Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach
Abstract
:1. Introduction
2. Results
2.1. Patterns of Water-Deficit Stress under Different Deficit Irrigation Levels
2.2. Effect of Deficit Irrigation on Grapevine Yield, Vigor, and Berry Quality
2.3. Effect of Deficit Irrigation on Berry Metabolome
3. Discussion
3.1. Irrigation at R30 and R70 Did Not Substantially Change Berry Quality Traits
3.2. A Targeted Metabolomic Analysis Showed Modifications in the Relative Abundance of Primary and Secondary Metabolites in Response to R30 and R70
4. Materials and Methods
4.1. Field Conditions and Experimental Design
4.2. Irrigation
4.3. Meteorological Data
4.4. Grapevine Water Status Determination
4.5. Phenological Stages and Vegetative Growth
4.6. Yield Parameters and Berry Composition during Development
4.7. Biochemical Analysis of Mature Berries
4.8. UPLC–MS-Based Metabolic Profiling
4.9. Data Mining
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, G. Climate Change and the Global Wine Industry. In Proceedings of the 13th Annual Australian Wine Industry Technical Conference, Adelaide, Australia, 28 July–2 August 2007. [Google Scholar]
- Keller, M. Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and Climatic Changes: A Glance at the Situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Petrie, P.R. Climate Shifts in South-eastern Australia: Early Maturity of Chardonnay, Shiraz and Cabernet Sauvignon Is Associated with Early Onset Rather than Faster Ripening. Aust. J. Grape Wine Res. 2011, 17, 199–205. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.; Moutinho-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A. Statistical Modelling of Grapevine Phenology in Portuguese Wine Regions: Observed Trends and Climate Change Projections. J. Agric. Sci. 2016, 154, 795–811. [Google Scholar] [CrossRef] [Green Version]
- Francesca, S.; Simona, G.; Francesco Nicola, T.; Andrea, R.; Vittorio, R.; Federico, S.; Cynthia, R.; Maria Lodovica, G. Downy Mildew (Plasmopara viticola) Epidemics on Grapevine under Climate Change. Glob. Change Biol. 2006, 12, 1299–1307. [Google Scholar] [CrossRef]
- Van Niekerk, J.M.; Bester, W.; Halleen, F.; Crous, P.W.; Fourie, P.H. The Distribution and Symptomatology of Grapevine Trunk Disease Pathogens Are Influenced by Climate. Phytopathol. Mediterr. 2011, 50, S98–S111. [Google Scholar]
- Fraga, H.; de Cortázar Atauri, I.G.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A Review of Recent Trends and Climate Change Projections. Oeno One 2017, 51, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.A.; Anderson, M.M. Reproductive Development in Grape (Vitis vinifera L.): Responses to Seasonal Water Deficits. Am. J. Enol. Vitic. 1989, 40, 52–60. [Google Scholar]
- Romero, P.; Botia, P.; Garcia, F. Effects of Regulated Deficit Irrigation under Subsurface Drip Irrigation Conditions on Vegetative Development and Yield of Mature Almond Trees. Plant Soil 2004, 260, 169–181. [Google Scholar] [CrossRef]
- Dayer, S.; Prieto, J.A.; Galat, E.; Perez Peña, J. Carbohydrate Reserve Status of M Albec Grapevines after Several Years of Regulated Deficit Irrigation and Crop Load Regulation. Aust. J. Grape Wine Res. 2013, 19, 422–430. [Google Scholar] [CrossRef]
- Alves, F.; Costa, J.; Costa, P.; Correia, C.; Gonçalves, B.; Soares, R.; Moutinho-Pereira, J. Grapevine Water Stress Management in Douro Region; ADVID: Vila Real, Portugal, 2013. [Google Scholar]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry Phenolics of Grapevine under Challenging Environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerós, H.; Chaves, M.M.; Gil, H.M.; Delrot, S. Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-73601-X. [Google Scholar]
- Hardie, W.J.; O’Brien, T.; Jaudzems, V. Cell Biology of Grape Secondary Metabolism: A Viticultural Perspective. In Proceedings of the Ninth Australian Wine Industry Technical Conference, Adelaide, Australia, 16–19 July 1995; pp. 78–82. [Google Scholar]
- Coombe, B. Distribution of Solutes within the Developing Grape Berry in Relation to Its Morphology. Am. J. Enol. Vitic. 1987, 38, 120–127. [Google Scholar]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical Changes throughout Grape Berry Development and Fruit and Wine Quality; Global Science Books: Takamatsu, Japan, 2007. [Google Scholar]
