Quality Control Standardization, Contaminant Detection and In Vitro Antioxidant Activity of Prunus domestica Linn. Fruit
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Collection and Authentication of the Drug Sample
2.3. Macroscopic Evaluation
2.4. Microscopic Evaluation
2.5. Physicochemical Evaluation
2.6. Phytochemical Tests (Chemical Classes Screening)
2.7. Total Phenolics Content
2.8. Total Flavonoid Content
2.9. Atomic Absorption Spectrometer (AAS) Study for Evaluation of Heavy Metals
2.9.1. Selection of Processing Parameters
2.9.2. Optimization of the Atomic Absorption Spectra
2.10. HPLC Determination of Aflatoxins Concentrations
2.10.1. Sample Preparation
2.10.2. Derivatization of Samples (Extract) and Standards
2.10.3. High-Performance Liquid Chromatography (HPLC–Fluorescence) Analysis
2.11. GC–MS Analysis for Pesticides
2.12. HPTLC Finger Printing
2.13. Microbial Contamination
2.14. HPLC/DAD–DPPH Method for In Vitro Antioxidant Activity
3. Results and Discussion
3.1. Macroscopical Observations
3.2. Microscopic Observations
3.3. Physiochemical Analysis
3.4. Phytochemical Analysis
3.5. Total Phenolic Content
3.6. Total Flavonoid Content
3.7. Heavy Metals Determination via AAS
3.8. Aflatoxins Determination via HPLC
3.9. Pesticides Determination via GC–MS
3.10. HPTLC Finger Printing
3.11. Microbial Load for the Fruit Sample
3.12. HPLC/DAD–DPPH Method for In Vitro Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yates, A. Yates Garden Guide; Harper Collins Australia: Pymble, Australia, 2002. [Google Scholar]
- Amir, M.; Ahmad, N.; Sarafroz, M.; Ahmad, S.; Mujeeb, M. Pharmacognostical, Physicochemical Standardization and In vitro Antioxidant Activity of Punica granatum Linn fruit. Pharmacogn. J. 2019, 11, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Sethi, P.-D. High Performance Thin Layer Chromatography: Quantitative Analysis of Pharmaceutical Formulations; CBS Publishers and Distributers: New Delhi, India, 1996; pp. 10–60. [Google Scholar]
- Quality Control Method for Medicinal Plant Materials; WHO: Geneva, Switzerland, 1989; pp. 1–15.
- Gupta, V.-K. Wealth of India; CSIR: New Delhi, India, 2003; Volume 4, pp. 406–409. [Google Scholar]
- Ramming, D.-W.; Cociu, V. Plum (Prunus). Genet. Resour. Temp. Fruit Nut Crops 1991, 290, 235–287. [Google Scholar]
- Chiej, R. MacDonald Encyclopaedia of Medicinal Plants; MacDonald: London, UK, 1984; p. 448. [Google Scholar]
- Kayano, S.; Kikuzaki, H.; Ikami, T.; Suzuki, T.; Mitani, T.; Nakatani, N. A New Bipyrrole and Some Phenolic Constituents in Prunes (Prunus domestica L.) and Their Oxygen Radical Absorbance Capacity (ORAC). Biosci. Biotechnol. Biochem. 2004, 68, 942–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowski, R.; Kabut, J.; Baranowska, I. Analysis of mixture of catechins, flavones, flavanones, flavonols, and anthocyanidins by RP-HPLC. Anal. Lett. 2004, 37, 157–165. [Google Scholar] [CrossRef]
