Investigation of Calcium Forms in Lichens from Travertine Sites
Abstract
:1. Introduction
2. Results
Elemental Analysis (EDX) of Studied Lichen Species
3. Discussion
4. Material and Methods
4.1. Collection of Material and Study Areas
4.2. Elemental Analysis (EDX) with a Scanning Electron Microscope (SEM)
4.3. Powder X-ray Diffraction
4.4. Raman Spectroscopy
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garty, J.; Kunin, P.; Delarea, J.; Weiner, S. Calcium oxalate and sulphate-containing structures on the thallial surface of the lichen Ramalina lacera: Response to polluted air and simulated acid rain. Plant Cell Environ. 2002, 25, 1591–1604. [Google Scholar] [CrossRef]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; International Potash Institute: Worblaufen-Bern, Switzerland, 1987. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinaure Associates, Inc.: Sunderland, MA, USA, 2002. [Google Scholar]
- Sanders, D.; Brownlee, C.; Harper, J.F. Communicating with Calcium. Plant Cell 1999, 11, 691–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bačkor, M.; Bačkorová, M.; Goga, M.; Hrčka, M. Calcium Toxicity and Tolerance in Lichens: Ca Uptake and Physiological Responses. Water Air Soil Pollut. 2017, 228, 1–10. [Google Scholar] [CrossRef]
- Hepler, P.K.; O Wayne, R. Calcium and Plant Development. Annu. Rev. Plant Physiol. 1985, 36, 397–439. [Google Scholar] [CrossRef]
- Giordani, P.; Modenesi, P.; Tretiach, M. Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist 2003, 35, 255–270. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. CALCIUM OXALATE IN PLANTS: Formation and Function. Annu. Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef]
- Frey, W. Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am. J. Bot. 1981, 68, 130–141. [Google Scholar] [CrossRef]
- Modenesi, P.; Bombardi, V.; Giordani, P.; Brunialti, G.; Corallo, A. Dissolution of Weddellite, Calcium Oxalate Dihydrate, in Pyxine Subcinerea. Lichenologist 2001, 33, 261–266. [Google Scholar] [CrossRef]
- Tomazic, B.B.; Nancollas, G.H. The kinetics of dissolution of calcium-oxalate hydrates II the dihydrate. Investig. Urol. 1980, 18, 97–101. [Google Scholar]
- Lawrey, J.D. Calcium Accumulation by Lichens and Transfer to Lichen Herbivores. Mycologia 1980, 72, 586. [Google Scholar] [CrossRef]
- Seaward, M.; Giacobini, C.; Giuliani, M.; Roccardi, A. The role of lichens in the biodeterioration of ancient monuments with particular reference to central Italy. Int. Biodeterior. 1989, 25, 49–55. [Google Scholar] [CrossRef]
- Sterling, C. Crystal structure analysis of weddellite, CaC2O4.(2+x)H2O. Acta Crystallogr. 1965, 18, 917–921. [Google Scholar] [CrossRef]
- Tazzoli, V.; Domeneghetti, C. The crystal-structures of whewellite and weddellite–reexamination and comparison. Am. Mineral. 1980, 65, 327–334. [Google Scholar]
- Wadsten, T.; Moberg, R. Calcium oxalate hydrates on the surface of lichens. Lichenologist 1985, 17, 239–245. [Google Scholar] [CrossRef]
- Izatulina, A.; Gurzhiy, V.; Frank-Kamenetskaya, O. Weddellite from renal stones: Structure refinement and dependence of crystal chemical features on H2O content. Am. Miner. 2014, 99, 2–7. [Google Scholar] [CrossRef]
- Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Gurzhiy, V.V.; Zelenskaya, M.S.; Izatulina, A.R.; Sazanova, K.V. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger. Crystallogr. Rep. 2014, 59, 362–368. [Google Scholar] [CrossRef]
- Syers, J.K.; Birnie, A.C.; Mitchell, B.D. The Calcium Oxalate Content of Some Lichens Growing on Limestone. Lichenologist 1967, 3, 409–414. [Google Scholar] [CrossRef]
- Wilson, M.J.; Jones, D.; McHardy, W.J. The Weathering of Serpentinite by Lecanora Atra. Lichenologist 1981, 13, 167–176. [Google Scholar] [CrossRef]
- Ariño, X.; Ortega-Calvo, J.; Gomez-Bolea, A.; Saiz-Jimenez, C. Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): Biodeterioration vs. bioprotection. Sci. Total Environ. 1995, 167, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Fouke, B.W.; Farmer, J.D.; Marais, D.J.D.; Pratt, L.; Sturchio, N.C.; Burns, P.C.; Discipulo, M.K. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). J. Sediment. Res. 2000, 70, 565–585. [Google Scholar] [CrossRef]
- Fouke, B.W. Hot-spring Systems Geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 2011, 58, 170–219. [Google Scholar] [CrossRef]
- Capezzuoli, E.; Gandin, A.; Pedley, M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 2014, 61, 1–21. [Google Scholar] [CrossRef]
