Buckwheat and Amaranth as Raw Materials for Brewing, a Review
Abstract
:1. Introduction
2. Buckwheat and Amaranth: Raw Materials for Brewing
2.1. Overview
2.2. Structure and Chemical Composition
2.3. Use in the Beer Industry
2.3.1. Buckwheat
2.3.2. Amaranth
2.4. Other Uses
3. Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duliński, R.; Zdaniewicz, M.; Pater, A.; Poniewska, D.; Żyła, K. The Impact of Phytases on the Release of Bioactive Inositols, the Profile of Inositol Phosphates, and the Release of Selected Minerals in the Technology of Buckwheat Beer Production. Biomolecules 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Lim, J.; Lee, G.H.; Nguyen, T.T.H.; Xiao, Y.; Piao, M.; Kim, D. Brewing rutin-enriched lager beer with buckwheat malt as adjuncts. J. Microbiol. Biotechnol. 2019, 29, 877–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiano, A. Craft beer: An overview. Comprehensive Reviews in Food Science and Food Safety. J. Food Sci. 2021, 20, 1829–1856. [Google Scholar]
- Zdaniewicz, M.; Satora, P.; Pater, A.; Bogacz, S. Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production. Biomolecules 2020, 10, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorizzo, M.; Coppola, F.; Letizia, F.; Testa, B.; Sorrentino, E. Role of yeasts in the brewing process: Tradition and innovation. Processes 2021, 9, 839. [Google Scholar] [CrossRef]
- Bruner, J.; Fox, G. Novel non-cerevisiae Saccharomyces yeast species used in beer and alcoholic beverage fermentations. Fermentation 2020, 6, 116. [Google Scholar] [CrossRef]
- Paiva, R.A.; Mutz, Y.S.; Conte-Junior, C.A. A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds. Antioxidants 2021, 10, 1332. [Google Scholar] [CrossRef] [PubMed]
- Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Maize and sorghum as raw materials for brewing, a review. Appl. Sci. 2021, 11, 3139. [Google Scholar] [CrossRef]
- Rubio-Flores, M.; Serna-Saldivar, S.O. Technological and engineering trends for production of gluten-free beers. Food Eng. Rev. 2016, 8, 468–482. [Google Scholar] [CrossRef]
- Cela, N.; Condelli, N.; Caruso, M.C.; Perretti, G.; Di Cairano, M.; Tolve, R.; Galgano, F. Gluten-free brewing: Issues and perspectives. Fermentation 2020, 6, 53. [Google Scholar] [CrossRef]
- Di Ghionno, L.; Sileoni, V.; Marconi, O.; De Francesco, G.; Perretti, G. Comparative study on quality attributes of gluten-free beer from malted and unmalted teff [Eragrostis tef (zucc.) trotter]. LWT 2017, 84, 746–752. [Google Scholar] [CrossRef]
- Budner, D.; Carr, J.; Serafini, B.; Tucker, S.; Dieckman-Meyer, E.; Bell, L.; Thompson-Witrick, K.A. Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum. Beverages 2021, 7, 56. [Google Scholar] [CrossRef]
- Kok, Y.J.; Ye, L.; Muller, J.; Ow, D.S.W.; Bi, X. Brewing with malted barley or raw barley: What makes the difference in the processes? Appl. Microbiol. Biotechnol. 2019, 103, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Lei, Y.; Han, X.; Zhao, Y.; Zhang, S. Antioxidant ability of polyphenols from black rice, buckwheat and oats: In vitro and in vivo. Czech J. Food Sci. 2020, 38, 242–247. [Google Scholar] [CrossRef]
- Li, F.; Shi, Y.; Boswell, M.; Rozelle, S. Craft beer in China. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry; Garavaglia, C., Swinnen, J., Eds.; Palgrave Macmillan: London, UK, 2018; pp. 457–484. [Google Scholar]
- Gómez-Corona, C.; Escalona-Buendía, H.B.; García, M.; Chollet, S.; Valentin, D. Craft vs. industrial: Habits, attitudes and motivations towards beer consumption in Mexico. Appetite 2016, 96, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Hayward, L.; Wedel, A.; McSweeney, M.B. Acceptability of beer produced with dandelion, nettle, and sage. Int. J. Gastron. Food Sci. 2019, 18, 100180. [Google Scholar] [CrossRef]
- Pereira, I.M.C.; Matos Neto, J.D.; Figuereido, R.W.; Carvalho, J.D.G.; de Figuereido, E.A.T.; de Menezes, N.V.S.; Gaban, S.V.F. Physicochemical characterization, antioxidant activity, and sensory analysis of beers brewed with cashew peduncle (Anacardium occidentale) and orange peel (Citrus sinensis). Food Sci. Technol. 2020, 40, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Thakur, P.; Kumar, K.; Ahmed, N.; Chauhan, D.; Rizvi, Q.U.E.H.; Jan, S.; Dhaliwal, H.S. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Curr. Res. Food Sci. 2021, 4, 917–925. [Google Scholar] [CrossRef]
- Gumienna, M.; Górna, B. Gluten hypersensitivities and their impact on the production of gluten-free beer. Eur. Food Res. Technol. 2020, 246, 1–14. [Google Scholar] [CrossRef]
- Piga, A.; Conte, P.; Fois, S.; Catzeddu, P.; Del Caro, A.; Sanguinetti, A.M.; Fadda, C. Technological, Nutritional and Sensory Properties of an Innovative Gluten-Free Double-Layered Flat Bread Enriched with Amaranth Flour. Foods 2021, 10, 920. [Google Scholar] [CrossRef]
