G.L. Effect of mechanical leaf removal and its timing on flavan-3-ol composition and concentrations in Vitis vinifera L. cv. Pinot Noir wine. Aust. J. Grape Wine Res. 2011, 17, 270–279. [Google Scholar] [CrossRef]
- Verdenal, T.; Zufferey, V.; Dienes-Nagy, A.; Gindro, K.; Belcher, S.; Lorenzini, F.; Rösti, J.; Koestel, C.; Spring, J.L.; Viret, O. Pre-flowering defoliation affects berry structure and enhances wine sensory parameters. OENO One 2017, 51, 263–275. [Google Scholar] [CrossRef]
- Mucalo, A.; Budić-Leto, I.; Lukšić, K.; Maletić, E.; Zdunić, G. Early Defoliation Techniques Enhance Yield Components, Grape and Wine Composition of cv. Trnjak (Vitis vinifera L.) in Dalmatian Hinterland Wine Region. Plants 2021, 10, 551. [Google Scholar] [CrossRef]
- Moreno, D.; Valdés, E.; Urierte, D.; Gamero, E.; Talaverano, I.; Vilanova, M. Early leaf removal applied in warm climatic conditions: Impact on Tempranillo wine volatiles. Food Res. Int. 2017, 98, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G.; Wardle, D.A. Influence of fruit microclimate on monoterpene levels of Gewurztraminer. Am. J. Enol. Vitic. 1989, 40, 149–154. [Google Scholar]
- Bubola, M.; Persurie, D.; Ganie, K.K.; Cossetto, M. Influence of timing and intensity of basal leaf removal on aromatic composition of cv. Istrian Malvasia wines. In Abstracts Book III Int. Symp; Malvasias: Canary Islands, Spain, 2009; pp. 64–65. [Google Scholar]
- Kliewer, W.M.; Smart, R.E. Canopy manipulation for optimizing vine microclimate, crop yield and composition of grapes. In Manipulation of Fruiting; Wright, C.J., Ed.; Butterworth & Co.: Nottingham, UK, 1989; pp. 275–291. [Google Scholar]
- Hunter, J.J.; Visser, J.H. The effect of partial defoliation, leaf position and developmental stage of the vine on the photosynthetic activity of Vitis vinifera L. cv. Cabernet Sauvignon. S. Afr. J. Enol. Vitic. 1988, 9, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Price, S.; Breen, P.; Valladao, M.; Watson, B. Cluster sun exposure and quercetin in Pinot noir grapes and wine. Am. J. Enol. Vitic. 1995, 46, 187–194. [Google Scholar]
- Giovanelli, G.; Brenna, O. Evolution of some phenolics components, carotenoids and chorophylls during ripening of three Italian grape varieties. Eur. Food Res. Technol. 2007, 225, 145–150. [Google Scholar] [CrossRef]
- Percival, D.C.; Fisher, K.H.; Sullivan, J.A. Use of fruit zone leaf removal with Vitis vinifera L. cv. Riesling grapevines. II. Effect on fruit composition, yield, and occurrence of bunch rot. Am J Enol Vitic. 1994, 45, 133–139. [Google Scholar]
