Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Micromorphological Investigation
2.2. Phytochemical Investigation
- (i)
- In 2018, we analyzed the leaves to evaluate the EO compositions, following different preservation methods (Table 1).
- (ii)
- In 2019 we analyzed air-dried samples according to the following considerations: the highest EO yield; the easiest storage procedure; the evidence that the literature contributions indicated air-drying as the most usual conservation method. Taking into account these points and the awareness of the variability in the EO profile compared to the fresh material, we investigated the EO compositions from air-dried leaves collected at two different stages of the plant cycle, vegetative and reproductive (Table 2). We further characterized the profile of the fruits at two collection times: early fruiting and ripening (Table 3).
2.3. Scientific Dissemination
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Micromorphological Investigation
Light Microscopy and Fluorescence Microscopy
3.4. Phytochemical Investigation
3.4.1. Preparation of Essential Oils (EOs)
3.4.2. GC-MS Analysis of Essential Oils
4. Conclusions
- (i)
- to describe for the first time, by digital light microscopy, the distribution pattern of the secretory cavities in full-expanded leaves and shoots—the latter has never been investigated before—and the histochemistry of their secretory products (mainly terpenes, and flavonoids).
- (ii)
- to characterize the profile of EOs obtained across two consecutive years (2018 and 2019) from different plant matrices (leaves and fruits), subjected to different treatments (fresh, −20 °C stored, −80 °C stored, and dried leaves). For leaves, the optimal conservation techniques in relation to the highest oil yield and to the more complex bouquet resulted in air-drying at room temperature and hydrodistillation of fresh and −80 °C/frozen materials, respectively.
- (iii)
- to assign plant growing at the study area to the α-pinene, 1,8-cineole, and linalool chemotypes.
- (iv)
- to speculate, based on literature data, that the main substances produced by leaves and fruits act synergistically for simultaneous protection against pests and pathogens and in attracting natural predators and parasitoids of damaging herbivores, thus protecting plants from further damage.
- (v)
- to channel the scientific results in a novel and original pictorial apparatus for the target taxon at the Ghirardi Botanic Garden.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Clauser, M.; Pavone, P. Orti Botanici, Eccellenze Italiane (Botanic Gardens, Italian Excellences); Thema Edizioni: Città di Castello (Perugia), Italy, 2016; pp. 12–43. [Google Scholar]
- Giovanetti, M.; Giuliani, C.; Boff, S.; Fico, G.; Lupi, D. A botanic garden as a tool to combine public perception of nature and life-science investigations on native/exotic plants interactions with local pollinators. PLoS ONE 2020, 15, e0228965. [Google Scholar] [CrossRef] [Green Version]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia; Edagricole: Milano, Italy, 2017–2019; Volume 2, p. 878. [Google Scholar]
- Loi, M.C.; Maxia, L.; Maxia, A. Ethnobotanical comparison between the villages of Escolca and Lotzorai (Sardinia, Italy). J. Herbs Spices Med. Plants 2005, 11, 67–84. [Google Scholar] [CrossRef]
- Maxia, A.; Lancioni, M.C.; Balia, A.N.; Alborghetti, R.; Pieroni, A.; Loi, M.C. Medical ethnobotany of the Tabarkins, a Northern Italian (Ligurian) minority in south-western Sardinia. Gen. Res. Crop. Evol. 2008, 55, 911–924. [Google Scholar] [CrossRef]
- Şenkardeş, I.; Tuzlacı, E. Some ethnobotanical notes from Gündoğmuş District (Antalya/Turkey). Clin. Exp. Health Sci. 2014, 4, 63–75. [Google Scholar]