- Schultz, H. Climate Change and Viticulture: A European Perspective on Climatology, Carbon Dioxide and UV-B Effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry Size and Vine Water Deficits as Factors in Winegrape Composition: Anthocyanins and Tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Romero, P.; Fernández-Fernández, J.I.; Martinez-Cutillas, A. Physiological Thresholds for Efficient Regulated Deficit-Irrigation Management in Winegrapes Grown under Semiarid Conditions. Am. J. Enol. Vitic. 2010, 61, 300–312. [Google Scholar]
- Oliveira, C.; Silva Ferreira, A.; Mendes Pinto, M.; Hogg, T.; Alves, F.; Guedes de Pinho, P. Carotenoid Compounds in Grapes and Their Relationship to Plant Water Status. J. Agric. Food Chem. 2003, 51, 5967–5971. [Google Scholar] [CrossRef] [PubMed]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavor and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Savoi, S.; Wong, D.C.; Arapitsas, P.; Miculan, M.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Transcriptome and Metabolite Profiling Reveals That Prolonged Drought Modulates the Phenylpropanoid and Terpenoid Pathway in White Grapes (Vitis vinifera L.). BMC Plant Biol. 2016, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of Pre-and Postveraison Water Deficit on Synthesis and Concentration of Skin Phenolic Compounds during Berry Growth of Vitis vinifera Cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Cook, M.G.; Zhang, Y.; Nelson, C.J.; Gambetta, G.; Kennedy, J.A.; Kurtural, S.K. Anthocyanin Composition of Merlot Is Ameliorated by Light Microclimate and Irrigation in Central California. Am. J. Enol. Vitic. 2015, 66, 266–278. [Google Scholar] [CrossRef]
- Hochberg, U.; Degu, A.; Cramer, G.R.; Rachmilevitch, S.; Fait, A. Cultivar Specific Metabolic Changes in Grapevines Berry Skins in Relation to Deficit Irrigation and Hydraulic Behavior. Plant Physiol. Biochem. 2015, 88, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.; Ishii, R.; Anderson, M.; O’Mahony, M. Dependence of Wine Sensory Attributes on Vine Water Status. J. Sci. Food Agric. 1990, 51, 321–335. [Google Scholar] [CrossRef]
- Keller, M.; Smith, J.P.; Bondada, B.R. Ripening Grape Berries Remain Hydraulically Connected to the Shoot. J. Exp. Bot. 2006, 57, 2577–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, M.; Smithyman, R.P.; Mills, L.J. Interactive Effects of Deficit Irrigation and Crop Load on Cabernet Sauvignon in an Arid Climate. Am. J. Enol. Vitic. 2008, 59, 221–234. [Google Scholar]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, M.; Zarrouk, O.; Francisco, R.; Costa, J.; Santos, T.; Regalado, A.; Rodrigues, M.; Lopes, C. Grapevine under Deficit Irrigation: Hints from Physiological and Molecular Data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Castel, J.R. Response of Grapevine Cv. ‘Tempranillo’to Timing and Amount of Irrigation: Water Relations, Vine Growth, Yield and Berry and Wine Composition. Irrig. Sci. 2010, 28, 113. [Google Scholar] [CrossRef]
- Keller, M.; Romero, P.; Gohil, H.; Smithyman, R.P.; Riley, W.R.; Casassa, L.F.; Harbertson, J.F. Deficit Irrigation Alters Grapevine Growth, Physiology, and Fruit Microclimate. Am. J. Enol. Vitic. 2016, 67, 426–435. [Google Scholar] [CrossRef]
- Gouveia, C.; Liberato, M.; DaCamara, C.; Trigo, R.; Ramos, A. Modelling Past and Future Wine Production in the Portuguese Douro Valley. Clim. Res. 2011, 48, 349–362. [Google Scholar] [CrossRef]
- Lovisolo, C.; Perrone, I.; Carra, A.; Ferrandino, A.; Flexas, J.; Medrano, H.; Schubert, A. Drought-Induced Changes in Development and Function of Grapevine (Vitis Spp.) Organs and in Their Hydraulic and Non-Hydraulic Interactions at the Whole-Plant Level: A Physiological and Molecular Update. Funct. Plant Biol. 2010, 37, 98–116. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.M.; Chaves, M.M. Grapevine Varieties Exhibiting Differences in Stomatal Response to Water Deficit. Funct. Plant Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.; Pedroso, V.; Gouveia, J.; Martins, S.; Lopes, C.; Alves, I. Influence of Soil Water Content and Atmospheric Conditions on Leaf Water Potential in Cv. “Touriga Nacional” Deep-Rooted Vineyards. Irrig. Sci. 2012, 30, 407–417. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M. Analysis of Climate Change Indices in Relation to Wine Production: A Case Study in the Douro Region (Portugal); EDP Sciences: Les Ulis, France, 2017; Volume 9, p. 01011. [Google Scholar]
- Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A. Mechanical Stress Rapidly Induces E-Resveratrol and E-Piceatannol Biosynthesis in Grape Canes Stored as a Freshly-Pruned Byproduct. Food Chem. 2018, 240, 1022–1027. [Google Scholar] [CrossRef]
- Martins, V.; Billet, K.; Garcia, A.; Lanoue, A.; Gerós, H. Exogenous Calcium Deflects Grape Berry Metabolism towards the Production of More Stilbenoids and Less Anthocyanins. Food Chem. 2020, 313, 126123. [Google Scholar] [CrossRef]
- Pillet, J.; Berdeja, M.; Guan, L.; Delrot, S. Berry Response to Water, Light and Heat Stresses. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; Wiley: Hoboken, NJ, USA, 2015; pp. 223–257. [Google Scholar] [CrossRef]
- Schultz, H.; Hofmann, M.; Géros, H.; Chaves, M. The Ups and Downs of Environmental Impact on Grapevines: Future Challenges in Temperate Viticulture. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; Wiley: Hoboken, NJ, USA, 2015; pp. 18–37. ISBN 9781118736050. [Google Scholar]
- Zarrouk, O.; Brunetti, C.; Egipto, R.; Pinheiro, C.; Genebra, T.; Gori, A.; Lopes, C.M.; Tattini, M.; Chaves, M.M. Grape Ripening Is Regulated by Deficit Irrigation/Elevated Temperatures According to Cluster Position in the Canopy. Front. Plant Sci. 2016, 7, 1640. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.; Fonseca, A.; Fraga, H.; Jones, G.V.; Santos, J.A. Bioclimatic Conditions of the Portuguese Wine Denominations of Origin under Changing Climates. Int. J. Climatol. 2020, 40, 927–941. [Google Scholar] [CrossRef]
- Flexas, J.; Escalona, J.; Medrano, H. Down-Regulation of Photosynthesis by Drought under Field Conditions in Grapevine Leaves. Funct. Plant Biol. 1998, 25, 893–900. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of Drought on Photosynthesis in Grapevines under Field Conditions: An Evaluation of Stomatal and Mesophyll Limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Maroco, J.P.; Rodrigues, M.L.; Lopes, C.; Chaves, M.M. Limitations to Leaf Photosynthesis in Field-Grown Grapevine under Drought—Metabolic and Modelling Approaches. Funct. Plant Biol. 2002, 29, 451–459. [Google Scholar] [CrossRef] [PubMed]
- De Souza, C.R.; Maroco, J.P.; Dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Partial Rootzone Drying: Regulation of Stomatal Aperture and Carbon Assimilation in Field-Grown Grapevines (Vitis vinifera Cv. Moscatel). Funct. Plant Biol. 2003, 30, 653–662. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.R.; Maroco, J.P.; dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Impact of Deficit Irrigation on Water Use Efficiency and Carbon Isotope Composition (Δ13C) of Field-Grown Grapevines under Mediterranean Climate. J. Exp. Bot. 2005, 56, 2163–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; de Souza, C.; Ortuño, M.; Rodrigues, M.; Lopes, C.; Maroco, J.; Pereira, J.S. Deficit Irrigation in Grapevine Improves Water-use Efficiency While Controlling Vigour and Production Quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- dos Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; de Souza, C.R.; Ricardo-da-Silva, J.M.; Maroco, J.P.; Pereira, J.S.; Chaves, M.M. Effects of Deficit Irrigation Strategies on Cluster Microclimate for Improving Fruit Composition of Moscatel Field-Grown Grapevines. Sci. Hortic. 2007, 112, 321–330. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Molina, D.I.; Vivaldi, G.A.; García-Esparza, M.J.; Lizama, V.; Álvarez, I. Effects of the Irrigation Regimes on Grapevine Cv. Bobal in a Mediterranean Climate: I. Water Relations, Vine Performance and Grape Composition. Agric. Water Manag. 2021, 248, 106772. [Google Scholar] [CrossRef]