- Hager, A.S.; Taylor, J.P.; Waters, D.M.; Arendt, E.K. Gluten free beer–A review. Trends Food Sci. Technol. 2014, 36, 44–54. [Google Scholar] [CrossRef]
- Spina, A.; Zingale, S. Health Benefits of Minor Cereals. Reference Module. In Food Science; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780081005965. [Google Scholar]
- Yang, D.; Gao, X. Progress of the use of alternatives to malt in the production of gluten-free beer. Crit. Rev. Food Sci. Nutr. 2020, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, R.; Caballero, I.; Nimubona, D.; Blanco, C.A. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 2021, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Bastida, J.A.; Piskuła, M.; Zieliński, H. Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Technol. 2015, 44, 58–65. [Google Scholar] [CrossRef]
- Brasil, V.C.B.; Guimarães, B.P.; Evaristo, R.B.W.; Carmo, T.S.; Ghesti, G.F. Buckwheat (Fagopyrum esculentum Moench) characterization as adjunct in beer brewing. Food Sci. Technol. 2020, 41, 265–272. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Pirzadah, T.B.; Malik, B. Pseudocereals as super foods of 21st century: Recent technological interventions. J. Agric. Food Res. 2020, 2, 100052. [Google Scholar] [CrossRef]
- Morales, D.; Miguel, M.; Garcés-Rimón, M. Pseudocereals: A novel source of biologically active peptides. Crit. Rev. Food Sci. Nutr. 2021, 61, 1537–1544. [Google Scholar] [CrossRef]
- Podeszwa, T.; Harasym, J.; Czerniecki, P.; Kopacz, M. Congress wort analysis from commercial buckwheat malt mixtures with RSM. Nauk. Inżynierskie I Technol. 2016, 3, 77–89. [Google Scholar]
- Schmidt, D.; Verruma-Bernardi, M.R.; Forti, V.A.; Borges, M.T.M.R. Quinoa and Amaranth as Functional Foods: A Review. Food Rev. Int. 2021, 1–20. [Google Scholar] [CrossRef]
- Cureton, P.; Fasano, A. The Increasing Incidence of Celiac Disease and the Range of Gluten-Free Products in the Marketplace. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009; pp. 1–16. [Google Scholar]
- Mburu, M.W.; Gikonyo, N.K.; Kenji, G.M.; Mwasaru, A.M. Properties of a complementary food based on amaranth grain (Amaranthus cruentus) grown in Kenya. J. Agric. Food Technol. 2011, 1, 153–178. [Google Scholar]
- Ruth, O.N.; Unathi, K.; Nomali, N.; Chinsamy, M. Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: A Mini-Review. Appl. Sci. 2021, 11, 6879. [Google Scholar] [CrossRef]
- Dabija, A. Biotehnologies in the Food Industries; Performantica Press: Iasi, Romania, 2019. [Google Scholar]
- Prado, R.; Gastl, M.; Becker, T. Aroma and color development during the production of specialty malts: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4816–4840. [Google Scholar] [CrossRef] [PubMed]
- Zdaniewicz, M.; Pater, A.; Knapik, A.; Duliński, R. The effect of different oat (Avena sativa L) malt contents in a top-fermented beer recipe on the brewing process performance and product quality. J. Cereal Sci. 2021, 101, 103301. [Google Scholar] [CrossRef]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef] [PubMed]
- Chettry, U.; Chrungoo, N.K. Beyond the Cereal Box: Breeding Buckwheat as a Strategic Crop for Human Nutrition. Plant. Foods Hum. Nutr. 2021, 76, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Chrungoo, N.K.; Chettry, U. Buckwheat: A critical approach towards assessment of its potential as a super crop. Indian J. Genet. Plant Breed 2021, 81, 1–23. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Ulmer, H.M.; Neumann, M.; Arendt, E.K. The effect of steeping time on the final malt quality of buckwheat. J. Inst. Brew. 2005, 111, 275–281. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Ulmer, H.M.; Arendt, E.K. The effect of germination temperature on malt quality of buckwheat. J. Am. Soc. Brew. Chem. 2005, 63, 31–36. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Renzetti, S.; Arendt, E.K. Microstructure of buckwheat and barley during malting observed by confocal scanning laser microscopy and scanning electron microscopy. J. Inst. Brew. 2007, 113, 34–41. [Google Scholar] [CrossRef]
- Arendt, E.; Dal Bello, F. Gluten-Free Cereal Products and Beverages, 1st ed.; Academic Press: London, UK; Elsevier: London, UK, 2018; pp. 325–405. [Google Scholar]
- Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Xiao, J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.Ö.; Ayhan, N.Y.; Meriç, Ç.S. Buckwheat: A useful food and its effects on human health. Curr. Nutr. Food Sci. 2020, 16, 29–34. [Google Scholar] [CrossRef]