- Sisay, M.; Gashaw, T. Ethnobotanical, ethnopharmacological, and phytochemical studies of Myrtus communis Linn: A popular herb in Unani system of medicine. J. Evid.-Based Complem. Altern. Med. 2017, 22, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Asllani, U. Chemical composition of albanian myrtle oil (Myrtus communis L.). J. Essent. Oil Res. 2000, 12, 140–142. [Google Scholar] [CrossRef]
- Berka-Zougali, B.; Ferhat, M.A.; Hassani, A.; Chemat, F.; Allaf, K.S. Comparative study of essential oils extracted from Algerian Myrtus communis L. leaves using microwaves and hydrodistillation. Int. J. Mol. Sci. 2012, 13, 4673–4695. [Google Scholar] [CrossRef] [Green Version]
- Bouzabata, A.; Casanova, J.; Bighelli, A.; Cavaleiro, C.; Salgueiro, L.; Tomi, F. The genus Myrtus L. in Algeria: Composition and biologicala of essential oils from M. communis and M. nivellei: A review. Chem. Biodivers. 2016, 13, 672–680. [Google Scholar] [CrossRef]
- Tuberoso, C.I.; Barra, A.; Angioni, A.; Sarritzu, E.; Pirisi, F.M. Chemical composition of volatiles in Sardinian myrtle (Myrtus communis L.) alcoholic extracts and essential oils. J. Agric. Food Chem. 2006, 54, 1420–1426. [Google Scholar] [CrossRef]
- Usai, M.; Mulas, M.; Marchetti, M. Chemical composition of essential oils of leaves and flowers from five cultivars of myrtle (Myrtus communis L.). J. Essent. Oil Res. 2015, 27, 465–476. [Google Scholar] [CrossRef]
- Taamalli, A.; Iswaldi, I.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Zarrouk, M. UPLC–QTOF/MS for a rapid characterisation of phenolic compounds from Leaves of Myrtus communis L. Phytochem. Anal. 2013, 25, 89–96. [Google Scholar]
- Yoshimura, M.; Amakura, Y.; Tokuhara, M.; Yoshida, T. Polyphenolic compounds isolated from the leaves of Myrtus communis. J. Nat. Med. 2008, 62, 366–368. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, L.; Morelli, I.; Maccioni, S.; Baldini, R. Phytochemical typologies in some populations of Myrtus communis L. on Caprione Promontory (East Liguria, Italy). Food Chem. 2004, 85, 599–604. [Google Scholar] [CrossRef]
- Senatore, F.; Formisano, C.; Napolitano, F.; Rigano, D.; Özcan, M. Chemical composition and antibacterial activity of essential oil of Myrtus communis L. growing wild in Italy and Turkey. J. Essent. Oil Bear. Plants 2006, 9, 162–169. [Google Scholar] [CrossRef]
- Siracusa, L.; Napoli, E.; Tuttolomondo, T.; Licata, M.; LaBella, S.; Gennaro, M.C.; Leto, C.; Sarno, M.; Sperlinga, E.; Ruberto, G. A two-year bio-agronomic and chemotaxonomic evaluation of wild sicilian myrtle (Myrtus communis L.) berries and leaves. Chem. Biodivers. 2019, 16, e1800575. [Google Scholar] [CrossRef]
- Maggio, A.; Loizzo, M.R.; Riccobono, L.; Bruno, M.; Tenuta, M.C.; Leporini, M.R. Comparative chemical composition and bioactivity of leaves essential oils from nine Sicilian accessions of Myrtus communis L. J. Essent. Oil Res. 2019, 31, 546–555. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Pagni, A.M.; Andreucci, A.C. Ontogeny of secretory cavities in vegetative parts of Myrtus communis L. (Myrtaceae): An example of schizolysigenous development. Israel J. Plant Sci. 2003, 51, 193–198. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Andreucci, A.C.; Pagni, A.M.; Garbari, F. Structure and development of the elaiosome in Myrtus communis L. (Myrtaceae) seeds. Flora 2005, 200, 326–331. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Garbari, F.; Pagni, A.M. The flower of Myrtus communis (Myrtaceae): Secretory structures, unicellular papillae, and their ecological role. Flora 2008, 203, 85–93. [Google Scholar] [CrossRef]
- Kalachanis, D.; Psaras, G.K. Structure and development of the secretory cavities of Myrtus communis leaves. Biol. Plant. 2005, 49, 105–110. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Jemia, M.B.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef]
