Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Collection of Plant Samples
2.3. Preparation of Plant Extracts
2.4. High-Performance Liquid Chromatography (HPLC) Analysis
2.5. Gas Chromatography-Mass Spectrometry Analysis (GC-MS)
2.6. Fungal Strains Collection and Identification
2.7. In Vitro Antifungal Activity
2.8. Determination of Minimal Inhibitory Concentration (MIC)
2.9. Fungal Pathogenicity and Aggressiveness on Tomato Fruit
2.10. Statistical Analysis
3. Results
3.1. Identification of Polyphenols Compounds by HPLC
3.2. Phytochemical Analysis by GC-MS Spectroscopy
3.3. Antifungal Activity
3.4. Minimal Inhibitory Concentration (MIC)
3.5. Fungal Pathogenicity and Aggressiveness on Tomato Fruits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elshafie, H.S.; Shimaa, S.; Bufo, S.A.; Camele, I. An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahlia using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int. J. Plant Biol. 2017, 8, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal Activity and Mechanism of Action of Ou-gon (Scutellaria root extract) Components Against Pathogenic Fungi. Sci. Rep. 2019, 9, 1683. [Google Scholar] [CrossRef] [PubMed]
- Asgarpanah, J.; Haghighat, E. Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. Afr. J. Pharm. Pharmaco. 2011, 6, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Baghazadeh-Daryaii, L.; Sharifi-Sirchi, G.R.; Samsampoor, D. Morphological, Phytochemical and Genetic Diversity of Ziziphus spina–christi (L) Des. in South and Southeastern of Iran. J. Appl. Res. Med. Aromat. Plants 2017, 7, 99–107. [Google Scholar] [CrossRef]
- Suliman, M.B.; Mohammed, A.A. Preliminary Phytochemical Screening and Antibacterial Activity of Ethanolic and Aqueous Extracts of Sudanese Medicinal plant Ziziphus spina-christi L. Leaves. Arab. J. Med. Aromat. Plants 2018, 4, 36–44. [Google Scholar]
- Alhassan, K.A.; Indabawa, A.S.; Shah, M.M. Phytochemical analysis, proximate composition, and antibacterial activities of Ziziphus species (Z. jujube and Z. spina-christi). J. Appl. Adv. Res. 2019, 4, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.U.; Raza, M.A.; Saeed, A.; Ahmed, M.; Hussain, T. Variations in Morphological Characters and Antioxidant Potential of Different Plant Parts of Four Ziziphus Mill. Species from the Cholistan. Plants 2021, 10, 2734. [Google Scholar] [CrossRef]
- Darah, I.; Lim, S.H.; Nithianantham, K. Effects of Methanol Extract of Wedeliachinensis Osbeck (Asteraceae) Leaves Against Pathogenic Bacteria With Emphasise on Bacillus cereus. Indian J. Pharm. Sci. 2013, 75, 533–539. [Google Scholar]
- Adamu, H.M.; Abayeh, O.J.; Ibok, N.U.; Kafu, S.E. Antifungal Activity of Extracts of Some Cassia, Detarium and Ziziphus species Against Dermatophytes. Nat. Prod. Radiance 2006, 5, 357–360. [Google Scholar]
- Ghasemi, P.A.; Bahmani, M.; Avijgan, M. Anti-Candida Activity of Some of the Iranian Medicinal Plants. Electron. J. Biol. 2009, 5, 85–88. [Google Scholar]
- Roy, C.; Akter, N.; Sarkar, M.K.; Pk, M.M.; Begum, N.; Zenat, E. Control of Early Blight of Tomato Caused by Alternariasolani and Screening of Tomato Varieties Against the Pathogen. Open Microbiol. J. 2019, 13, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, K.P.; Matin, M.; Mirza, J.H. Some Studies on the Postharvest Diseases of Tomato Fruits and Their Chemical Control. Pak. J. Phytopathol. 1994, 6, 125–129. [Google Scholar]
