Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization
Abstract
:1. Introduction
2. Results
2.1. Comparative Analysis of Quality and Traits of Bupleurum under Different Phosphorus Level
2.2. Total Saikosaponins Content Accumulated in Bupleurum Different Tissues under Three Levels of Phosphorus Fertilization
2.3. Overview of the Metabolites Profiles in Response to Three Levels of Phosphorus Fertilization
2.4. Metabolite Profiling of Bupleurum under Phosphorus Fertilization in KEGG Enrichment Analysis and Volcanic Map
2.5. Metabolic Network Diagram and Potential Metabolites in Bupleurm under Three Levels of Phosphorus Fertilization
3. Discussion
3.1. Influences of Phosphorus Fertilization on Bupleurum Yield, Quality and Saikosaponins Contents
3.2. Influences of Phosphorus Fertilization on Bupleurum Metabolites
3.2.1. Effect of Phosphorus Fertilization on Sugar Metabolism of Bupleurum
3.2.2. Effect of Phosphorus Fertilization on Acid Metabolism of Bupleurum
4. Materials and Methods
4.1. Experimental Design and Plant Source
4.2. Determination of the Saikosaponins Content
4.3. Preparation and Extraction
4.4. GC−MS Analysis
4.5. Multivariate Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larbat, R.; Olsen, K.M.; Slimestad, R.; Løvdal, T.; Bénard, C.; Verheul, M.; Bourgaud, F.; Robin, C.; Lillo, C. Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry 2012, 77, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Li, X.K.; Ren, T.; Cong, R.; Ata-Ul-Karim, S.; Shah, A.; Jamil Khan, M.; Zhang, Z.; Fahad, S.; Lu, J.W. Response of nitrogen, phosphorus and potassium fertilization on productivity and quality of winter rapeseed in Central China. Int. J. Agric. Biol. 2016, 18, 1137–1142. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulieman, S.; Tran, L.S. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 2015, 239, 36–43. [Google Scholar] [CrossRef]
- Ferrol, N.; Azcón-Aguilar, C.; Pérez-Tienda, J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Chiou, T.J.; Lin, S.I. Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 2011, 62, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Crombez, H.; Motte, H.; Beeckman, T. Tackling plant phosphorus starvation by the roots. Dev. Cell 2019, 48, 599–615. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, H.; Liang, Y.; Lu, T.; Liu, Z.; Jin, X.; Hou, L.; Xu, J.; Zhao, H.; Shi, Y.; et al. Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants. Plant Physiol. Biochem. 2021, 166, 78–87. [Google Scholar] [CrossRef]
- Niu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 2013, 112, 391–408. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Palmer, L.; Roessner, U.; Stangoulis, J. Genotypic variation in the root and shoot metabolite profiles of wheat (Triticum aestivum L.) indicate sustained, preferential carbon allocation as a potential mechanism in phosphorus efficiency. Front. Plant Sci. 2019, 10, 995. [Google Scholar] [CrossRef] [Green Version]
- Mazlouzi, M.E.; Morel, C.; Robert, T.; Yan, B.F.; Mollier, A. Phosphorus uptake and partitioning in two durum wheat cultivars with contrasting biomass allocation as affected by different p supply during grain filling. Plant Soil 2020, 449, 179–192. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Wang, M.; Liu, S.; Hu, Y.; He, C.; Li, P.; Wan, J.B. UHPLC/Q-TOFMS-based metabolomics for the characterization of cold and hot properties of Chinese materiamedica. J. Ethnopharmacol. 2016, 179, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Zhang, A.; Han, Y.; Lu, S.; Kong, L.; Han, J.; Liu, Z.; Sun, H.; Wang, X. Metabolomics approach to explore the effects of Kai-Xin-San on Alzheimer’s disease using UPLC/ESI-Q-TOF mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1015–1016, 50–61. [Google Scholar] [CrossRef]
- Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 2004, 22, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.H.; Yu, J.B.; Sun, H.; Kong, L.; Wang, X.Q.; Zhang, Q.Y.; Wang, X.J. Identifying quality-markers from Shengmai San protects against transgenic mouse model of Alzheimer’s disease using chinmedomics approach. Phytomedicine 2018, 45, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fountain, J.C.; Ji, P.; Ni, X.; Chen, S.; Lee, R.D.; Kemerait, R.C.; Guo, B. Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biotechnol. J. 2018, 16, 1616–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Lam, H.; Pi, E.; Zhan, Q.; Tsai, S.; Wang, C.; Kwan, Y.; Ngai, S. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem. 2013, 61, 8711–8721. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.W.; Qu, R.J.; Tang, X.Q.; Sun, L.Q.; Chen, Q.Q.; Miao, Y.J. UPLC-Triple TOF-MS/MS based metabolomics approach to reveal the influence of nitrogen levels on Isatis indigotica seedling leaf. Sci. Hortic. 2020, 266, 109280. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, J.; Li, D.; Zhou, D.; Zhang, Y.; Wang, J.; Hu, B.; Ju, A.; Ye, Z. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS. J. Pharm. Biomed. Anal. 2017, 141, 108–122. [Google Scholar] [CrossRef]