- Podolska, G.; Gujska, E.; Klepacka, J.; Aleksandrowicz, E. Bioactive compounds in different buckwheat species. Plants 2021, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Itodo, O.A.; Stoyanov, J.; Dejanovic, G.M.; Gamba, M.; Asllanaj, E.; Kern, H. A systematic review of phytochemicals in oat and buckwheat. Food Chem. 2021, 338, 127982. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Živković, A.; Polak, T.; Cigić, B.; Požrl, T. Germinated Buckwheat: Effects of Dehulling on Phenolics Profile and Antioxidant Activity of Buckwheat Seeds. Foods 2021, 10, 740. [Google Scholar] [CrossRef] [PubMed]
- Phiarais, B.P.N.; Wijngaard, H.H.; Arendt, E.K. The impact of kilning on enzymatic activity of buckwheat malt. J. Inst. Brew. 2005, 111, 290–298. [Google Scholar] [CrossRef]
- Suzuki, T.; Morishita, T.; Noda, T.; Ishiguro, K.; Otsuka, S.; Katsu, K. Breeding of Buckwheat to Reduce Bitterness and Rutin Hydrolysis. Plants 2021, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary Buckwheat in Human Nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Pirzadah, T.B.; Malik, B.; Tahir, I.; Ul Rehman, R. Buckwheat journey to functional food sector. Curr. Nutr. Food Sci. 2020, 16, 134–141. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T.J.; Chen, J. Changes of the flavonoid and phenolic acid content and antioxidant activity of tartary buckwheat beer during the fermentation. Adv. Mater. Res. 2013, 781, 1619–1624. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019, 99, 5565–5576. [Google Scholar] [CrossRef] [PubMed]
- Phiarais, B.P.N.; Wijngaard, H.H.; Arendt, E.K. Kilning conditions for the optimization of enzyme levels in buckwheat. J. Am. Soc. Brew. Chem. 2006, 64, 187–194. [Google Scholar] [CrossRef]
- Haber, T.; Obiedziński, M.; Biller, E.; Waszkiewicz-Robak, B.; Achremowicz, B.; Ceglińska, A. Pseudocereals and the posibilities of their application in food technology, General characteristics of Amaranth. Pol. J. Appl. Sci. 2017, 3, 45–52. [Google Scholar]
- Mlakar, S.G.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 2009, 6, 43–53. [Google Scholar]
- Chandra, S.; Dwivedi, P.; Baig, M.M.V.; Shinde, L.P. Importance of quinoa and amaranth in food security. J. Agric. Ecol. 2018, 5, 26–37. [Google Scholar] [CrossRef]
- Wangui, J. Impact of Different Processing Techniques on Nutrients and Antinutrients Content of Grain Amaranth (Amaranthus albus), Doctoral Dissertation; Jomo Kenyatta University of Agriculture and Technology: Juja, Kenya, 2015. [Google Scholar]
- Park, S.J.; Sharma, A.; Lee, H.J. A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants 2020, 9, 1236. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, J.J.; Lobato-Calleros, C.; Vernon-Carter, E.J.; Aguirre-Mandujano, E.; Alvarez-Ramirez, J.; Martínez-Velasco, A. Modifying the structure, physicochemical properties, and foaming ability of amaranth protein by dual pH-shifting and ultrasound treatments. LWT 2022, 153, 112561. [Google Scholar] [CrossRef]
- De Bock, P.; Daelemans, L.; Selis, L.; Raes, K.; Vermeir, P.; Eeckhout, M.; Van Bockstaele, F. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) Seeds. Foods 2021, 10, 651. [Google Scholar] [CrossRef]
- Fejér, J.; Kron, I.; Eliašová, A.; Gruľová, D.; Gajdošová, A.; Lancíková, V.; Hricová, A. New Mutant Amaranth Varieties as a Potential Source of Biologically Active Substances. Antioxidants 2021, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.; Schönlechner, R. Recent developments and knowledge in pseudocereals including technological aspects. Acta Aliment. 2021, 50, 583–609. [Google Scholar] [CrossRef]
- Bhattarai, G. Amaranth: A Golden Crop for Future. Himal. J. Sci. Technol. 2018, 2, 108–116. [Google Scholar] [CrossRef]
- Karimi, N.; Zeynali, F.; Rezazad Bari, M.; Nikoo, M.; Mohtarami, F.; Kadivar, M. Amaranth selective hydrolyzed protein influence on sourdough fermentation and wheat bread quality. Food Sci. Nutr. 2021, 9, 6683–6691. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.H.; Lee, K.; Jeong, W.; Han, S.; Jo, I.H.; Choi, S.; Chung, J.W. Antioxidant Activity and Phytochemical Content of Nine Amaranthus Species. Agronomy 2021, 11, 1032. [Google Scholar] [CrossRef]
- Iqbal, S.; Thanushree, M.P.; Sudha, M.L.; Crassina, K. Quality characteristics of buckwheat (Fagopyrum esculentum) based nutritious ready-to-eat extruded baked snack. J. Food Sci. Technol. 2021, 58, 2034–2040. [Google Scholar] [CrossRef] [PubMed]
- Koshova, V.; Kobernitska, A.; Kinash, D. Improvement of Buckwheat Malt Technology. J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 5–17. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Buckwheat Seeds: Impact of Milling Fractions and Addition Level on Wheat Bread Dough Rheology. Appl. Sci. 2021, 11, 1731. [Google Scholar] [CrossRef]
- Patil, S.B.; Jena, S. Utilization of underrated pseudo-cereals of North East India: A systematic review. Nutr. Food Sci. 2020, 50, 1229–1240. [Google Scholar] [CrossRef]