- Garty, J. Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Crit. Rev. Plant Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Bačkor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Pinosova, M.; Andrejiova, M.; Liptai, P.; Lumnitzer, E. Obj ective and subjective evaluation of the physical risk factors near a conveyor system. Adv. Sci. Technol.-Res. J. 2018, 12, 188–196. [Google Scholar] [CrossRef]
- Pinosova, M.; Andrejiova, M.; Lumnitzer, E. Synergistic Effect of Risk Factors and Work Environmental Quality. Qual.-Access Success 2018, 19, 154–159. [Google Scholar]
- Paoli, L.; Guttova, A.; Grassi, A.; Lackovicova, A.; Senko, D.; Loppi, S. Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol. Indic. 2014, 40, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Nieboer, E.; Richardson, D.H.S.; Tomassini, F.D. Mineral Uptake and Release by Lichens: An Overview. Bryologist 1978, 81, 226. [Google Scholar] [CrossRef]
- Paul, A.; Hauck, M.; Leuschner, C. Iron and phosphate uptake explains the calcifuge–calcicole behavior of the terricolous lichens Cladonia furcata subsp. furcata and C. rangiformis. Plant Soil 2008, 319, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Osyczka, P.; Rola, K.; Jankowska, K. Vertical concentration gradients of heavy metals in Cladonia lichens across different parts of thalli. Ecol. Indic. 2016, 61, 766–776. [Google Scholar] [CrossRef]
- Ahti, T.; Sipman, H.J.M. Ten new species of Cladonia (Cladoniaceae, Lichenized Fungi) from the Guianas and Venezuela, South America. Phytotaxa 2013, 93, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.A. Environmental modifications and lichen taxonomy. In Lichen Ecology; Seaward, M.R.D., Ed.; Academic Press: London, UK, 1977; pp. 9–29. [Google Scholar]
- Frost, R. Raman spectroscopy of natural oxalates. Anal. Chim. Acta 2004, 517, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Ibarrondo, I.; Martínez-Arkarazo, I.; Madariaga, J.M. Biomineralization in saxicolous lichens: Raman spectroscopic study supported with XRF and SEM-EDX analyses. J. Raman Spectrosc. 2016, 48, 161–169. [Google Scholar] [CrossRef]
- Villar, S.E.J.; Edwards, H.G.M.; Seaward, M.R.D. Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 2005, 130, 730–737. [Google Scholar] [CrossRef]
- Pestaner, J.P.; Mullick, F.G.; Johnson, F.B.; Centeno, J.A. Calcium oxalate crystals in human pathology—Molecular analysis with the laser Raman microprobe. Arch. Pathol. Lab. Med. 1996, 120, 537–540. [Google Scholar]
- Dubernat, J.; Pezerat, H. Mistakes of piling in dihydrated oxalates of divalent metals of magnesium series (Mg,Fe,Co,Ni,Zu,Mn). J. Appl. Crystallogr. 1974, 7, 387–393. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Bradwell, T. Growth of foliose lichens: A review. Symbiosis 2011, 53, 1–16. [Google Scholar] [CrossRef]
- Horner, H.T.; Wagner, B.L. Calcium oxalate formation in higher plants. In Calcium Oxalate in Biological Systems; Kahn, S.R., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 53–71. [Google Scholar]
- Clark, B.M.; Clair, L.L.S.; Mangelson, N.F.; Rees, L.B.; Grant, P.G.; Bench, G.S. Characterization of mycobiont adaptations in the foliose lichen Xanthoparmelia chlorochroa (Parmeliaceae). Am. J. Bot. 2001, 88, 1742–1749. [Google Scholar] [CrossRef]
- Farkas, E.; Biró, B.; Csintalan, Z.; Veres, K. Acetone rinsing tolerance of the lichen species Cladonia foliacea is considerable. Lichenologist 2020, 52, 325–327. [Google Scholar] [CrossRef]
- Team, R.S. RStudio: Integrated Development for R. 2019. Available online: http://www.rstudio.com.
- Team, R.C. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ručová, D.; Đorđević, T.; Baláž, M.; Weidinger, M.; Lang, I.; Gajdoš, A.; Goga, M. Investigation of Calcium Forms in Lichens from Travertine Sites. Plants 2022, 11, 620. https://doi.org/10.3390/plants11050620
Ručová D, Đorđević T, Baláž M, Weidinger M, Lang I, Gajdoš A, Goga M. Investigation of Calcium Forms in Lichens from Travertine Sites. Plants. 2022; 11(5):620. https://doi.org/10.3390/plants11050620
Chicago/Turabian StyleRučová, Dajana, Tamara Đorđević, Matej Baláž, Marieluise Weidinger, Ingeborg Lang, Andrej Gajdoš, and Michal Goga. 2022. "Investigation of Calcium Forms in Lichens from Travertine Sites" Plants 11, no. 5: 620. https://doi.org/10.3390/plants11050620
APA StyleRučová, D., Đorđević, T., Baláž, M., Weidinger, M., Lang, I., Gajdoš, A., & Goga, M. (2022). Investigation of Calcium Forms in Lichens from Travertine Sites. Plants, 11(5), 620. https://doi.org/10.3390/plants11050620