- Shi, Z.; Wei, F.; Wan, R.; Li, Y.; Wang, Y.; An, W.; Qin, K.; Dai, G.; Cao, Y.; Feng, J. Impact of nitrogenfertilizer levels on metabolite profiling of the Lyciumbarbarum L. fruit. Molecules 2019, 24, 3879. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Shi, Z.; Wan, R.; Li, Y.; Wang, Y.; An, W.; Qin, K.; Cao, Y.; Chen, X.; Wang, X.; et al. Impact of phosphorus fertilizer level on the yield and metabolome of goji fruit. Sci. Rep. 2020, 10, 14656. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, S.; Yang, J.; Li, Z.; Zhang, M.; Fang, Y.; Yang, Q.; Jin, W. Metabolite profiling of violet, white and pink flowers revealing flavonoids composition patterns in Rhododendron pulchrum Sweet. J. Biosci. 2021, 46, 3. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.G.; Zhang, X.N.; Tang, Z.H. GC-MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng. Molecules 2017, 22, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Shao, L.; Zhu, J.; Li, H.; Duan, H. Comparative analysis of tuberous root metabolites between cultivated and wild varieties of Rehmanniaglutinosa by widely targeted metabolomics. Sci. Rep. 2021, 11, 11460. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Abozeid, A.; Wu, K.X.; Guo, X.R.; Mu, L.Q.; Tang, Z.H. UV-B radiation largely promoted the transformation of primary metabolites to phenols in Astragalusmongholicus seedlings. Biomolecules 2020, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Pimenov, M.G.; Leonov, M.V. The Genera of the Umbelliferae; Royal Botanic Gardens: Kew, UK, 1993. [Google Scholar]
- Neves, S.S.; Weakley, A.S.; Cox, P.B. Bupleurum gerardii All. (Apiaceae), an addition to the North American Flora, with comments onthe treatment of aliens in Floras. Castanea 2009, 73, 424–433. [Google Scholar] [CrossRef]
- Ren, S.; Liu, J.; Xue, Y.; Zhang, M.; Liu, Q.; Xu, J.; Zhang, Z.; Song, R. Comparative permeability of three saikosaponinsand corresponding saikogenins in Caco-2 model by a validated UHPLC-MS/MS method. J. Pharm. Anal. 2021, 11, 435–443. [Google Scholar] [CrossRef]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A review of traditional uses, botany, phytochemistry, pharmacology, and toxicology. Biomed. Res. Int. 2017, 2017, 7597596. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Liu, X.; Tong, L.; Wang, H.; Feng, M.; Xi, X.; He, P.; Qin, X. Comparison of chemical constituents of Bupleurummarginatum var. stenophyllum and Bupleurumchinense DC. using UHPLC-Q-TOF-MS based on a metabonomics approach. Biomed. Chromatogr. 2021, 35, e5133. [Google Scholar] [CrossRef]
- Li, D.Q.; Yue, D.D.; Liu, D.; Liu, X.G.; Song, S.J. Chemical constituents from Bupleurumchinese and their chemotaxonomic significance. Biochem. Syst. Ecol. 2019, 86, 103929. [Google Scholar] [CrossRef]
- Liu, X.J.; Hu, J.; Li, Z.Y.; Qin, X.M.; Zhang, L.Z.; Guo, X.Q. Species classification and quality assessment of Chaihu (Radix Bupleuri) based on high-performance liquid chromatographic fingerprint and combined chemometrics methods. Arch. Pharm. Res. 2011, 34, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ren, T.; Zheng, Z.; Lu, T.; Wang, Z.; Du, F.; Tong, H. Anti-tumor and immunomodulatoryactivitiesinduced by an alkali-extracted polysaccharide BCAP-1 from Bupleurumchinense via NF-κB signaling pathway. Int. J. Biol. Macromol. 2017, 95, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, L.; Wang, D.; Wu, J.; Li, L.; Huang, X.; Liu, Q.; Wu, Y.; Lin, S.; Yang, J. Neuroprotectiveoleananetriterpenes from the roots of Bupleurumchinense. Bioorg. Med. Chem. Lett. 2016, 26, 1594–1598. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponinsandextracts isolated from Radix Bupleuri and their applications. Pharm. Biol. 2017, 55, 620–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.R.; Park, H.J.; Seo, B.I.; Roh, S.S. New approach of medicinal herbs and sulfasalazi.ne mixture on ulcerative colitis induced by dextran sodium sulfate. World J. Gastroenterol. 