- Harassi, Y.; Tilaoui, M.; Idir, A.; Frédéric, J.; Baudino, S.; Ajouaoi, S.; Mouse, H.A.; Zyad, A. Phytochemical analysis, cytotoxic and antioxidant activities of Myrtus communis essential oil from Morocco. J. Complement. Integr. Med. 2019, 16, 20180100. [Google Scholar] [CrossRef]
- Alipour, G.; Dashti, S.; Hosseinzadeh, H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother. Res. 2014, 28, 1125–1136. [Google Scholar] [CrossRef]
- Cannas, S.; Molicotti, P.; Ruggeri, M.; Cubeddu, M.; Sanguinetti, M.; Marongiu, B.; Zanetti, S. Antimycotic activity of Myrtus communis L. towards Candida spp. from clinical isolates. J. Infect. Dev. Ctries. 2013, 7, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Barac, A.; Donadu, M.; Usai, D.; Spiric, V.T.; Mazzarello, V.; Zanetti, S.; Aleksic, E.; Stevanovic, G.; Nikolic, N.; Rubino, S. Antifungal activity of Myrtus communis against Malassezia spp. isolated from the skin of patients with pityriasis versicolor. Infection 2018, 46, 253–257. [Google Scholar] [CrossRef]
- Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat. Prod. Res. 2014, 28, 2173–2177. [Google Scholar] [CrossRef]
- Nabavizadeh, M.; Abbaszadegan, A.; Gholami, A.; Sheikhiani, R.; Shokouhi, M.; Shams, M.S.; Ghasemi, Y. Chemical constituent and antimicrobial effect of essential oil from Myrtus communis leaves on microorganisms involved in persistent endodontic infection compared to two common endodontic irrigants: An in vitro study. J. Conserv. Dent. 2014, 17, 449. [Google Scholar]
- Mahboubi, M.; Bidgoli, F.G. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans. Phytomedicine 2010, 17, 771–774. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Ezzatkhah, F.; Sharififar, F.; Sharifi, I.; Dezaki, E.S. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J. Parasitol. 2015, 53, 21. [Google Scholar] [CrossRef]
- Jabri, M.A.; Marzouki, L.; Sebai, H. Ethnobotanical, phytochemical and therapeutic effects of Myrtus communis L. berries seeds on gastrointestinal tract diseases: A review. Arch. Physiol. Biochem. 2018, 124, 390–396. [Google Scholar] [CrossRef]
- Erasto, P.; Viljoen, A.M. Limonene-A Review: Biosynthetic, Ecological and Pharmacological Relevance. Nat. Prod. Comm. 2008, 3, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA ynthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Miller, D.R. Ethanol and (−)-α-pinene: Attractant kairomones for some large wood-boring beetles in southeastern USA. J. Chem. Ecol. 2006, 32, 779–794. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef]
- Lee, B.H.; Annis, P.C.; Tumaalii, F.A.; Lee, S.E. Fumigant toxicity of Eucalyptus blakelyi and Melaleuca fulgens essential oils and 1, 8-cineole against different development stages of the rice weevil Sitophilus oryzae. Phytoparasitica 2004, 32, 498–506. [Google Scholar] [CrossRef]
- Borg-Karlson, A.K.; Unelius, C.R.; Valterová, I.; Nilsson, L.A. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 1996, 41, 1477–1483. [Google Scholar] [CrossRef]
- Giuliani, C.; Giovanetti, M.; Lupi, D.; Mesiano, M.P.; Barilli, R.; Ascrizzi, R.; Flamini, G.; Fico, G. Tools to Tie: Flower characteristics, VOC emission profile, and glandular trichomes of two Mexican Salvia species to attract bees. Plants 2020, 9, 1645. [Google Scholar] [CrossRef]
- Aharoni, A.; Giri, A.P.; Verstappen, F.W.; Bertea, C.M.; Sevenier, R.; Sun, Z.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 2004, 16, 3110–3131. [Google Scholar] [CrossRef] [Green Version]
- Maietti, S.; Rossi, D.; Guerrini, A.; Useli, C.; Romagnoli, C.; Poli, F.; Bruni, R.; Sacchetti, G. A multivariate analysis approach to the study of chemical and functional properties of chemo-diverse plant derivatives: Lavender essential oils. Flavour Fragr. J. 2013, 28, 144–154. [Google Scholar] [CrossRef]