- Tsuji, M.; Harakawa, M.; Komiyama, Y. High performance liquid chromatographic analysis of quinic acid malic acid and shikimic acid in plum fruit using a cation exchange resin. J. Jpn. Soc. Food Sci. Technol. (Nippon. Shokuhin Kogyo Gakkaishi) 1985, 32, 661–663. [Google Scholar]
- Brain, K.-R.; Turner, T.-D. The Practical Evaluation of Phytopharmaceuticals; Wright-Scientechnica: Bristol, UK, 1975. [Google Scholar]
- Khandelwal, K.-R. Practical Book of Pharmacognosy; Nirali Prakashan: Pune, India, 2005. [Google Scholar]
- Amir, M.; Mujeeb, M.; Khan, A.; Ashraf, K.; Sharma, D.; Aqil, M. Phytochemical analysis and in vitro antioxidant activity of Uncaria gambir. Int. J. Green Pharm. 2012, 6, 67–72. [Google Scholar]
- Horwitz, W. Official Method of Analysis of the Association of Official Analytical Chemists, 7th ed.; AOAC: Washington, DC, USA, 1970. [Google Scholar]
- Ahmad, A.; Amir, M.; Alshadidi, A.-A.; Hussain, M.D.; Haq, A.; Kazi, M. Central composite design expert-supported development and validation of HPTLC method: Relevance in quantitative evaluation of protopine in Fumaria indica. Saudi Pharm. J. 2020, 28, 487–494. [Google Scholar] [CrossRef]
- Rajput, S.; Tripathi, M.-K.; Tiwari, A.-K.; Dwivedi, N.; Tripathi, S.-P. Scientific evaluation of Panchkola churna–an Ayurvedic polyherbal drug formulation. Indian J. Tradit. Knowl. 2012, 11, 697–703. [Google Scholar]
- Yen, G.-C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Dave, R.; Nagani, K.; Chanda, S. Pharmacognostic studies and physicochemical properties of the Polyalthia longifolia var. pendula leaf. Pharmacogn. J. 2010, 2, 572–576. [Google Scholar] [CrossRef]
- Vaghasiya, Y.; Nair, R.; Chanda, S. Antibacterial and preliminary phytochemical and physico-chemical analysis of Eucalyptus citriodora Hk leaf. Nat. Prod. Res. 2008, 22, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, D.S.N.B.K.; Rao, A.-S.; Prasad, Y.-R. Assessment of Pharmacognostic, Phytochemical and Physicochemical Standards of Aralia racemosa (L.) root. Ind. J. Pharm. Educ. Res. 2016, 50, S225–S230. [Google Scholar] [CrossRef] [Green Version]
- Savic, I.; Savic Gajic, I.; Gajic, D. Physico-Chemical Properties and Oxidative Stability of Fixed Oil from Plum Seeds (Prunus domestica Linn.). Biomolecules 2020, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.-A.; Miller, N.-J.; Bollwell, P.-G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Ubeaud, G.; Jung, L. Anti- and pro-oxidant activity of rutin and quercetin derivatives. J. Pharm. Pharmacol. 2003, 55, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Ikem, A.; Egiebo, N.-O.; Nyavor, K. Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water Air Soil Pollut. 2003, 149, 51–75. [Google Scholar] [CrossRef]