2020, 26, 5272–5286. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.H.; Zhang, J.; Yang, G.Y.; Chen, H.B.; Zhao, Z.Z. Chemical profiling and histochemical analysis of Bupleurummarginatum roots from different growing areas of Hubei province. Acta Pharm. Sin. B 2013, 3, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Galili, G. The aspartate-family pathway of plants: Linking production of essential amino acids with energy and stress regulation. Plant Signal. Behav. 2011, 6, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Wang, J.; Yang, L.; Wu, J.; Wang, X. Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC-MS combined with chemometrics. J. Pharm. Biomed. Anal. 2015, 102, 64–77. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Shen, H.; Wang, J.; Liu, W.; Zhu, X.; Wang, R.; Sun, X.; Liu, L. Metabolomic analysis withGC-MS to reveal potential metabolites and biological pathways involved in Pb& Cd stress response ofradish roots. Sci. Rep. 2015, 5, 18296. [Google Scholar] [CrossRef] [Green Version]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Corrigendum: Gas chromatography massspectrometry-based metabolite profiling in plants. Nat. Protoc. 2015, 10, 1457. [Google Scholar] [CrossRef]
- Farag, M.A.; Huhman, D.V.; Lei, Z.; Sumner, L.W. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicagotruncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 2007, 68, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, H.; Lyon, D.; Nägele, T.; Sun, X.; Fragner, L.; Hadacek, F.; Egelhofer, V.; Weckwerth, W. Grangercausality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondarymetabolism. Metabolomics 2013, 9, 564–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Li, M.; Zhang, C.; Tan, Q.; Hu, C. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus. Plant Physiol. Biochem. 2021, 160, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, Q.H.; Gong, B. Characterization of COMT1-mediated low phosphorus resistance mechanism by metabolomics in tomato plants. Environ. Exp. Bot. 2020, 179, 104187. [Google Scholar] [CrossRef]
- Hernandez, G.; Ramirez, M.; Valdes-Lopez, O.; Tesfaye, M.; Graham, M.A.; Czechowski, T. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiol. 2007, 144, 752–767. [Google Scholar] [CrossRef] [Green Version]
- Dangi, S.P.; Aryal, K.; Magar, P.S.; Bhattarai, S.; Shrestha, D.; Gyawali, S. Study on effect of phosphorus on growth and flowering of marigold (tageteserecta). JOJ Wildl. Biodivers. 2019, 1, 108–112. [Google Scholar] [CrossRef]
- Sharma, A.K.; Chaudhary, S.V.S.; Gupta, Y.C. Effect of nitrogen andphosphorus on flowering and yield of African marigold (Tagetes erecta Linn.). Progress. Agric. 2010, 10, 158–160. [Google Scholar]
- Ahirwar, M.K.; Ahirwar, K.; Shukla, M. Effect of plant density, nitrogen and phosphorus levels on growth, yield and quality of AfricanMarigold. Ann. Plant Soil Res. 2012, 14, 153–155. [Google Scholar]
- Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 2011, 156, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Chen, H.C.; Fan, H.Y.; Li, Q.S.; Gao, Q.; Wang, D.S.; Wang, L.L.; Zhou, C.; Zeng, E.Y. Phosphorus supply alters the root metabolism of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsenet Lee) and the mobilization of Cd bound to lepidocrocite in soil. Environ. Exp. Bot. 2019, 167, 103827. [Google Scholar] [CrossRef]
- Wang, Y.; Krogstad, T.; Clarke, J.L.; Hallama, M.; Øgaard, A.F.; Eich-Greatorex, S.; Kandeler, E.; Clarke, N. Rhizosphereorganicanions play a minor role in improving crop species’ ability to take up residual phosphorus (P) in agricultural soils low in Pavailability. Front. Plant Sci. 2016, 7, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawaraya, K.; Horie, R.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite profiling of shoot extract, root extract, and root exudate of rice under nitrogen and phosphorus deficiency. Soil Sci. Plant Nutr. 2018, 64, 1–11. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Almvik, M.; Clarke, N.; Eich-Greatorex, S.; Øgaard, A.F.; Krogstad, T.; Lambers, H.; Clarke, J.L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB Plants 2015, 7, plv097. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lysøe, E.; Armarego-Marriott, T.; Erban, A.; Paruch, L.; van Eerde, A.; Bock, R.; Liu-Clarke, J. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. J. Exp. Bot. 2018, 69, 3759–3771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.Y.; Roessner, U.; Eickmeier, I.; Genc, Y.; Callahan, D.L.; Shirley, N.; Langridge, P.; Bacic, A. Metabolite profiling reveals distinct changes in carbon and nitrogenmetabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol. 2008, 49, 691–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganie, A.H.; Ahmad, A.; Pandey, R.; Aref, I.M.; Yousuf, P.Y.; Ahmad, S.; Iqbal, M. Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS ONE 2015, 10, e0129520. [Google Scholar] [CrossRef]