- Niogret, J.; Epsky, N.D. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: The importance of linalool. Environ. Entomol. 2018, 47, 1287–1292. [Google Scholar] [CrossRef]
- Lampronti, I.; Saab, A.M.; Gambari, R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int. J. Oncol. 2006, 29, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Szmigielski, R.; Cieslak, M.; Rudziński, K.J.; Maciejewska, B. Identification of volatiles from Pinus silvestris attractive for Monochamus galloprovincialis using a SPME-GC/MS platform. Environ. Sci. Pollut. Res. 2012, 19, 2860–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.F.; Ray, A.M.; Hanks, L.M.; Millar, J.G. The common natural products (S)-α-terpineol and (E)-2-hexenol are important pheromone components of Megacyllene antennata (Coleoptera: Cerambycidae). Environ. Entomol. 2018, 47, 1547–1552. [Google Scholar] [CrossRef]
- Ramos, S.; Rojas, L.B.; Lucena, M.E.; Meccia, G.; Usubillaga, A. Chemical composition and antibacterial activity of Origanum majorana L. essential oil from the Venezuelan Andes. J. Essent. Oil Res. 2011, 23, 45–49. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. Larvicidal activity of two Algerian Verbenaceae essential oils against Culex pipiens. Vet. Parasitol. 2011, 181, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, L.; Cai, X.; Li, X.; Bian, L.; Luo, Z.; Li, Z.; Chen, Z.; Xin, Z. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic. Res. 2020, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Prajapati, V.; Khanuja, S.P.S.; Kumar, S. Effect of d-limonene on three stored-product beetles. J. Econ. Ecol. 2003, 96, 990–995. [Google Scholar]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef]
- Sadof, C.S.; Grant, G.G. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. J. Chem. Ecol. 1997, 23, 1917–1927. [Google Scholar] [CrossRef]
- Ayelo, P.M.; Yusuf, A.A.; Pirk, C.W.; Mohamed, S.A.; Chailleux, A.; Deletre, E. The role of Trialeurodes vaporariorum-infested tomato plant volatiles in the attraction of Encarsia formosa (Hymenoptera: Aphelinidae). J. Chem. Ecol. 2021, 47, 192–203. [Google Scholar] [CrossRef]
- Sato, K.; Krist, S.; Buchbauer, G. Antimicrobial effect of vapours of geraniol, (R)-(–)-linalool, terpineol, γ-terpinene and 1, 8-cineole on airborne microbes using an airwasher. Flavour Fragr. J. 2007, 22, 435–437. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Grando, T.H.; Souza, C.F.; Gressler, L.T.; Stefani, L.M.; da Silva, A.S.; Monteiro, S.G. In vitro and in vivo action of terpinen-4-ol, γ-terpinene, and α-terpinene against Trypanosoma evansi. Exp. Parasitol. 2016, 162, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, Y.; Huang, W.; He, L.; Lin, Z.; Zhou, J.; He, Q. Toxic effects of terpinolene on Microcystis aeruginosa: Physiological, metabolism, gene transcription, and growth effects. Sci. Total Environ. 2020, 719, 137376. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, A.; Alquézar, B.; Peña, L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2013, 197, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [Green Version]
- Arimura, G.I.; Ozawa, R.; Kugimiya, S.; Takabayashi, J.; Bohlmann, J. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol. 2004, 135, 1976–1983. [Google Scholar] [CrossRef] [Green Version]
- Unsicker, S.B.; Kunert, G.; Gershenzon, J. Protective perfumes: The role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. [Google Scholar] [CrossRef]
- Nevo, O.; Ayasse, M. Fruit scent: Biochemistry, ecological function, and evolution. In Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2020; pp. 403–425. [Google Scholar]