- Smart, R.E.; Dick, J.K.; Gravett, I.M.; Fisher, B.M. Canopy management to improve grape and yield and wine quality—principles and practices. S. Afr. J. Enol Vitic. 1990, 11, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Palliotti, A.; Gardi, T.; Berrios, J.G.; Civardi, S.; Poni, S. Early source limitation as a tool for yield control and wine quality improvement in a high-yielding red Vitis vinifera L. cultivar. Sci. Hortic. 2012, 145, 10–16. [Google Scholar] [CrossRef]
- Atanasova, B.; Danguin, T.T.; Langlois, D.; Nicklaus, S.; Chabanet, C.; Etiévant, P. Perception of wine fruity and woody notes: Influence of peri-threshold odorants. Food Qual. Pref. 2005, 16, 504–510. [Google Scholar] [CrossRef]
- Gambacorta, G.; Trani, A.; Fasciano, C.; Paradiso, V.M.; Faccia, M. Effects of prefermentative cold soak on polyphenols and volatiles of Aglianico, Primitivo and Nero di Troia red wines. Food Sci. Nutr. 2019, 7, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Stefano, R.; Cravero, M.C. Methods for grape phenolic compounds study. Riv. Vitic. Enol. 1991, 44, 37–45. [Google Scholar]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interprétation. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Trani, A.; Verrastro, V.; Punzi, R.; Faccia, M.; Gambacorta, G. Phenols, Volatiles and Sensory Properties of Primitivo Wines from the “Gioia Del Colle” PDO Area. S. Afr. J. Enol. Vitic. 2016, 37, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, R.F.; Liazid, A.; Palma, M.; Puertas, B.; González-Barrio, R.; Gil-Izquierdo, Á.; García-Barroso, C.; Cantos-Villar, E. Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chem. 2009, 112, 949–955. [Google Scholar] [CrossRef]
- Rusjan, D.; Veberič, R.; Mikulič-Petkovšek, M. The response of phenolic compounds in grapes of the variety ‘Chardonnay’(Vitis vinifera L.) to the infection by phytoplasma Bois noir. Eur. J. Plant Pathol. 2012, 133, 965–974. [Google Scholar] [CrossRef]
- Bai, B.; He, F.; Yang, L.; Chen, F.; Reeves, M.J.; Li, J. Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters. Food chem. 2013, 141, 3984–3992. [Google Scholar] [CrossRef]
- Pati, S.; Crupi, P.; Benucci, I.; Antonacci, D.; Di Luccia, A.; Esti, M. HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Res. Int. 2014, 66, 207–215. [Google Scholar] [CrossRef]
- Coelho, E.; Lemos, M.; Genisheva, Z.; Domingues, L.; Vilanova, M.; Oliveira, J.M. Simple and quick LLME/GC-MS methodology to quantify minor volatile compounds in alcoholic beverages. Molecules 2020, 25, 621. [Google Scholar] [CrossRef] [Green Version]