- Duliński, R.; Zdaniewicz, M.; Pater, A.; Żyła, K. Impact of Two Commercial Enzymes on the Release of Inositols, Fermentable Sugars, and Peptides in the Technology of Buckwheat Beer. J. Am. Soc. Brew. Chem. 2019, 77, 119–125. [Google Scholar] [CrossRef]
- Deželak, M. Beer-Like Gluten-Free Beverages Fermented from Buckwheat and Quinoa. Ph.D. Thesis, Biotehnical Faculty, University of Ljubljana, Ljubljana, Slovenia, 2014. [Google Scholar]
- Kowalska, E.; Ziarno, M. Characterization of Buckwheat Beverages Fermented with Lactic Acid Bacterial Cultures and Bifidobacteria. Foods 2020, 9, 1771. [Google Scholar] [CrossRef]
- Garkina, P.K.; Kurochkin, A.A.; Frolov, D.I.; Shaburova, G.V. Chemical composition and physicochemical properties of extruded buckwheat. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 640, p. 022037. [Google Scholar]
- Appiani, M.; Rabitti, N.S.; Proserpio, C.; Pagliarini, E.; Laureati, M. Tartary Buckwheat: A New Plant-Based Ingredient to Enrich Corn-Based Gluten-Free Formulations. Foods 2021, 10, 2613. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci. Technol. 2021, 110, 155–167. [Google Scholar] [CrossRef]
- Puligundla, P.; Lim, S. Buckwheat noodles: Processing and quality enhancement. Food Sci. Biotechnol. 2021, 30, 1471–1480. [Google Scholar] [CrossRef]
- Srivastava, S.; Sreerama, Y.N.; Dharmaraj, U. Effect of processing on squalene content of grain amaranth fractions. J. Cereal Sci. 2021, 100, 103218. [Google Scholar] [CrossRef]
- Ciocan, M.; Dabija, A.; Codină, G.G. Effect of some unconventional ingredients on the production of black beer. Ukr. Food J. 2020, 9, 322–331. [Google Scholar] [CrossRef]
- Early, D.K. Amaranth production in Mexico and Peru. In Advances in New Crops; Timber Press: Portland, OR, USA, 1990; pp. 140–142. [Google Scholar]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C. Quality of wheat breads enriched with flour from germinated amaranth seeds. Food Sci. Technol. Int. 2021, 10820132211016577. [Google Scholar] [CrossRef]
- Cankurtaran, T.; Bilgiçli, N. Improvement of functional couscous formulation using ancient wheat and pseudocereals. Int. J. Gastron. Food Sci. 2021, 25, 100400. [Google Scholar] [CrossRef]
- Manassero, C.A.; Añón, M.C.; Speroni, F. Development of a High Protein Beverage Based on Amaranth. Plant Foods Hum. Nutr. 2020, 75, 599–607. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Uslu, C.C.; Mutlu, C.; Erbaş, M. Expected glycemic impact and probiotic stimulating effects of whole grain flours of buckwheat, quinoa, amaranth and chia. J. Food Sci. Technol. 2021, 59, 1460–1467. [Google Scholar] [CrossRef]
- Singh, M.; Liu, S.X. Evaluation of amaranth flour processing for noodle making. J. Food Processing Preserv. 2021, 45, e15270. [Google Scholar] [CrossRef]
- González-Calderón, A.K.; García-Flores, N.A.; Elizondo-Rodríguez, A.S.; Zavala-López, M.; García-Lara, S.; Ponce-García, N.; Escalante-Aburto, A. Effect of the addition of different vegetal mixtures on the nutritional, functional, and sensorial properties of snacks based on pseudocereals. Foods 2021, 10, 2271. [Google Scholar] [CrossRef]
- Lawal, O.M.; van Stuijvenberg, L.; Boon, N.; Awolu, O.; Fogliano, V.; Linnemann, A.R. Technological and nutritional properties of amaranth-fortified yellow cassava pasta. J. Food Sci. 2021, 86, 5213–5225. [Google Scholar] [CrossRef]
- Gebremariam, M.M.; Zarnkow, M.; Becker, T. Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: A review. J. Food Sci. Technol. 2014, 51, 2881–2895. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, T.; Ribeiro, M.; Sabença, C.; Igrejas, G. The 10,000-year success story of wheat! Foods 2021, 10, 2124. [Google Scholar] [CrossRef]
- Uthayakumaran, S.; Wrigley, C.W. Wheat: Characteristics and quality requirements. In Cereal Grains; Wrigley, C., Batey, I., Miskelly, D., Eds.; Woodhead Publishing (Elsevier): Kidlington, UK, 2010; pp. 59–111. [Google Scholar]
- Wrigley, C.; Batey, I.L.; Miskelly, D. Cereal grains: Assessing and Managing Quality, 2nd ed.; Woodhead Publishing (Elsevier): Kidlington, UK, 2016; pp. 245–468. [Google Scholar]
- Rachon, L.; Szumilo, G. Comparison of chemical composition of selected winter wheat species. J. Elem. 2009, 14, 135–145. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.M.; Gebruers, K.; Boros, D.; Ward, J.L. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- Buiatti, S.; Bertoli, S.; Passaghe, P. Influence of gluten-free adjuncts on beer colloidal stability. Eur. Food Res. Technol. 2018, 244, 903–912. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Francik, R. Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Bobkov, S. Biochemical and technological properties of buckwheat grains. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M., Woo, S.H., Wieslander, G., Kreft, I., Chrungoo, N., Eds.; Academic Press: London, UK, 2016; pp. 423–440. [Google Scholar]