- Alotibi, F.O.; Ashour, E.H.; Al-Basher, G. Evaluation of the Antifungal Activity of Rumex vesicarius L. and Ziziphus spina-christi (L) Desf. Aqueous Extracts and Assessment of the Morphological Changes Induced to Certain Myco-phytopathogens. Saudi J. Biol. Sci. 2020, 27, 2818–2828. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Viggiani, L.; Mostafa, M.S.; El-Hashash, M.A.; Camele, I.; Bufo, S.A. Biological activity and chemical identification of ornithine lipid produced by Burkholderiagladiolipv. agaricicola ICMP 11096 using LC-MS and NMR analyses. J. Biol. Res. 2017, 90, 96–103. [Google Scholar]
- Seastedt, T.R. Biological control of invasive plant species: A reassessment for the Anthropocene. New Phytol. 2015, 205, 490–502. [Google Scholar] [CrossRef]
- Meena, P.; Jain, T.; Sharma, K. Antifungal Activity of Leaf Extracts of Polyalthia longifolia (Sonn.) Benth. and Hook. F. against Rhizoctonia solani. Plant Arch. 2021, 21, 1366–1371. [Google Scholar] [CrossRef]
- Omar, A.M.; Taha, A.S.; Mohamed, A.A.A. Microbial deterioration of Some Archaeological artifacts: Manipulation and Treatment. Eur. Exp. Biol. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2009. [Google Scholar]
- Cabral, L.C.; Pinto, V.F.; Patriarca, A. Control of infection of tomato fruits by Alternaria and mycotoxin production using plant extracts. Eur. J. Plant Pathol. 2016, 145, 363–373. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Gomez-Plaza, E. Elicitors: A tool for improving fruits phenolic content. Agriculture 2013, 3, 33–52. [Google Scholar] [CrossRef] [Green Version]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E., Carrillo-Lopez, A., Eds.; Wood head Publishing-Elsevier: Cambridge, UK, 2019; pp. 253–271. ISBN 9780128132784. [Google Scholar]
- El-Khateeb, A.Y.; Elsherbiny, E.A.; Tadros, L.K.; Ali, S.M.; Hamed, H.B. Phytochemical analysis and antifungal activity of fruit leaves extracts on the mycelial growth of fungal plant pathogens. J. Plant Pathol. Microb. 2013, 4, 1–6. [Google Scholar]
- Brito, S.M.O.; Coutinho, H.D.M.; Talvani, A.; Coronel, C.; Barbosa, A.G.R.; Vega, C.; Figueredo, F.G.; Tintino, S.R.; Lima, L.F.; Boligon, A.A.; et al. Analysis of bioactivities and chemical composition of Ziziphus joazeiro Mart. using HPLC–DAD. Food Chem. 2015, 186, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nagar, A.; Elzaawely, A.A.; Taha, N.A.; Nehela, Y. The antifungal activity of gallic acid and its derivatives against Alternaria solani, the causal agent of tomato early blight. Agronomy 2020, 10, 1402. [Google Scholar] [CrossRef]
- Abd-Allah, W.E.; Awad, H.M.; Abdel Mohsen, M.M. HPLC analysis of quercetin and antimicrobial activity of comparative methanol extracts of Shinusmolle L. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 550–558. [Google Scholar]
- Abdel-Aziz, A.A.; Mohamed, M.A.; Abdallah, M.A.; Shaaban, R.; Mohamed, N.S.; Elwan, N.M. In vitro cytotoxicity, antimicrobial, antioxidant activities, and HPLC fingerprint analyses of the extracts of Ceibainsignis leaves growing in Egypt. Egypt. J. Chem. 2021, 64, 3573–3586. [Google Scholar] [CrossRef]
- Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aeglemarmelo. BioMed Res. Int. 2014, 2014, 497606. [Google Scholar] [CrossRef] [Green Version]
- Costantino, L.; Parenti, C.; Di Bella, M.; Zanoli, P.; Baraldi, M. Anti-inflammatory activity of newly synthesized 2,6-bis-(1,1-dimethylethyl)phenol derivatives. Pharmacol. Res. 1993, 27, 349–358. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Devi, T.; Bono, A.; Sarbatly, R. Studies on phytochemical constituents of six Malaysian medicinal plants. J. Med. Plants Res. 2008, 3, 67–72. [Google Scholar]
- Yadav, R.N.S.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phyt. 2011, 2, 10–14. [Google Scholar]
- Bukvicki, D.R.; Tyagic, A.K.; Gottardib, D.G.; Veljica, M.M.; Jankovic, S.M.; Guerzonib, M.E.; Marina, P.D. Assessment of the chemical composition and in vitro antimicrobial potential of extracts of the liverwort Scapaniaaspera. Nat. Prod. Commun. 2013, 8, 1313–1316. [Google Scholar]
- Ahamath, J.M.; Sirajudeen, J.; Abdul, V.R. GCMS analysis from hydroalcoholic extract of Soalnumerianthum. Adalya J. 2019, 8, 682–689. [Google Scholar]
- Banakar, P.; Jayaraj, M. GC-MS analysis of bioactive compounds from ethanolic leaf extract of waltheriaindicalinn. and their pharmacological activities. Int. J. Pharm. Sci. Res. 2018, 9, 2005–2010. [Google Scholar]
- Safwat, G.M.; Hamed, M.M.; Moatamed, S.A. Studies of the biological activity of cassia fistula. Pharmacologyonline 2018, 1, 75–85. [Google Scholar]
- Begum, I.F.; Mohankumar, R.; Jeevan, M.; Ramani, K. GC–MS analysis of bioactive molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Ind. J. Microbiol. 2016, 56, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-Di-Tert-butylphenol and its analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, Y.K.; Abobakr, Y.; Salem, M.Z.M.; Ali, H.M.; Al-Sarar, A.S.; Al-Zabib, A.A. Activity of plant extract/essential oils against three pathogenic fungi and mosquito larvae: GC/MS analysis of bioactive compounds. Bioresources 2019, 14, 4489–4511. [Google Scholar]
- Deabes, M.M.; Abd El-Fatah, S.I.; Salem, S.H.; Naguib, K.M. Antimicrobial activity of bioactive compounds extract from Saussurea costus against food spoilage microorganisms. Egypt. J. Chem. 2021, 64, 2833–2843. [Google Scholar] [CrossRef]
- Moghaddam, M.R.B.; Ende, W.V.D. Sugarsand plant innate immunity. J. Exp. Bot. 2012, 63, 3989–3998. [Google Scholar] [CrossRef] [Green Version]
- Bochkov, D.V.; Sergey, V.S.; Alexander, I.K.; Irina, A.S. Shikimic acid: Review of its analytical, isolation, and purification techniques from plant and microbial sources. J. Chem. Biol. 2002, 5, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Hiralben, D.V.; Mandavia, M.K.; Radadiya, N.; Jadav, J.K.; Golakiya, B.A. Metabolite profiling of mango cv. Kesar leaf using gas chromatography-mass spectrometry. Int. J. Chem. Stud. 2018, 6, 2731–2735. [Google Scholar]
- Pohl, C.H.; Kock, J.L.F.; Thibane, V.S. Antifungal Free Fatty Acids: A Review. Science against Microbial Pathogens: Communicating Current Research and Technological Advance; Méndez-Vilas, A., Ed.; University of the Free State: Bloemfontein, South Africa, 2011; pp. 61–71. [Google Scholar]