- Lawless, H.T.; Heymann, H. Descriptive Analysis. Sensory Evaluation of Food. Principles and Practices; Chapman & Hall: New York, NY, USA, 1998. [Google Scholar]
- Dravnieks, A.; Bock, F.C. Comparison of odours directly and through profiling (ITT Research Institute, Chicago, IL 60610). Chem. Sense. Flav. 1978, 3, 36–54. [Google Scholar] [CrossRef]
Parameters | CT | DN | DS | DNS | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Glucose + Fructose (g/L) | 0.12 a | 0.02 | 0.31 c | 0.01 | 0.24 b | 0.01 | 0.39 d | 0.02 | *** |
Ethanol (%vol) | 13.17 a | 0.03 | 13.52 c | 0.03 | 13.32 b | 0.06 | 13.82 d | 0.03 | *** |
PH | 3.20 | 0.04 | 3.16 | 0.05 | 3.23 | 0.04 | 3.18 | 0.04 | ns |
Total acidity (g/L) | 5.89 | 0.20 | 6.12 | 0.20 | 5.81 | 0.22 | 6.10 | 0.19 | ns |
Tartaric acid (g/L) | 1.29 | 0.34 | 1.30 | 0.36 | 1.33 | 0.19 | 1.33 | 0.34 | ns |
Citric acid (g/L) | 0.26 | 0.01 | 0.28 | 0.02 | 0.26 | 0.01 | 0.27 | 0.00 | ns |
Malic acid (g/L) | 0.98 | 0.03 | 0.94 | 0.04 | 0.94 | 0.01 | 0.91 | 0.06 | ns |
Acetic acid (g/L) | 0.09 | 0.01 | 0.07 | 0.01 | 0.07 | 0.01 | 0.08 | 0.01 | ns |
IPT | 35.07 a | 1.81 | 40.47 b | 0.76 | 36.00 a | 1.31 | 40.20 b | 0.75 | ** |
Polyphenols Indices | CT | DN | DS | DNS | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Total anthocyanins (mg/L) | 294 c | 1 | 447 a | 4 | 337 b | 4 | 449 a | 4 | * |
Total flavonoids (mg/L) | 1474 c | 4 | 1715 a | 6 | 1562 b | 16 | 1735 a | 9 | * |
Vanillin reactive flavans (mg/L) | 948 b | 44 | 1113 a | 24 | 1037 ab | 57 | 1014 ab | 34 | * |
Proanthocyanidins (mg/L) | 1697 c | 125 | 2061 b | 94 | 2241 ab | 100 | 2369 a | 121 | * |
Total polyphenols (mg/L) | 1709 c | 44 | 1969 b | 35 | 1895 b | 31 | 2159 a | 40 | * |
Antioxidant activity (mmol/L) | 10.0 b | 0.5 | 12.2 a | 0.4 | 12.3 a | 0.4 | 13.3 a | 0.3 | * |
Color intensity | 1.42 c | 0.01 | 1.61 b | 0.01 | 1.63 b | 0.03 | 2.01 a | 0.04 | * |
Hue | 0.53 | 0.01 | 0.52 | 0.01 | 0.53 | 0.01 | 0.52 | 0.01 | ns |
Compounds | RT | λ Monitored | Molecular Ion | Fragments | Standard |
---|---|---|---|---|---|
min | nm | m/z | m/z | ||
Anthocyanins | |||||
Delphinidin-3-O-glucoside | 5.68 | 520 | 465 | 303 | No |
Petunidin-3-O-glucoside | 6.57 | 520 | 479 | 317 | No |
Malvidin-3-O-glucoside | 7.34 | 520 | 493 | 331 | Yes |
Malvidin-3-O-glu pyruvate | 7.75 | 520 | 561 | 399 | No |
Malvidin-3-O-glu acetaldehyde | 8.01 | 520 | 517 | 355 | No |
Malvidin (6-acetyl)-glucoside | 9.14 | 520 | 535 | 331 | No |