- Li, H. Buckwheat. In Bioactive Factors and Processing Technology for Cereal Foods; Wang, J., Sun, B., Tsao, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 137–149. [Google Scholar]
- Zhao, X.; Li, C.; Jiang, Y.; Wang, M.; Wang, B.; Xiao, L.; Dong, L. Metabolite fingerprinting of buckwheat in the malting process. J. Food Meas. Charact. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Agu, R.C.; Chiba, Y.; Goodfellow, V.; Mackinlay, J.; Brosnan, J.M.; Bringhurst, T.A.; Bryce, J.H. Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. J. Agric. Food Chem. 2012, 60, 10147–10154. [Google Scholar] [CrossRef] [PubMed]
- Deželak, M.; Gebremariam, M.M.; Zarnkow, M.; Becker, T.; Košir, I.J. Part III: The influence of serial repitching of Saccharomyces pastorianus on the production dynamics of some important aroma compounds during the fermentation of barley and gluten-free buckwheat and quinoa wort. J. Inst. Brew. 2015, 121, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Wijngaard, H.H.; Ulmer, H.M.; Arendt, E.K. The effect of germination time on the final malt quality of buckwheat. J. Am. Soc. Brew. Chem. 2006, 64, 214–221. [Google Scholar] [CrossRef]
- De Meo, B.; Freeman, G.; Marconi, O.; Booer, C.; Perretti, G.; Fantozzi, P. Behaviour of malted cereals and pseudo-cereals for gluten-free beer production. J. Inst. Brew. 2011, 117, 541–546. [Google Scholar] [CrossRef]
- Zarnkow, M.; Kessler, M.; Burberg, F.; Kreisz, S.; Back, W. Gluten free beer from malted cereals and pseudocereals. In Proceedings of the European Brewery Convention Congress, Prague, Czech Republic, 14–19 May 2005. [Google Scholar]
- Zweytick, G.; Berghofer, E. Production of Gluten-Free Beer. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; John Wiley & Sons Ltd: West Sussex, UK, 2009; pp. 181–200. [Google Scholar]
- Wijngaard, H.H.; Arendt, E.K. Optimisation of a mashing program for 100% malted buckwheat. J. Inst. Brew. 2006, 112, 57–65. [Google Scholar] [CrossRef]
- Phiarais, B.P.N.; Mauch, A.; Schehl, B.D.; Zarnkow, M.; Gastl, M.; Herrmann, M.; Arendt, E.K. Processing of a top fermented beer brewed from 100% buckwheat malt with sensory and analytical characterisation. J. Inst. Brew. 2010, 116, 265–274. [Google Scholar] [CrossRef]
- Bogdan, P.; Kordialik-Bogacka, E.; Czyżowska, A.; Oracz, J.; Żyżelewicz, D. The profiles of low molecular nitrogen compounds and fatty acids in wort and beer obtained with the addition of quinoa (Chenopodium quinoa willd.), amaranth (Amaranthus cruentus L.) or maltose syrup. Foods 2020, 9, 1626. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Zhao, H. Functionality of special beer processes and potential health benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Kerpes, R.; Fischer, S.; Becker, T. The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci. Technol. 2017, 67, 129–138. [Google Scholar] [CrossRef]
- Jauković, M.M.; Zečević, V.V.; Bošković, J.Z.; Nikić, T.S.; Prodanović, L.Ž.; Samailović, N.V. Effect of Dilute Alkaline Steeping on Mold Contamination, Toxicity, and Quality Parameters of Buckwheat Malt. J. Am. Soc. Brew. Chem. 2015, 73, 357–361. [Google Scholar] [CrossRef]
- Krahl, M.; Back, W.; Zarnkow, M.; Kreisz, S. Determination of optimised malting conditions for the enrichment of rutin, vitexin and orientin in common buckwheat (Fagopyrum esculentum Moench). J. Inst. Brew. 2008, 114, 294–299. [Google Scholar] [CrossRef]
- Terpinc, P.; Cigić, B.; Polak, T.; Hribar, J.; Požrl, T. LC–MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chem. 2016, 210, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.; Delgado, I.; Matos, A.S.; Gonzales, G.B.; Torres, D.; Santos, M.; Castanheira, I. Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum): Influence of cooking and malting. J. Food Compos. Anal. 2017, 64, 181–187. [Google Scholar] [CrossRef]
- Crivelari-Costa, P.M.; Bianchini, A. Malte de variedades de amaranto. Nativa 2021, 9, 563–566. [Google Scholar] [CrossRef]
- Bogdan, P.; Kordialik-Bogacka, E. Alternatives to malt in brewing. Trends Food Sci. Technol. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Benucci, I.; Caso, M.C.; Bavaro, T.; Masci, S.; Keršienė, M.; Esti, M. Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control 2020, 110, 106987. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E.; Bogdan, P.; Ciosek, A. Effects of quinoa and amaranth on zinc, magnesium and calcium content in beer wort. Int. J. Food Sci. Technol. 2019, 54, 1706–1712. [Google Scholar] [CrossRef]
- Starowicz, M.; Koutsidis, G.; Zieliński, H. Sensory analysis and aroma compounds of buckwheat containing products—A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1767–1779. [Google Scholar] [CrossRef]