- Abd El-Azim, M.H.M. Biological activity of fatty acid constituents of the Egyptian Strawberry and Carica- papaya leaves. Int. J. Adv. Res. 2016, 4, 1233–1238. [Google Scholar]
- Mohamed, S.A.; Khan, J.A. Antioxidant capacity of chewing stick miswak Salvadora persica. BMC Complementary Altern. Med. 2013, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saima, N.S.; Bushra, S.; Khali, R. Alteration in antioxidant and antimicrobial attributes of leaves of Zizyphus species in response to maturation. J. Med. Plants Res. 2013, 7, 61–70. [Google Scholar]
- Abalaka, M.E.; Daniyan, S.Y.; Mann, A. Evaluation of the antimicrobial activities of two Ziziphus species (Ziziphus mauritiana L. and Ziziphus spina christi L.) on some microbial pathogens. Afr. J. Pharm. Pharmacol. 2010, 4, 135–139. [Google Scholar]
- Abu-Taleb, A.M.; El- Deeb, K.; Al-Otibi, F.O. Assessment of antifungal activity of Rumex vesicarius L. and Ziziphus spina-christi (L.) Willd. extracts against two phytopathogenic fungi. Afr. J. Microbiol. Res. 2011, 5, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmah, A.N.; Mostafa, A.A.; Abdel-Megeed, A.; Yakout, S.M.; Hussein, S.A. Fungicidal activities of certain methanolic plant extracts against tomato phytopathogenic fungi. Afr. J. Microbiol. Res. 2013, 76, 517–524. [Google Scholar] [CrossRef]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; KameleddineNagaz, K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS ONE 2020, 15, e0232599. [Google Scholar] [CrossRef]
- Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules 2020, 25, 3748. [Google Scholar] [CrossRef]
- Rodríguez, H.Z.G.; Riley-Saldaña, C.A.; González-Esquinca, A.R.; Castro-Moreno, M.; de-la-Cruz-Chacón, I. Antifungal activity of Solanum extracts against phytopathogenic Curvularia lunata. J. Plant Protec. Res. 2018, 58, 311–315. [Google Scholar]
- Hossain, A.; Hamood, A.pp.; Humaid, M.T. Comparative evaluation of total phenols, flavonoids content, and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, S.M.J.; Jaran, A.S.; Haddadin, M.S.Y. Evaluation of total phenolic content and antioxidant activity of three leaf extracts of Ziziphus spina-christi (Sedr) grown in Jordan. Br. J. Med. Med. Res. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Serce, S.; Ozgen, M. Physical, chemical, and antioxidant properties of jujube fruits from Turkey. Chin. Dates A Tradit. Funct. Food 2016, 14, 199–204. [Google Scholar]
- Islam, M.S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) Genotypes. J. Agric. Food Chem. 2002, 50, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Khaldi, A.; Triki, S.; Munne–Bosch, S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Foods Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef] [PubMed]
- D’angiolillo, F.; Mammano, M.M.; Fascella, G. Pigments, polyphenols and antioxidant activity of leaf extracts from four wild Rose species frown in Sicily. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2018, 46, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Vermerris, W.; Nicholson, R. Phenolic Compound Biochemistry; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Pomilio, A.B.; Buschi, C.A.; Tomes, C.N.; Viale, A.A. Antimicrobial constituents of Gomphrena martiana and Gomphrena boliviana. J. Ethnopharmacol. 1992, 36, 155–161. [Google Scholar] [CrossRef]