Malvidin-3-trans(6-coumaroyl)-glucoside | 10.38 | 520 | 639 | 331 | No |
Phenolic acids | |||||
Chlorogenic acid | 1.00 | 330 | 191 | 111, 173 | Yes |
Gallic acid | 1.16 | 330 | 169 | 125 | Yes |
Caftaric acid | 2.11 | 330 | 311 | 149, 179 | Yes |
Coutaric acid | 3.35 | 330 | 295 | 163, 149 | Yes |
Fertaric acid | 4.81 | 330 | 325 | 193 | No |
Flavonols | |||||
Quercetin-3-glucuronide | 7.65 | 350 | 477 | 301 | Yes |
Miricetin | 8.59 | 350 | 317 | 151, 179 | Yes |
Syringetin-3-glucoside | 8.93 | 350 | 507 | 345 | No |
Quercetin | 10.35 | 350 | 301 | 151, 178 | Yes |
Flavanols | |||||
Procyanidins dimer-1 | 2.29 | 280 | 577 | 425, 407 | No |
Catechin | 2.92 | 280 | 289 | 245, 205 | Yes |
Compounds | CT | DN | DS | DNS | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Anthocyanins | |||||||||
Delphinid-3-O-glucoside | 4.21 c | 0.09 | 9.44 b | 0.90 | 3.51 c | 2.13 | 17.08 a | 2.63 | * |
Petunidin-3-O-glucoside | 7.76 c | 0.86 | 17.59 b | 1.14 | 8.54 c | 0.78 | 26.96 a | 3.72 | * |
Malvidin-3-O-glucoside | 105.16 d | 2.15 | 207.65 b | 4.77 | 128.38 c | 8.98 | 269.19 a | 4.77 | * |
Malvidin-3-O-glu pyruvate | 56.72 a | 3.22 | 27.17 c | 2.41 | 41.42 b | 3.17 | 59.51 a | 6.64 | * |
Malvidin-3-O-glu acetaldehyde | 39.79 b | 3.90 | 22.81 c | 1.76 | 42.16 b | 0.87 | 57.18 a | 1.54 | * |
Malvidin-(6-acetyl)-3 glucoside | 9.05 c | 5.32 | 15.14 b | 2.80 | 9.08 c | 1.69 | 24.28 a | 2.08 | * |
Malvidin-3-trans-(6-coumaroyl)-glucoside | 8.25 c | 1.30 | 16.19 b | 2.41 | 4.55 d | 1.21 | 23.01 a | 2.15 | * |
Total (%) | 230.94 c (72) | 315.99 b (82) | 237.64 c (74) | 477.21 a (85) | * | ||||
Phenolic acids | |||||||||
Chlorogenic acid | 1.59 | 0.82 | 0.84 | 0.66 | 1.24 | 0.44 | 0.76 | 0.06 | ns |
Gallic acid | 1.04 | 0.36 | 0.42 | 0.53 | 0.42 | 0.12 | 0.51 | 0.2 | ns |
Caftaric acid | 40.12 | 3.9 | 39.13 | 3.06 | 40.08 | 1.35 | 42.47 | 1.27 | ns |
Coutaric acid | 9.81 | 2.64 | 10.70 | 0.15 | 10.60 | 1.28 | 11.42 | 2.14 | ns |
Fertaric acid | 1.94 | 2.37 | 1.27 | 0.24 | 1.25 | 0.54 | 2.30 | 0.1 | ns |
Total (%) | 54.5 (17) | 52.36 (14) | 53.59 (17) | 57.46 (10) | ns | ||||
Flavonols | |||||||||
Quercetin-3-glucuronide | 5.25 b | 0.82 | 4.13 c | 0.8 | 6.15 b | 0.72 | 8.91 a | 0.27 | * |
Myricetin | 3.09 a | 0.27 | 1.05 c | 0.13 | 2.90 b | 0.14 | 3.56 a | 0.34 | * |
Syringetin-3-glucoside | 7.58 a | 1.41 | 1.84 d | 0.73 | 4.26 b | 0.63 | 3.29 c | 0.16 | * |
Quercetin | 2.33 b | 0.23 | 0.67 d | 0.09 | 1.97 c | 0.1 | 2.90 a | 0.14 | * |