- Torres Molina, N.; Yu, R.; Martínez-Lüscher, J.; Kostaki, E.; Kurtural, S.K. Effects of Irrigation at Different Fractions of Crop Evapotranspiration on Water Productivity and Flavonoid Composition of Cabernet Sauvignon Grapevine. Front. Plant Sci. 2021, 12, 712622. [Google Scholar] [CrossRef]
- Gaudillère, J.; Van Leeuwen, C.; Ollat, N. Carbon Isotope Composition of Sugars in Grapevine, an Integrated Indicator of Vineyard Water Status. J. Exp. Bot. 2002, 53, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. Deficit Irrigation and Vine Mineral Nutrition. Am. J. Enol. Vitic. 2005, 56, 267–283. [Google Scholar]
- Shellie, K.C. Vine and Berry Response of Merlot (Vitis vinifera L.) to Differential Water Stress. Am. J. Enol. Vitic. 2006, 57, 514–518. [Google Scholar]
- Lizama, V.; Pérez-Álvarez, E.; Intrigliolo, D.; Chirivella, C.; Álvarez, I.; García-Esparza, M. Effects of the Irrigation Regimes on Grapevine Cv. Bobal in a Mediterranean Climate: II. Wine, Skins, Seeds, and Grape Aromatic Composition. Agric. Water Manag. 2021, 256, 107078. [Google Scholar] [CrossRef]
- de Oliveira, A.F.; Mameli, M.; De Pau, L.; Satta, D.; Nieddu, G. Deficit Irrigation Strategies in Vitis vinifera L. Cv. Cannonau under Mediterranean Climate. Part I-Physiological Responses, Growth, Yield and Berry Composition. S. Afr. J. Enol. Vitic. 2013, 34, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in Plants: Metabolism, Regulation, and Signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef]
- Vezzulli, S.; Civardi, S.; Ferrari, F.; Bavaresco, L. Methyl Jasmonate Treatment as a Trigger of Resveratrol Synthesis in Cultivated Grapevine. Am. J. Enol. Vitic. 2007, 58, 530–533. [Google Scholar]
- Grimplet, J.; Deluc, L.G.; Tillett, R.L.; Wheatley, M.D.; Schlauch, K.A.; Cramer, G.R.; Cushman, J.C. Tissue-Specific MRNA Expression Profiling in Grape Berry Tissues. BMC Genom. 2007, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Hernández-Jiménez, A.; Gil-Muñoz, R.; Ruiz-García, Y.; López-Roca, J.M.; Martinez-Cutillas, A.; Gómez-Plaza, E. Evaluating the Polyphenol Profile in Three Segregating Grape (Vitis vinifera L.) Populations. J. Anal. Methods Chem. 2013, 2013, 572896. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Prichard, T.; Hanson, B.; Schwankl, L.; Verdegaal, P.; Smith, R. Deficit Irrigation of Quality Winegrapes Using Micro-Irrigation Techniques; University of California: Davis, CA, USA, 2004; p. 5. [Google Scholar]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.; Hammel, H. Sap Pressure in Vascular Plants: Negative Hydrostatic Pressure Can Be Measured in Plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.; Pinto, P. Easy and Accurate Estimation of Grapevine Leaf Area with Simple Mathematical Models. Vitis 2005, 44, 55–61. [Google Scholar]
- Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.Y.; Lu, Y.; Moon, S.; Nikolau, B. Quality Control for Plant Metabolomics: Reporting MSI-compliant Studies. Plant J. 2008, 53, 691–704. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, I.L.; Teixeira, A.; Lanoue, A.; Unlubayir, M.; Munsch, T.; Valente, J.; Alves, F.; da Costa, P.L.; Rogerson, F.S.; Carvalho, S.M.P.; et al. Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants 2022, 11, 732. https://doi.org/10.3390/plants11060732
Cabral IL, Teixeira A, Lanoue A, Unlubayir M, Munsch T, Valente J, Alves F, da Costa PL, Rogerson FS, Carvalho SMP, et al. Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants. 2022; 11(6):732. https://doi.org/10.3390/plants11060732
Chicago/Turabian StyleCabral, Inês L., António Teixeira, Arnaud Lanoue, Marianne Unlubayir, Thibaut Munsch, Joana Valente, Fernando Alves, Pedro Leal da Costa, Frank S. Rogerson, Susana M. P. Carvalho, and et al. 2022. "Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach" Plants 11, no. 6: 732. https://doi.org/10.3390/plants11060732
APA StyleCabral, I. L., Teixeira, A., Lanoue, A., Unlubayir, M., Munsch, T., Valente, J., Alves, F., da Costa, P. L., Rogerson, F. S., Carvalho, S. M. P., Gerós, H., & Queiroz, J. (2022). Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants, 11(6), 732. https://doi.org/10.3390/plants11060732