- Al Ghasham, A.; Al Muzaini, M.; Qureshi, K.A.; Elhassan, G.O.; Khan, R.A.; Farhana, S.A.; Hashmi, S.; El-Agamy, E.; Wail, E.; Abdallah, W.E. Phytochemical Screening, Antioxidant and Antimicrobial Activities of Methanolic Extract of Ziziphus mauritiana Lam. Leaves Collected from Unaizah, Saudi Arabia. Int. J. Pharm. Res. Allied Sci. 2017, 63, 33–46. [Google Scholar]
- Khan, H.B.S.G.; Sarmin, N.I.M.; Arzmi, M.H.; Amiruddin, H.F.; Radzi, A.A.M. Antifungal Activities of Ziziphus mauritiana against Candida albicans: In Vitro Study. Compend. Oral Sci. 2020, 7, 1–12. [Google Scholar]
- Ibraheem, A.A. Using Natural Polyphenol Extracts of Sider (Zizyphus spina-christi L.) Leaves and Seeds as Anti-Microbial. Middle-East J. Appl. Sci. 2017, 7, 262–271. [Google Scholar]
- Bluma, R.; Amaiden, M.R.; Etcheverry, M. Screening of argentine plant extracts: Impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section flavi. Int. J. Food Microbiol. 2008, 122, 114–125. [Google Scholar] [CrossRef]
- Bluma, R.V.; Etcheverry, M.G. Application of essential oils in maize grain: Impact on Aspergillus section flavi growth parameters and aflatoxin accumulation. Food Microbiol. 2008, 25, 324–334. [Google Scholar] [CrossRef]
- Carvalho, D.D.C.; Alves, E.; Barbosa Camargos, R.; Ferreira Oliveira, D.; SoaresScolforo, J.R.; de Carvalho, D.A. Plant extracts to control Alternaria alternata in murcotttangor fruits. Rev. De Micol. 2011, 28, 173–178. [Google Scholar] [CrossRef]
- Harish, S.; Saravanakumar, D.D.; Radjacommare, R.; Ebenezar, E.G.; Seetharaman, K. Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 2007, 53, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, M.M.; Kar, M.; Sahu, R.K. Bioefficacy of some plant extracts on growth parameters and control of diseases in Lycopersicum esculentum. Asian J. Plant Sci. Res. 2012, 2, 129–142. [Google Scholar]
Compound | Leaves Extracts | Fruits Extracts | ||||
---|---|---|---|---|---|---|
RT | Relative Area (%) | Conc. (µg/mL) | RT | Relative Area (%) | Conc. (µg/mL) | |
Gallic acid | 3.058 | 25.62 ± 0.12 ** | 275.55 ± 0.65 ** | 3.036 | 19.73 ± 0.16 ** | 7.73 ± 0.02 ** |
Chlorogenic acid | 3.824 | 1.06 ± 0.006 ** | 8.79 ± 0.01 ** | 3.927 | 3.51 ± 0.02 ** | 1.06 ± 0.01 ** |
Catechin | 3.974 | 2.32 ± 0.006 ** | 25.99 ± 0.01 ** | 4.092 | 2.13 ± 0.03 ** | 0.87 ± 0.01 ** |
Methyl gallate | 4.781 | 1.00 ± 0.015 ** | 1.40 ± 0.01 ** | 5.202 | 4.69 ± 0.04 ** | 0.24 ± 0.01 ** |
Coffeic acid | 5.294 | 8.17 ± 0.03 ** | 32.38 ± 0.32 ** | 5.622 | 1.92 ± 0.04 ** | 0.28 ± 0.01 ** |
Syringic acid | 5.857 | 1.49 ± 0.006 ** | 7.64 ± 0.05 ** | 5.905 | 2.91 ± 0.04 ** | 0.54 ± 0.01 ** |
Pyro catechol | 6.068 | ND | ND | 6.068 | ND | ND |
Rutin | 7.131 | 15.23 ± 0.12 ** | 199.84 ± 0.16 ** | 7.157 | 2.96 ± 0.04 ** | 1.42 ± 0.03 ** |
Ellagic acid | 7.822 | 25.56 ± 0.15 ** | 350.87 ± 0.33 ** | 7.831 | 8.89 ± 0.11 ** | 4.45 ± 0.13 ** |