Total (%) | 18.25 a (6) | 7.69 c (2) | 15.28 b (5) | 18.66 a (3) | * | ||||
Flavanols | |||||||||
Procyanidin dimer1 | 5.99 | 1.11 | 4.09 | 1.06 | 3.73 | 0.55 | 4.85 | 0.98 | ns |
Catechin | 8.79 a | 1.75 | 4.45 b | 1.71 | 8.95 a | 1.6 | 8.33 a | 2.09 | * |
Total (%) | 14.78 a (5) | 8.54 b (2) | 12.68 a (4) | 13.18 a (2) | * | ||||
Total Polyphenols | |||||||||
318.47 c | 384.58 b | 319.19 c | 566.51 a | * |
Compounds | CT | DN | DS | DNS | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Alcohols | |||||||||
2-methyl-1-propanol | 998.2 | 15.5 | 1744.4 | 650.6 | 1851.1 | 493.5 | 1810.7 | 73.5 | ns |
2+3-methyl-1-butanol | 25,880.4 | 696.8 | 49,220.0 | 18,132.0 | 45,350.7 | 11,548.9 | 38,843.5 | 2471.5 | ns |
3-methyl-1-pentanol | 32.1 a | 1.4 | 54.8 ab | 16.5 | 62.7 b | 8.1 | 60.4 b | 2.6 | * |
2,3-butanediol | 108.8 a | 4.0 | 273.8 b | 100.3 | 301.7 b | 53.2 | 360.1 b | 48.4 | ** |
1-octanol | 158.5 a | 9.8 | 334.7 b | 91.1 | 302.8 ab | 64.9 | 290.1 ab | 20.3 | * |
3-methylthiopropanol | 222.3 | 15.8 | 429.5 | 163.9 | 353.0 | 114.3 | 300.9 | 21.9 | ns |
Benzyl alcohol | 24.3 | 1.2 | 46.1 | 17.1 | 43.7 | 11.3 | 38.5 | 2.7 | ns |
2-phenylethanol | 29,468.0 | 912.4 | 52,814.4 | 16,824.5 | 48,537.4 | 10,200.5 | 42,152.7 | 2555.7 | ns |
C6 compounds | |||||||||
1-hexanol | 669.0 a | 30.1 | 1366.4 b | 390.2 | 1109.2 ab | 212.9 | 1071.1 ab | 68.1 | * |
E-3-hexenol | 25.2 | 2.0 | 46.3 | 17.1 | 42.2 | 18.4 | 33.9 | 8.2 | ns |
2-ethyl-hexanol | 40.8 | 2.7 | 68.5 | 31.1 | 64.2 | 15.3 | 63.4 | 5.9 | ns |
Terpenes + C13 Norisoprenoids | |||||||||
a-terpineol | 39.5 | 5.9 | 79.1 | 25.1 | 67.0 | 13.9 | 73.1 | 11.4 | ns |
E-8-hydroxy linalool | 57.3 a | 8.5 | 184.3 b | 45.4 | 166.5 b | 39.4 | 143.4 b | 11.6 | ** |
3-hydroxy-7,8-dihydro-b-ionol | 57.7 | 27.8 | 85.9 | 49.7 | 51.2 | 0.9 | 51.9 | 13.7 | ns |
3-oxo-7,8-dihydro-a-ionol | 62.0 | 15.4 | 83.9 | 21.3 | 100.2 | 40.3 | 74.6 | 24.9 | ns |
Esters + Acetates | |||||||||
Isoamylacetate | 116.4 | 15.8 | 200.4 | 38.8 | 279.8 | 45.5 | 178.4 | 15.1 | ns |
Ethyl hexanoate | 140.5 | 28.8 | 268.3 | 88.2 | 220.8 | 16.0 | 208.5 | 30.0 | ns |
Hexyl acetate | 0.0 a | 0.0 | 0.0 a | 0.0 | 56.8 b | 22.8 | 53.5 b | 14.2 | ** |
Ethyl lactate | 812.4 | 37.4 | 1708.7 | 676.4 | 1413.6 | 426.4 | 1059.4 | 49.0 | ns |
Ethyl octanoate | 77.8 | 1.0 | 127.9 | 42.3 | 113.1 | 16.1 | 93.7 | 19.9 | ns |
Diethyl succinate | 6128.4 a | 373.3 | 13,403.3 b | 3146.3 | 10,634.5 ab | 1543.2 | 11,683.6 b | 503.5 | ** |
2-phenylethylacetate | 32.7 | 3.9 | 62.0 | 20.8 | 56.7 | 9.5 | 59.1 | 3.4 | ns |