- Samuel, J.-B.; Stanley, J.-A.; Princess, R.-A.; Shanthi, P.; Sebastian, M.-S. Gestational cadmium exposure-induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels. J. Med. Toxicol. 2011, 7, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.-L.; Groopman, J.-D. The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance, 1st ed.; Academic Press: San Diego, CA, USA, 1994; p. 309. [Google Scholar]
- McGlynn, K.; Rosvold, E.; Lustbader, E.; Hu, Y.; Clapper, M.; Zhou, T.; Wild, C.-P.; Xia, X.-L.; Baffoe-Bonnie, A.; Ofori-Adjei, D. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc. Natl. Acad. Sci. USA 1995, 92, 2384–2387. [Google Scholar] [CrossRef] [Green Version]
- Tewary, D.-K.; Kumar, V.; Shanker, A. Leaching of pesticides in herbal decoction. Chem. Health Saf. 2004, 11, 25–29. [Google Scholar] [CrossRef]
- Sankararamakrishnan, N.; Sharma, A.-K.; Sanghi, R. Organochlorine and organophosphorus pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. Environ. Int. 2005, 31, 113–120. [Google Scholar] [CrossRef]
- Geng, D.; Chi, X.; Dong, Q.; Hu, F. Antioxidants screening in Limonium aureum by optimized online HPLC–DPPH assay. Ind. Crops Prod. 2015, 67, 492–497. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimization study on extraction of antioxidants from plum seeds (Prunus domestica L.). Optim. Eng. 2021, 22, 141–158. [Google Scholar] [CrossRef]
Parameters | % w/w (Mean ± SD) |
---|---|
LOD | 15.46 ± 2.24% |
Moisture content | 13.27 ± 1.75% |
Ash value | |
Total ash | 3.66 ± 0.257% |
Acid insoluble ash | 0.36 ± 0.082% |
Water-soluble ash | 2.83 ± 0.817% |
Successive extraction values | |
Petroleum ether | 1.50 ± 0.13% |
Chloroform | 1.8 ± 0.35% |
Methanol | 15.21 ± 2.43% |
Water:alcohol (1:1; v/v) | 24.71 ± 4.94% |
Water | 20.80 ± 4.41% |
S. No. | Phytochemical Tests | Chloroform Extract | Alcoholic Extract | Aqueous Extract |
---|---|---|---|---|
1 | Alkaloid | + | + | + |
2 | Sterols | + | + | + |
3 | Carbohydrate | − | + | + |
4 | Phenolic compound | + | + | + |
5 | Flavonoid | + | + | + |
6 | Amino acids | − | + | + |
7 | Saponin | − | + | + |
8 | Mucilage | − | − | − |
9 | Glycoside | − | + | + |
10 | Terpenes | + | + | − |
Mean ± SD (ppm) | Limit (Safe Up to) (ppm) | |
---|---|---|
Lead | 0.56301 ± 0.0089 | 10 |
Cadmium | 0.00453 ± 0.0002 | 0.30 |
Mercury | 0.441 ± 0.0246 | 0.50 |
Arsenic | 1.182 ± 0.0203 | 3.0 |
S. No. | Pesticide | Test Method |
---|---|---|
1 | -BHC | AOAC970.52/EPA525.5 |
2 | β-BHC | AOAC970.52/EPA525.5 |
3 | γ-BHC(Lindanee) | AOAC970.52/EPA525.5 |
4 | δ-BHC | AOAC970.52/EPA525.5 |
5 | Heptachlor | AOAC970.52/EPA525.5 |
6 | Heptachlor_Epoxide | AOAC970.52/EPA525.5 |
7 | -Chlordane | AOAC970.52/EPA525.5 |
8 | -Endoulfan | AOAC970.52/EPA525.5 |
9 | β-Chlordane | AOAC970.52/EPA525.5 |
10 | Endrin | AOAC970.52/EPA525.5 |
11 | Total DDE | AOAC970.52/EPA525.5 |
12 | Total DDD | AOAC970.52/EPA525.5 |
13 | Total DDT | AOAC970.52/EPA525.5 |
14 | β-Endoulfan | AOAC970.52/EPA525.5 |
15 | Endrin_Aldehyde | AOAC970.52/EPA525.5 |
16 | Endoulfan_sulfate | AOAC970.52/EPA525.5 |
17 | Aldrin | AOAC970.52/EPA525.5 |