Coumaric acid | 8.389 | 3.12 ± 0.02 ** | 4.57 ± 0.16 ** | 8.132 | 2.16 ± 0.02 ** | 0.12 ± 0.01 ** |
Vanillin | 8.789 | 1.05 ± 0.02 ** | 2.40 ± 0.02 ** | 9.147 | 0.95 ± 0.03 ** | 0.08 ± 0.002 ** |
Ferulic acid | 9.556 | 4.86 ± 0.05 ** | 20.25 ± 0.05 ** | 9.812 | 1.96 ± 0.01 ** | 0.30 ± 0.02 ** |
Naringenin | 10.094 | 9.77 ± 0.23 ** | 52.61 ± 0.28 ** | 10.126 | 1.13 ± 0.03 ** | 0.22 ± 0.015 ** |
Querectin | 12.995 | 0.75 ± 0.03 ** | 5.61 ± 0.19 ** | 13.128 | 44.21 ± 0.30 ** | 12.00 ± 0.11 ** |
Cinnamic acid | 14.303 | ND | ND | 14.202 | 2.84 ± 0.08 ** | 0.10 ± 0.01 ** |
Kaempferol | 15.495 | ND | ND | 15.495 | ND | ND |
Hesperetin | 16.075 | ND | ND | 16.075 | ND | ND |
No. | Band/RT | Compound Name | Molecular Formula | Area Percent % * |
---|---|---|---|---|
1 | 20.903 | 2,6-Di-t-butyl-4-methylene-2,5-cyclohexadiene-1-one | C15H22O | 2.21 ± 0.006 |
2 | 21.098 | Decane, 2-methyl- | C11H24 | 18.53 ± 0.29 |
3 | 21.326 | Cycloheptasiloxane, tetradecamethyl- | C14H42O7Si7 | 1.1 ± 0.07 |
4 | 23.438 | 18-Methyl-nonadecanol, trimethylsilyl ether | C23H50OSi | 1.27 ± 0.03 |
5 | 23.838 | Nonadecane | C19H40 | 7.6 ± 0.15 |
6 | 24.474 | Dodecane, 1-fluoro- | C12H25F | 2.36 ± 0.04 |
7 | 26.087 | Disulfide, di-tert-dodecyl | C24H50S2 | 14.61 ± 0.1 |
8 | 26.717 | 9,12,15-Octadecatrienoic acid, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]m | C27H52O4Si2 | 0.58 ± 0.02 |
9 | 28.582 | 1-Dodecene | C12H24 | 2.87 ± 0.075 |
10 | 30.247 | Aspidospermidin-17-ol, 1-acetyl-16-methoxy- | C22H30N2O3 | 3.1 ± 0.15 |
11 | 32.736 | 1-Monolinoleoylglycerol trimethylsilyl ether | C27H54O4Si2 | 1.19 ± 0.03 |
12 | 33.509 | 6-epi-shyobunol | C15H26O | 1.84 ± 0.07 |
13 | 37.331 | Phenol, 2,5-bis(1,1-dimethylethyl)- | C14H22O | 40.24 ± 0.37 |
No. | Band/RT | Compound Name | Molecular Formula | Area Percent % |
---|---|---|---|---|
1 | 18.248 | Furan-2-carboxylic acid, 3-methyl-, trimethylsilyl ester | C9H14O3Si | 2.27 ± 0.03 |
2 | 18.397 | 5-Fluoroveratraldehyde | C9H9FO3 | 0.56 ± 0.02 |
3 | 18.557 | 2-Trimethylsiloxy-6-hexadecenoic acid, methyl ester | C20H40O3Si | 0.25 ± 0.02 |
4 | 23.055 | Melezitose | C18H32O16 | 0.26 ± 0.01 |
5 | 23.444 | Cyclooctasiloxane, hexadecamethyl- | C16H48O8Si8 | 0.94 ± 0.04 |
6 | 24.039 | 2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)-propyl]-[1,3]dioxolane-4-carbo | C15H30O5Si | 8.46 ± 0.10 |
7 | 24.84 | D-Erythro-Pentofuranose, 2-deoxy-1,3,5-tris-O-(trimethylsilyl)- | C14H34O4Si3 | 15 ± 0.20 |
8 | 25.189 | D-Erythrotetrofuranose, tris-O-(trimethylsilyl)- | C13H32O4Si3 | 2.48 ± 0.11 |
9 | 25.338 | D-mannonic acid, 2,3,5,6-tetrakis-o-(trimethylsilyl)-, γ-lactone | C18H42O6Si4 | 22.72 ± 0.2 |
10 | 25.498 | Mannofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-, α-D- | C19H46O6Si4 | 4.6 ± 0.10 |
11 | 25.664 | Methyl α-D-glucofuranoside, 4TMS derivative | C19H46O6Si4 | 11.18 ± 0.2 |
12 | 26.03 | {2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)propyl][1,3]dioxolan-4-yl}meth | C15H32O5Si | 0.46 ± 0.02 |
13 | 26.179 | Lyxose, tetra-(trimethylsilyl)-ether | C17H42O5Si4 | 2.04 ± 0.04 |
14 | 26.265 | Glucopyranose, 1,2,3,4,6-pentakis-O-(trimethylsilyl)-, D- | C21H52O6Si5 | 3.62 ± 0.22 |
15 | 26.722 | 9,12,15-Octadecatrienoic acid, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]m | C27H52O4Si2 | 0.66 ± 0.05 |