Diethyl malate | 1701.6 a | 61.9 | 3484.5 b | 1019.1 | 2866.3 ab | 580.8 | 2882.1 ab | 191.0 | * |
Ethyl myristate | 101.5 a | 3.0 | 240.8 b | 53.7 | 192.5 b | 19.8 | 221.9 b | 16.3 | ** |
Volatile acids | |||||||||
Isobutyric acid | 107.5 | 4.4 | 209.8 | 74.1 | 208.5 | 57.0 | 196.5 | 24.4 | ns |
2+3-methylbutanoic acid | 214.9 | 13.1 | 393.7 | 156.0 | 347.1 | 122.9 | 269.3 | 34.4 | ns |
Hexanoic acid | 317.1 | 10.5 | 562.3 | 172.4 | 536.1 | 119.3 | 439.2 | 26.4 | ns |
Octanoic acid | 597.3 a | 30.4 | 1124.4 b | 241.6 | 1041.5 b | 148.3 | 787.5 ab | 35.0 | ** |
Nonanoic acid | 687.7 a | 25.0 | 1474.3 b | 393.7 | 1312.9 b | 213.0 | 1456.5 b | 88.8 | ** |
Decanoic acid | 197.3 a | 19.8 | 437.2 b | 117.9 | 366.1 ab | 59.6 | 307.8 ab | 32.9 | * |
Hexadecanoic acid | 79.9 | 22.4 | 151.6 | 71.5 | 127.0 | 49.1 | 102.1 | 2.9 | ns |
Aldehydes | |||||||||
Phenylethanal | 67.9 | 5.3 | 88.8 | 27.3 | 88.7 | 13.0 | 71.5 | 3.2 | ns |
Volatile Phenols | |||||||||
4-ethylguaiacol | 51.3 a | 3.1 | 37.3 | 7.4 | 41.2 | 13.3 | 48.4 | 6.4 | ns |
4-ethylphenol | 118.1 b | 7.9 | 0.0 a | 0.0 | 0.0 a | 0.0 | 0.0 a | 0.0 | *** |
4-vinylguaiacol | 40.6 | 4.2 | 70.1 | 40.6 | 76.3 | 19.1 | 67.7 | 4.2 | ns |
4-vinylphenol | 375.1 a | 28.9 | 910.6 b | 237.6 | 711.2 ab | 84.8 | 773.4 b | 45.4 | ** |
Lactones | |||||||||
Butyrolactone | 382. | 14.7 | 654.1 | 227.7 | 619.9 | 145.8 | 667.2 | 47.8 | ns |
Descriptors | CT | DN | DS | DNS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
%I | %F | %GM | %I | %F | %GM | %I | %F | %GM | %I | %F | %GM | ||
Odor | Intensity | 63.5 | 100.0 | 79.7 | 64.5 | 100.0 | 80.3 | 67.0 | 100.0 | 81.8 | 70.0 | 100.0 | 83.7 |
Quality | 54.5 | 85.0 | 68.1 | 63.5 | 100.0 | 79.7 | 61.5 | 100.0 | 78.4 | 71.0 | 100.0 | 84.3 | |
Fruity | 50.5 | 90.0 | 67.2 | 52.0 | 90.0 | 68.4 | 45.0 | 85.0 | 61.7 | 54.5 | 85.0 | 68.1 | |
Floral | 19.0 | 50.0 | 30.8 | 26.5 | 65.0 | 41.5 | 24.5 | 65.0 | 39.9 | 26.0 | 70.0 | 42.6 | |
Herbaceous | 25.0 | 55.0 | 37.1 | 23.5 | 70.0 | 40.5 | 19.5 | 70.0 | 36.7 | 19.0 | 70.0 | 36.4 | |
Red fruts | 46.5 | 85.0 | 62.8 | 49.0 | 90.0 | 66.4 | 55.0 | 100.0 | 74.1 | 61.0 | 95.0 | 76.1 | |
Spicy | 31.5 | 70.0 | 46.9 | 38.5 | 85.0 | 57.2 | 38.0 | 90.0 | 58.4 | 43.5 | 90.0 | 62.5 | |
Phenolic | 21.5 | 60.0 | 35.8 | 25.0 | 60.0 | 38.4 | 27.5 | 70.0 | 43.9 | 26.0 | 55.0 | 37.8 | |
Mint | 3.5 | 5.0 | 4.2 | - | - | - | 2.5 | 5.0 | 3.5 | - | - | - | |
Balsamic | 5.5 | 10.0 | 7.4 | - | - | - | 2.5 | 5.0 | 3.5 | - | - | - | |
Earthy | 3.0 | 5.0 | 3.9 | - | - | - | 2.5 | 5.0 | 3.5 | - | - | - | |