- Müller, J.; Gödde, V.; Niehaus, K.; Zörb, C. Metabolic adaptations of white lupinroots and shoots under phosphorus deficiency. Front. Plant Sci. 2015, 6, 1014. [Google Scholar] [CrossRef] [Green Version]
- Antoine, S.; Pailly, O.; Gibon, Y.; Luro, F.; Santini, J.; Giannettini, J.; Berti, L. Short-and long-term effects of carbohydrate limitation on sugar and organic acid accumulation during mandarin fruit growth. J. Sci. Food Agric. 2016, 96, 3906–3914. [Google Scholar] [CrossRef]
- Zhou, Y.; He, W.; Zheng, W.; Tan, Q.; Xie, Z.; Zheng, C.; Hu, C. Fruit sugar andorganic acid were significantly related to fruit Mg of six citrus cultivars. Food Chem. 2018, 259, 278–285. [Google Scholar] [CrossRef]
- Zheng, C.; Lan, X.; Tan, Q.; Zhang, Y.; Gui, H.; Hu, C. Soil application of calciumand magnesium fertilizer influences the fruit pulp mastication characteristics ofNanfeng tangerine (Citrus reticulata Blanco cv. Kinokuni). Sci. Hortic. 2015, 191, 121–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.; Tan, Q.; Nie, Z.; Zheng, C.; Gui, H.; Sun, X.; Zhao, X. Soil application of Boron and Zinc influence fruit yield and quality of Satsuma Mandarin in acidic soils. Agron. J. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Chen, L.S.; Chen, R.B.; Zhang, F.Z.; Jiang, H.X.; Tang, N.; Smith, B.R. Root release and metabolism of organic acids in tea plants in response to phosphorus supply. J. Plant Physiol. 2011, 168, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Li, H.; Shen, J.; Rengel, Z. Maize responds to low shoot P concentration by altering rootmorphology rather than increasing root exudation. Plant Soil. 2017, 416, 377–389. [Google Scholar] [CrossRef]
- Lyu, Y.; Tang, H.; Li, H.; Zhang, F.; Rengel, Z.; Whalley, W.R.; Shen, J. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front. Plant Sci. 2016, 7, 1939. [Google Scholar] [CrossRef] [PubMed]
- Mohidin, H.; Hanafi, M.M.; Rafii, Y.M.; Abdullah, S.; Idris, A.S.; Man, S. Determination of optimum levels of nitrogen, phosphorus and potassium of oil palm seedlings in solution culture. Bragantia 2015, 74, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; China Medical Sciences and Technology Press: Beijing, China, 2020; p. 293. (In Chinese) [Google Scholar]
- Xiao, J.; Gu, C.; He, S.; Zhu, D.; Huang, Y.; Zhou, Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castaneamollissima Bl.) calcification process. Food Res. Int. 2021, 141, 110128. [Google Scholar] [CrossRef]
- Tilsner, J.; Kassner, N.; Struck, C.; Lohaus, G. Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 2005, 221, 328–338. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Zhang, Y.; Guo, Y.; Duan, Z.; Tang, Z.; Abozeid, A. Metabolomics analysis reveals potential mechanisms in Bupleurum L. (Apiaceae) induced by three levels of Nitrogen fertilization. Agronomy 2021, 11, 2291. [Google Scholar] [CrossRef]
Treatment | CP | LP | HP |
---|---|---|---|
Phosphorus fertilization | 0 kg∙ha−1 | 10 kg∙ha−1 | 20 kg∙ha−1 |
Times (min) | Acetonitrile (%) | Pure Water (%) |
---|---|---|
0–50 | 25–90% | 75–10% |
50–55 | 90% | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Duan, Z.; Zhang, Y.; Cao, S.; Tang, Z.; Abozeid, A. Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization. Plants 2022, 11, 752. https://doi.org/10.3390/plants11060752
Sun J, Duan Z, Zhang Y, Cao S, Tang Z, Abozeid A. Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization. Plants. 2022; 11(6):752. https://doi.org/10.3390/plants11060752
Chicago/Turabian StyleSun, Jialin, Zejia Duan, Ye Zhang, Sisi Cao, Zhonghua Tang, and Ann Abozeid. 2022. "Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization" Plants 11, no. 6: 752. https://doi.org/10.3390/plants11060752
APA StyleSun, J., Duan, Z., Zhang, Y., Cao, S., Tang, Z., & Abozeid, A. (2022). Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization. Plants, 11(6), 752. https://doi.org/10.3390/plants11060752