- Škrobot, D.; Pezo, L.; Tomić, J.; Pestorić, M.; Sakač, M.; Mandić, A. Insights into sensory and hedonic perception of wholegrain buckwheat enriched pasta. LWT 2022, 153, 112528. [Google Scholar] [CrossRef]
- Norbäck, D.; Wieslander, G. A Review on Epidemiological and Clinical Studies on Buckwheat Allergy. Plants 2021, 10, 607. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef] [PubMed]
- Nardo, A.E.; Suárez, S.; Quiroga, A.V.; Añón, M.C. Amaranth as a source of antihypertensive peptides. Front. Plant Sci. 2020, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Niño, A.; Contreras-López, E.; Castañeda-Ovando, A.; Sánchez-Franco, J.A.; González-Olivares, L.G. Amaranth proteins as a source of bioactive peptides: A review. Int. Food Res. J. 2020, 27, 1–15. [Google Scholar]
- Caselato-Sousa, V.M.; Amaya-Farfán, J. State of knowledge on amaranth grain: A comprehensive review. J. Food Sci. 2012, 77, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rivas, E.; Espinoza-Ortega, A.; Thomé-Ortiz, H.; Moctezuma-Pérez, S. Consumers’ perception of amaranth in Mexico: A traditional food with characteristics of functional foods. Br. Food J. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Rovina, K.; Siddiquee, S.; Shaarani, S.M. Toxicology, extraction and analytical methods for determination of Amaranth in food and beverage products. Trends Food Sci. Technol. 2017, 65, 68–79. [Google Scholar] [CrossRef]
- Argüelles-López, O.D.; Reyes-Moreno, C.; Gutiérrez-Dorado, R.R.; Sánchez-Osuna, M.F.; López-Cervantes, J.; Cuevas-Rodríguez, E.O.; Perales-Sánchez, J.X.K. Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Biotecnia 2018, 20, 135–145. [Google Scholar] [CrossRef]
- Amare, E.; Grigoletto, L.; Corich, V.; Giacomini, A.; Lante, A. Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia. Appl. Sci. 2021, 11, 3590. [Google Scholar] [CrossRef]
- Kurek, M.A.; Krzemińska, A. Effect of modified atmosphere packaging on quality of bread with amaranth flour addition. Food Sci. Technol. Int. 2020, 26, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Ayo, J.A. The effect of amaranth grain flour on the quality of bread. Int. J. Food Prop. 2001, 4, 341–351. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Wronkowska, M.; Soral-Smietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT-Food Sci. Technol. 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ramos, K.C.; Sanz-Ponce, N.; Haros, C.M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT 2019, 114, 108418. [Google Scholar] [CrossRef]
- Drub, T.F.; dos Santos, F.G.; Centeno, A.C.L.S.; Capriles, V.D. Sorghum, millet and pseudocereals as ingredients for gluten-free whole-grain yeast rolls. Int. J. Gastron. Food Sci. 2021, 23, 100293. [Google Scholar] [CrossRef]
- Garcia-Valle, D.E.; Agama-Acevedo, E.; del Carmen Nuñez-Santiago, M.; Alvarez-Ramirez, J.; Bello-Pérez, L.A. Extrusion pregelatinization improves texture, viscoelasticity and in vitro starch digestibility of mango and amaranth flours. J. Funct. Foods 2021, 80, 104441. [Google Scholar] [CrossRef]
- Tafadzwa, M.J.; Zvamaziva, J.T.; Charles, M.; Amiel, M.; Pepukai, M.; Shepherd, M. Proximate, physico-chemical, functional and sensory properties OF quinoa and amaranth flour AS potential binders in beef sausages. Food Chem. 2021, 365, 130619. [Google Scholar] [PubMed]
- Chetrariu, A.; Dabija, A. Brewer’s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Rošul, M.Đ.; Mandić, A.I.; Mišan, A.Č.; Đerić, N.R.; Pejin, J.D. Review of trends in formulation of functional beer. Food Feed Res. 2019, 46, 23–35. [Google Scholar] [CrossRef]
- Habschied, K.; Živković, A.; Krstanović, V.; Mastanjević, K. Functional beer—A review on possibilities. Beverages 2020, 6, 51. [Google Scholar] [CrossRef]
- Bhinder, S.; Singh, N.; Kaur, A. Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocoll. 2022, 124, 107268. [Google Scholar] [CrossRef]
- Betancur, M.I.; Motoki, K.; Spence, C.; Velasco, C. Factors influencing the choice of beer: A review. Food Res. Int. 2020, 137, 109367. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.D.M.; Rosa, M.D.S.; Santos, P.P.A.D.; Paz, M.F.D.; Morato, P.N.; Fuzinatto, M.M. Artisanal beer production and evaluation adding rice flakes and soursop pulp (Annona muricata L.). Food Sci. Technol. 2020, 40, 545–549. [Google Scholar] [CrossRef]
- Sebestyén, A.; Kiss, Z.; Vecseri-Hegyes, B.; Kun-Farkas, G.; Hoschke, Á. Experiences with laboratory and pilot plant preparation of millet and buckwheat beer. Acta Aliment. 2013, 42, 81–89. [Google Scholar] [CrossRef]
- Deželak, M.; Zarnkow, M.; Becker, T.; Košir, I.J. Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J. Inst. Brew. 2014, 120, 360–370. [Google Scholar] [CrossRef]