Ripe fruit | 4.5 | 5.0 | 4.7 | - | - | - | 3.0 | 5.0 | 3.9 | - | - | - | |
Liquor | 2.0 | 5.0 | 3.2 | - | - | - | - | - | - | 8.5 | 10.0 | 9.2 | |
Peper | - | - | - | 2.5 | 5.0 | 3.5 | - | - | - | - | - | - | |
Raisin | 2.5 | 5.0 | 3.5 | 1.0 | 5.0 | 2.2 | 5.0 | 10.0 | 7.1 | - | - | - | |
Vanilla | - | - | - | - | - | - | - | - | - | 5.5 | 10.0 | 7.4 | |
Licorice | - | - | - | - | - | - | 1.0 | 5.0 | 2.2 | 4.5 | 10.0 | 6.7 | |
Taste | Quality | 54.5 | 95.0 | 71.9 | 53.0 | 90.0 | 69.1 | 51.5 | 90.0 | 68.0 | 63.0 | 95.0 | 77.4 |
Sweetness | 20.0 | 50.0 | 31.6 | 22.5 | 55.0 | 35.2 | 26.0 | 65.0 | 41.0 | 30.0 | 70.0 | 45.8 | |
Saltiness | 17.0 | 60.0 | 31.9 | 18.5 | 80.0 | 38.5 | 22.5 | 80.0 | 42.4 | 19.5 | 50.0 | 31.2 | |
Acidity | 46.5 | 90.0 | 64.7 | 41.5 | 80.0 | 57.6 | 44.0 | 90.0 | 62.9 | 44.0 | 95.0 | 64.7 | |
Bitterness | 41.0 | 100.0 | 64.0 | 41.0 | 100.0 | 64.0 | 37.0 | 95.0 | 59.1 | 36.5 | 95.0 | 58.9 | |
Astringency | 53.0 | 95.0 | 70.9 | 59.0 | 100.0 | 76.8 | 53.0 | 100.0 | 72.6 | 51.0 | 95.0 | 73.6 | |
Body | 49.5 | 90.0 | 66.7 | 52.5 | 95.0 | 70.6 | 53.0 | 100.0 | 72.8 | 60.0 | 100.0 | 77.5 | |
Persistence | 54.0 | 100.0 | 73.5 | 52.0 | 95.0 | 70.3 | 54.0 | 100.0 | 73.5 | 64.0 | 100.0 | 80.0 | |
Balanced | - | - | - | - | - | - | 3.0 | 5.0 | 3.9 | 4.0 | 5.0 | 4.5 | |
Total quality | 59.0 | 100.0 | 76.8 | 61.0 | 100.0 | 78.1 | 58.0 | 100.0 | 76.1 | 67.5 | 100.0 | 82.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, D.; Gambacorta, G.; Tarricone, L.; Vilanova, M.; Paradiso, V.M. Effect of Early Basal Leaf Removal on Phenolic and Volatile Composition and Sensory Properties of Aglianico Red Wines. Plants 2022, 11, 591. https://doi.org/10.3390/plants11050591
Iorio D, Gambacorta G, Tarricone L, Vilanova M, Paradiso VM. Effect of Early Basal Leaf Removal on Phenolic and Volatile Composition and Sensory Properties of Aglianico Red Wines. Plants. 2022; 11(5):591. https://doi.org/10.3390/plants11050591
Chicago/Turabian StyleIorio, Debora, Giuseppe Gambacorta, Luigi Tarricone, Mar Vilanova, and Vito Michele Paradiso. 2022. "Effect of Early Basal Leaf Removal on Phenolic and Volatile Composition and Sensory Properties of Aglianico Red Wines" Plants 11, no. 5: 591. https://doi.org/10.3390/plants11050591
APA StyleIorio, D., Gambacorta, G., Tarricone, L., Vilanova, M., & Paradiso, V. M. (2022). Effect of Early Basal Leaf Removal on Phenolic and Volatile Composition and Sensory Properties of Aglianico Red Wines. Plants, 11(5), 591. https://doi.org/10.3390/plants11050591