- Herrera, C.M. A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol. Monog. 1984, 54, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Traveset, A.; Riera, N.; Mas, R.E. Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. J. Ecol. 2001, 89, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Howe, H.F.; Kerckhove, G.A. Nutmeg dispersal by tropical birds. Science 1981, 210, 925–927. [Google Scholar] [CrossRef] [PubMed]
- Hennia, A.; Nemmiche, S.; Dandlen, S.; Miguel, M.G. Myrtus communis essential oils: Insecticidal, antioxidant and antimicrobial activities: A review. J. Essent. Oil Res. 2019, 31, 487–545. [Google Scholar] [CrossRef]
- Yangui, I.; Boutiti, M.Z.; Boussaidi, M.; Messaoud, C. Essential oils of Myrtaceae species growing wild in Tunisia: Chemical variability and antifungal activity against Biscogniauxia mediterranea, the causative agent of charcoal canker. Chem. Biodiv. 2017, 14, e1700058. [Google Scholar] [CrossRef] [PubMed]
- Raeiszadeh, M.; Pardakhty, A.; Sharififar, F.; Farsinejad, A.; Mehrabani, M.; Hosseini-Nave, H.; Mehrabani, M. Development, physicochemical characterization, and antimicrobial evaluation of niosomal myrtle essential oil. Res. Pharm. Sci. 2018, 13, 250–261. [Google Scholar]
- Boroujeni, L.S.; Hojjatoleslamy, M. Using Thymus carmanicus and Myrtus communis essential oils to enhance the physicochemical properties of potato chips. Food Sci. Nutr. 2018, 6, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J.; Amensour, M.; Abrini, J. Identification of flavonoid content and chemical composition of the essential oils of Moroccan herbs: Myrtle (Myrtus communis L.), rockrose (Cistus ladanifer L.) and Montpellier cistus (Cistus monspeliensis L.). J. Essent. Oil Res. 2011, 23, 1–9. [Google Scholar] [CrossRef]
- Faldi, M.; Farah, A.; Ihssane, B.; Haloui, T.; Lebraz, S.; Rachiq, S. Intrapopulation variability of Myrtus communis L. growing in Morocco: Chemometric investigation and antibacterial activity. J. Appl. Res. Medic. Arom. Plants 2017, 7, 35–40. [Google Scholar]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Jerkovic, I.; Radonic, A.; Borcic, I. Comparative study of leaf, fruit and flower essential oils of Croatian Myrtus communis (L.) during a one-year vegetative cycle. J. Essent. Oil Res. 2002, 14, 266–270. [Google Scholar] [CrossRef]
- Savikin-Fodulovic, K.; Bulatovic, V.M.; Menkovic, N.R. Comparison between the essential oil of Myrtus communis L. obtained from naturally grown and in vitro plants. J. Essent. Oil Res. 2000, 12, 75–78. [Google Scholar] [CrossRef]
- Aleksic, V.; Mimica-Dukic, N.; Simin, N.; Nedeljkovic, N.S.; Knezevic, P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 2014, 21, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Bazzali, O.; Tomi, F.; Casanova, J.; Bighelli, A. Occurrence of C8-C10 esters in Mediterranean Myrtus communis L. leaf essential oil. Flavour Fragr. J. 2012, 27, 335–340. [Google Scholar] [CrossRef]
- Pereira, P.C.; Cebola, M.J.; Bernardo-Gil, M.G. Evolution of the yields and composition of essential oil from Portuguese myrtle (Myrtus communis L.) through the vegetative cycle. Molecules 2009, 14, 3094–3105. [Google Scholar] [CrossRef] [Green Version]
- Neves, A.; Marto, J.; Duarte, A.; Gonçalves, L.M.; Pinto, P.; Figueiredo, A.C.; Ribeiro, H.M. Characterization of Portuguese Thymbra capitata, Thymus caespititius and Myrtus communis essential oils in topical formulations. Flavour Fragr. J. 2017, 32, 392–402. [Google Scholar] [CrossRef]
- Akin, M.; Aktumsek, A.; Nostro, A. Antibacterial activity and composition of the essential oils of Eucalyptus camaldulensis Dehn. and Myrtus communis L. growing in Northern Cyprus. Afr. J. Biotech. 2010, 9, 531–535. [Google Scholar]