- Dulinski, R.; Zdaniewicz, M.; Pater, A. Effect of Phytase Addition to Buckwheat Wort on the Selected Fermentable Sugars, Polypeptide Profile and Nitrogen Content from Free Aminoacids, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2021, 78, 33–40. [Google Scholar]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Zhao, H. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Estevão, S.T.; e Silva, J.B.D.A.; Lourenço, F.R. Development and optimization of beer containing malted and non-malted substitutes using quality by design (QbD) approach. J. Food Eng. 2021, 289, 110182. [Google Scholar] [CrossRef]
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V.S.R. Recent developments in high gravity beer-brewing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102399. [Google Scholar] [CrossRef]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers' interest for beer: A case study with craft beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef]
- Morgan, D.R.; Thomas Lane, E.; Styles, D. Crafty Marketing: An Evaluation of Distinctive Criteria for “Craft” Beer. Food Rev. Int. 2020, 1–17. [Google Scholar] [CrossRef]
- Yorke, J.; Cook, D.; Ford, R. Brewing with Unmalted Cereal Adjuncts: Sensory and Analytical Impacts on Beer Quality. Beverages 2021, 7, 4. [Google Scholar] [CrossRef]
Grain | Moisture [%] | Protein [%] | Fat [%] | Carbohydrate [%] | Fibre [%] | References |
---|---|---|---|---|---|---|
Wheat | 12.8 | 11.8 | 2.5 | 71.2 | 12.5 | [39] |
- | 10.91 | 1.82 | 75.56 | 2.2 | [64] | |
13 | 14.0 | 2.0 | 69.0 | 1.0 | [61] | |
- | 10.7 | 2.0 | 75.4 | 12.7 | [32] | |
12.6 | 11.7 | 2.0 | 71.0 | 2.0 | [93] | |
- | 9–18 | 2.5–3.3 | 75–80 | 2.0–2.5 | [94] | |
- | 8–13 | 3–4 | 85 | 12 | [95] | |
13 | 13.7 | 1.9 | 72.6 | 12.2 | [96] | |
- | 11–14.1 | 1.4–2.1 | 81.3–83.1 | 2.1–2.9 | [97] | |
- | 12.9–19.9 | 1.5–2.0 | 80 | 7.7–11.4 | [98] | |
Buckwheat | 13.4–19.4 | 10.4–11.0 | 2.4–2.8 | 67.2 | 8.6 | [99] |
- | 9.5–14.1 | 1.8–3.1 | 80.5–84.1 | - | [73] | |
- | 12–19 | 1.5–3.7 | 60–70 | 1.7–8.5 | [55] | |
- | 10–12.5 | 4.7 | 65–75 | - | [82] | |
11 | 12 | 7.4 | 72.9 | 17.8 | [39] | |
- | 13.3 | 3.4 | 71.5 | 10.0 | [32] | |
- | 13.9–16.4 | 3.43–3.86 | 67.8–78.3 | 3.55–5.86 | [66] | |
- | 12.28–15.61 | 1.72–2.24 | 77.36–81.38 | 20.32–21.45 | [100] | |
10.8–11.6 | 8.51–18.87 | 1.5–3.7 | 60–70 | 2.7–21.3 | [101] | |
11.2 | 12.3 | 2.3 | 73.3 | 10.9 | [102] | |
Amaranth | 6–9 | 13–18 | 6–8 | 63 | 4–14 | [99] |
- | 15.7 | 7.2 | 62 | 4.2 | [59] | |
- | 16 | 7 | 62 | 10 | [32] | |
- | 13.1–21 | 5.6–10.9 | 48–69 | 3.1–5.0 | [60] | |
6.23–6.71 | 13.58–17.6 | 6.3–8.1 | 58.6–68.9 | 3.4–5.3 | [34] | |
- | 13.6 ± 0.8 | 7.3 ± 0.3 | 69.0 ± 0.2 | 11.0 ± 0.2 | [88] | |
11.29 | 13.56 | 7.2 | 65.25 | 6.7 | [64] | |
6–9 | 13–18 | 6–8 | 63 | 4–14 | [61] | |
- | 13.6 | 7.0 | 65.3 | 6.7 | [32] | |
- | 15.1–16.4 | 6.47–7.25 | 57.3–65.5 | 6.53–11.16 | [66] |
Raw Materials | Technological Process | Study Conclusions | References |
---|---|---|---|
Organic buckwheat from the USA | Steeping: 15 °C following this program: 3 h water rest, 3 h air rest, 2 h water rest, 1 h air rest, 1 h water rest, 1 h air rest. Germination:15 °C for 4 days Kilning: 5 h at 40 °C, 3 h at 50 °C and 3 h at 60 °C. | Finished product properties: Moisture = 5.32% pH = 6.05; Extract = 88.7% d.m. Apparent attenuation = 81.0% Free amino nitrogen (FAN) = 231 ± 1 mg/L Total soluble nitrogen (TSN) = 1.300 ± 3 mg/L | [107] |
Buckwheat harvested in 2018 in in northwest China | Steeping: 5 h wet stage, 19 h air stage, 4 h wet stage, 20 h air stage Germination: 16 °C for 4 days | Buckwheat malt is a potential material for the beer brewing industry | [103] |
Buckwheat from Boston Seeds | Steeping: 20 °C for 20 h, followed by a 4 h air-rest and further 22 h wet-steep. Germination: 20, 25, and 30 °C for 4 and 5 days. | Inclusion of buckwheat as brewing raw materials will increase the availability of suitable materials for use in the production of gluten-free beer, potentially making it more sustainable, cheaper, and more widely available. | [104] |
Buckwheat harvested in 2003 in Eastern Europe | Steeping: 7 h resulted in 35% moisture, 13 h in 40% moisture and 80 h in 45% moisture Germination: 15 °C/4 days Kilning: 45 °C/5 h and 50 °C/12 h | The optimum out-of-steep moisture content for buckwheat is between 35% and 40%, which is a compromise between attaining the desired malt quality and minimising malting loss. | [79] |
Buckwheat harvested in 2003 in Eastern Europe | Steeping: 3 wet and 3 dry cycles 10 °C for 12 h Germination: 15 °C for 6 days Kilning: 45 °C for 5 h and 50 °C for 17 h | The optimum germination time of buckwheat germinated at an air-on temperature of 15 °C is four or five days. At this time, the grains are sufficiently modified but nutrients have not yet been exhausted. | [44,106] |