16 | 26.78 | 7,9-Diethyl-2,4-bis(dimethylamino)-10-imino-8-thio-1,7,9-triazaspiro[4.5]-1,3-de | C15H24N6OS | 1.25 ± 0.14 |
17 | 27.094 | beta.-D-(+)-Talopyranose, 5TMS derivative | C21H52O6Si5 | 0.49 ± 0.05 |
18 | 30.098 | cis-13-Octadecenoic acid | C18H34O2 | 2.01 ± 0.02 |
19 | 31.695 | Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- | C16H50O7Si8 | 0.94 ± 0.03 |
20 | 32.193 | 5,8,11-Eicosatrienoic acid, (Z)-, TMS derivative | C23H42O2Si | 0.31 ± 0.05 |
21 | 32.37 | Heptanedioic acid, bis(trimethylsilyl) ester | C13H28O4Si2 | 2.35 ± 0.06 |
22 | 32.462 | D-(+)-Turanose, octakis(trimethylsilyl) ether | C36H86O11Si8 | 6.52 ± 0.29 |
23 | 32.593 | Arabino-hexonic acid, 2-deoxy-3,5,6-tris-o-(trimethylsilyl)-, γ-lactone | C15H34O5Si3 | 1.02 ± 0.02 |
24 | 32.748 | Aucubin, hexakis(trimethylsilyl) ether | C33H70O9Si6 | 1.76 ± 0.19 |
25 | 33.223 | 9,12,15-Octadecatrienoic acid, 2-[(trimethylsilyl)oxy]-1-[(trimethylsilyl)oxy]m | C27H52O4Si2 | 1.27 ± 0.11 |
26 | 33.72 | SILIKONFETT | N.I. | 2.02 ± 0.03 |
27 | 36.313 | 1-Monolinoleoylglycerol trimethylsilyl ether | C27H54O4Si2 | 0.29 ± 0.02 |
28 | 42.103 | Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- | C14H44O6Si7 | 0.29 ± 0.01 |
Fungi | Concentration (mg/mL) | Leaves Extract | Fruits Extract | Mancozeb |
---|---|---|---|---|
A. alternata | 50 | 37.04 | 42.59 | |
100 | 42.59 | 59.26 | 97.8 | |
150 | 44.44 | 50.00 | ||
200 | 62.96 | 71.48 | ||
A. citri | 50 | 14.78 | 40.74 | |
100 | 21.44 | 37.04 | 94.4 | |
150 | 33.33 | 40.74 | ||
200 | 62.22 | 61.11 | ||
A. radicina | 50 | 43.78 | 19.68 | |
100 | 53.82 | 23.69 | 83.13 | |
150 | 57.83 | 47.79 | ||
200 | 69.48 | 57.43 |
Treatments | A. alternata | A. citri | A. radicina | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pathogenecity 1 | Aggressiveness 2 | Pathogenecity 1 | Aggressiveness 2 | Pathogenecity 1 | Aggressiveness 2 | |||||||
W | U | W | U | W | U | W | U | W | U | W | U | |
Positive control 3 | 100 | 70 | 1.5 | 1.2 | 100 | 64 | 1.8 | 1.4 | 100 | 58 | 1.9 | 1.7 |
Negative control 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Solvent control 5 | 100 | 70 | 1.5 | 1.1 | 100 | 60 | 1.9 | 1.5 | 100 | 59 | 2 | 2.1 |
Leaves extract | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 1.2 | 0 |
Fruits extract | 30 | 11 | 0.5 | 0.3 | 20 | 15 | 0.4 | 0.2 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shahir, A.A.; El-Wakil, D.A.; Abdel Latef, A.A.H.; Youssef, N.H. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants 2022, 11, 746. https://doi.org/10.3390/plants11060746
El-Shahir AA, El-Wakil DA, Abdel Latef AAH, Youssef NH. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants. 2022; 11(6):746. https://doi.org/10.3390/plants11060746
Chicago/Turabian StyleEl-Shahir, Amany A., Deiaa A. El-Wakil, Arafat Abdel Hamed Abdel Latef, and Nora H. Youssef. 2022. "Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L." Plants 11, no. 6: 746. https://doi.org/10.3390/plants11060746
APA StyleEl-Shahir, A. A., El-Wakil, D. A., Abdel Latef, A. A. H., & Youssef, N. H. (2022). Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants, 11(6), 746. https://doi.org/10.3390/plants11060746