18 | Endrin_Ketone | AOAC970.52/EPA525.5 |
19 | Methoxychlor | AOAC970.52/EPA525.5 |
20 | Dieldrin | AOAC970.52/EPA525.5 |
21 | Alachlor | AOAC970.52/EPA525.5 |
22 | Butachlor | AOAC970.52/EPA525.5 |
23 | Monochlorphos | AOAC970.52/EPA525.5 |
24 | Phorate | AOAC970.52/EPA525.5 |
25 | Mevinphos | AOAC970.52/EPA525.5 |
26 | Dimethoate | AOAC970.52/EPA525.5 |
27 | Malathion | AOAC970.52/EPA525.5 |
28 | Methyl-parathion | AOAC970.52/EPA525.5 |
29 | Chlorpyrifos | AOAC970.52/EPA525.5 |
30 | Ethion | AOAC970.52/EPA525.5 |
31 | Atrazine | AOAC970.52/EPA525.5 |
32 | Simazine | AOAC970.52/EPA525.5 |
33 | Diazinone | AOAC970.52/EPA525.5 |
34 | Phosphamidon | AOAC970.52/EPA525.5 |
35 | Fenitrothion | AOAC970.52/EPA525.5 |
36 | Fenthion | AOAC970.52/EPA525.5 |
37 | Phosalone | AOAC970.52/EPA525.5 |
38 | Quinaphos | AOAC970.52/EPA525.5 |
40 | Malaoxon | AOAC970.52/EPA525.5 |
41 | Dichlorvos | AOAC970.52/EPA525.5 |
42 | 2,4-D | AOAC970.52/EPA525.5 |
S. No. | Sample | Solvent System | No. of Peaks and Rf Values |
---|---|---|---|
1 | Chloroform extract | Toluene:Ethyl acetate:formic acid (5:4:0.5; v/v/v) | (06); 0.05, 0.11, 0.29, 0.48, 0.68, 0.75 |
2 | Methanolic extract | Toluene:Ethyl acetate:formic acid (5:4:0.5; v/v/v) | (08); 0.01, 0.20, 0.53, 0.56, 0.62, 0.66, 0.83, 0.92 |
3 | Aqueous:alcohol extract (1:1; v/v) | Toluene:Ethyl acetate:formic acid (5:4:0.5; v/v/v) | (10); 0.01, 0.11, 0.19, 0.35, 0.37, 0.57, 0.65, 0.67, 0.83, 0.93 |
4 | Aqueous extract | Butanol:acetic acid:water(8:2:2; v/v/v) | (11); 0.01, 0.15, 0.20, 0.45, 0.54, 0.55, 0.57, 0.63, 0.67, 0.84, 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amir, M.; Zafar, A.; Ahmad, R.; Ahmad, W.; Sarafroz, M.; Khalid, M.; Ghoneim, M.M.; Alshehri, S.; Wahab, S.; Ahmad, S.; et al. Quality Control Standardization, Contaminant Detection and In Vitro Antioxidant Activity of Prunus domestica Linn. Fruit. Plants 2022, 11, 706. https://doi.org/10.3390/plants11050706
Amir M, Zafar A, Ahmad R, Ahmad W, Sarafroz M, Khalid M, Ghoneim MM, Alshehri S, Wahab S, Ahmad S, et al. Quality Control Standardization, Contaminant Detection and In Vitro Antioxidant Activity of Prunus domestica Linn. Fruit. Plants. 2022; 11(5):706. https://doi.org/10.3390/plants11050706
Chicago/Turabian StyleAmir, Mohd, Ameeduzzafar Zafar, Rizwan Ahmad, Wasim Ahmad, Mohammad Sarafroz, Mohammad Khalid, Mohammed M. Ghoneim, Sultan Alshehri, Shadma Wahab, Sayeed Ahmad, and et al. 2022. "Quality Control Standardization, Contaminant Detection and In Vitro Antioxidant Activity of Prunus domestica Linn. Fruit" Plants 11, no. 5: 706. https://doi.org/10.3390/plants11050706
APA StyleAmir, M., Zafar, A., Ahmad, R., Ahmad, W., Sarafroz, M., Khalid, M., Ghoneim, M. M., Alshehri, S., Wahab, S., Ahmad, S., & Mujeeb, M. (2022). Quality Control Standardization, Contaminant Detection and In Vitro Antioxidant Activity of Prunus domestica Linn. Fruit. Plants, 11(5), 706. https://doi.org/10.3390/plants11050706