Buckwheat from Trouw B. V. (Rotterdam, The Netherlands) | Steeping:12 h/10 °C Germination: 96 h/15 °C Kilning: 48 h/40 °C | It was found that malt and wort made from buckwheat kilned at 40 °C for 48 h with optimized steeping and germination conditions, shows potential as a gluten-free brewing ingredient once kilning and mashing procedures are optimized to ensure survival of the enzymes. | [52] |
Buckwheat harvested in 2003 in Eastern Europe | Steeping: 12 h at 10 °C Germination: 96 h at 15 °C Kilning: KR1—48 h at 40 °C KR2—5 h at 40 °C and 11 h at 50 °C KR3—5 h at 40 °C, 3 h at 50 °C and 3 h at 60 °C. | Buckwheat malt kilned using KR3 was found to have the highest level of α-amylase, total β-amylase, and protease activity and also produced the highest levels of TSN and FAN when optimally mashed. | [58] |
Buckwheat harvested in 2013 in the mountain area of northern Montenegro | Steeping: 10 °C for 12 h in still tap water (control) and still solution of NaOH (0.1, 0.2, and 0.3% [w/v]) Germination: 15 °C for 5 days Kilning: 50 °C for 48 h | Steeping in dilute NaOH (0.1, 0.2, and 0.3%) improves the buckwheat malt quality by increasing TSN, FAN, and diastatic power. This method is proposed for the reduction of mold contamination during buckwheat malting. | [115] |
Common unhulled buckwheat | Steeping: 96 h degree of steeping 47% Germination: 120 h at 19 °C | For to optimize the malting conditions has been used response surface methodology (RSM). | [45] |
Dehulled buckwheat | Steeping: 120 sec per day and 60 sec for half days Germination: 19 °C for 5 days Kilning: 50 °C for 17 h, 1 h at 60 °C and 5 h at 65 °C. | The optimum malting conditions to enrich bioactive polyphenols in dehulled buckwheat | [116] |
Common buckwheat | Steeping: 8 h at 20 °C Germination: 96 h at 20 °C Kilning: 22 h at 60 °C and 18 h at 80 °C | The malting process influences the phenolic compound composition and antioxidant activity of buckwheat | [117] |
Organic buckwheat | Steeping: 10 h at 30 °C Germination: 40 h at 23 °C Kilning: 10 h at 42 °C | Significantly increased total folate content in buckwheat by 27%. | [118] |
Raw Materials | Technological Process | Finished Product Characteristics | References |
---|---|---|---|
70% of barley malt with 30% of amaranth flakes | Mashing: 30 min at 45 °C, 60 min at 62 °C, 30 min at 72 °C, and 10 min at 78 °C Mashing temperature increased by 1 °C per minute, with continuous mixing; Mash filtration; Wort boiling: 60 min with hop pellets 1.5 g/L; Fermentation: at 10 °C for 14 days; Bottling and maturation for 14 days at 1 °C | The addition of amaranth positively influenced the amino acid profiles, a higher content of fatty acids, including long-chain and unsaturated, which resulted in a greater degree of assimilation of these compounds by yeasts. | [112] |
60% of barley malt with 40% of amaranth malt | Mashing: 15 min at 50 °C, increase to 65 °C (1 °C/min), 45 min at 65 °C, 30 min at 72 °C and mashing out at 78 °C for 10 min; Mash filtration Wort boiling: 60 min and rested for 20 min Primary fermentation: at 20 °C for 14 days Maturation: 20 days at 1 °C; Refermentation at 23 °C for 1 month | Lower extract yields Lower volumes of the final beers Beer pH = 4.0 | [99] |
100% amaranth malt | Conventional process of brewing | Extract content of 79.9% very low alcohol beer (0.64%) | [44] |
100% amaranth malt | Conventional process of brewing | Slightly opaque, yellow colour. The foam stability—not good The taste—too bitter. | [109] |
70% of barley malt with 30% dehulled amaranth seeds, flakes and popping | Conventional process of brewing | use of amaranth increased the ratio of Mg2+ to Ca2+ as well as the content of both Zn2+ and Mg2+ in wort substantially | [25,122] |
100% amaranth malt | Mashing: double-decoction method: at 50 °C, part of the mash was removed to a boiler and heated for 5 min at 85 °C; the procedure was repeated to obtain a temperature of 71 °C; boiling for 90 min; cooling to 12 °C; pitched with yeast Primary fermentation at 6–12 °C; Secondary fermentation at 4 °C. | Amaranth beer is slightly turbid with a light-yellow colour. The beer tasted too bitter. The foam stability of the beer is poor Beer stability was satisfactory | [20,24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. Plants 2022, 11, 756. https://doi.org/10.3390/plants11060756
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. Plants. 2022; 11(6):756. https://doi.org/10.3390/plants11060756
Chicago/Turabian StyleDabija, Adriana, Marius Eduard Ciocan, Ancuța Chetrariu, and Georgiana Gabriela Codină. 2022. "Buckwheat and Amaranth as Raw Materials for Brewing, a Review" Plants 11, no. 6: 756. https://doi.org/10.3390/plants11060756
APA StyleDabija, A., Ciocan, M. E., Chetrariu, A., & Codină, G. G. (2022). Buckwheat and Amaranth as Raw Materials for Brewing, a Review. Plants, 11(6), 756. https://doi.org/10.3390/plants11060756