- Özek, T.; Demirci, B.; Baser, K.H.C. Chemical composition of Turkish myrtle oil. J. Essent. Oil Res. 2000, 12, 541–544. [Google Scholar] [CrossRef]
- Gursoy, U.K.; Gursoy, M.; Gursoy, O.V.; Cakmakci, L.; Könönen, E.; Uitto, V.-J. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe 2009, 15, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Zeidán-Chuliá, F.; Rybarczyk-Filho, J.L.; Gursoy, M.; Könönen, E.; Uitto, V.-J.; Gursoy, O.V.; Cakmakci, L.; Moreira, J.C.F.; Gursoy, U.K. Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition. Pharm. Biol. 2012, 50, 675–686. [Google Scholar] [CrossRef]
- Evrendilek, G.A. Empirical prediction and validation of antibacterial inhibitory effects of various plant essential oils on common pathogenic bacteria. Int. J. Food Microbiol. 2015, 202, 35–41. [Google Scholar] [CrossRef]
- Kordali, S.; Usanmaz, A.; Cakir, A.; Komaki, A.; Ercisli, S. Antifungal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chem. Biodiver. 2016, 13, 77–84. [Google Scholar] [CrossRef]
- Yilar, M.; Bayan, Y.; Onaran, A. Chemical composition and antifungal effects of Vitex agnus-castus L. and Myrtus communis L. plants. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Aboutabl, E.A.; Meselhy, K.M.; Elkhreisy, E.M.; Nassar, M.I.; Fawzi, R. Composition and bioactivity of essential oils from leaves and fruits of Myrtus communis and Eugenia supraxillaris (Myrtaceae) grown in Egypt. J. Essent. Oil-Bear. Plants 2011, 14, 192–200. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Abdelgaleil, S.A. Composition and antimicrobial activity of essential oils isolate from Egyptian plants against plant pathogenic bacteriaand fungi. Ind. Crops Prod. 2014, 52, 776–782. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Badawy, M.E.I.; Shawir, M.S.; Mohamed, M.I.E. Chemical composition, fumigant and contact toxicities of essential oils isolated from Egyptian plants against the stores grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt. J. Biol. Pest Control 2015, 25, 639–647. [Google Scholar]
- Koukos, P.K.; Papadopoulou, K.I.; Papagiannopoulos, A.D. Chemicals from Greek forestry biomass: Constituents of the leaf oil of Myrtus communis L. grown in Greece. J. Essent. Oil Res. 2001, 13, 245–246. [Google Scholar] [CrossRef]
- Chryssavgi, P.; Vassiliki, P.; Athanasios, M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar]
- Koutsaviti, A.; Lignou, I.; Bazos, I.; Koliopoulos, G.; Michaelakis, A.; Giatropoulos, A.; Tzakou, O. Chemical composition and larvicidal activity of Greek myrtle essential oils against Culex pipiens biotype molestus. Nat. Prod. Comm. 2015, 10, 1759–1762. [Google Scholar]
- Koutsaviti, A.; Antonopoulou, V.; Vlassi, A.; Antonatos, S.; Michaelakis, A.; Papachristos, D.P.; Tzakou, O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Curculionidae). J. Pest Sci. 2018, 91, 873–886. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli and Staphylococcus aureus in minced beef. Food Sci. Technol. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef]
- Brada, M.; Tabti, N.; Boutoumi, H.; Wathelet, J.P.; Lognay, G. Composition of the essential oil of the leaves and berries of Algerian myrtle. J. Essent. Oil Res. 2012, 24, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Foudil-Cherif, Y.; Boutarene, N.; Yassaa, N. Chemical composition of essential oils of Algerian Myrtus communis and chiral analysis of their leaf volatiles. J. Essent. Oil Res. 2013, 25, 401–407. [Google Scholar] [CrossRef]
- Toudert-Taleb, K.; Hedjal-Chebheb, M.; Hami, H.; Debras, J.F.; Kellouche, A. Composition of essential oils extracted from six aromatic plants of Kabylian origin (Algeria) and evaluation of their bioactivity on Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). Afr. Entomol. 2014, 22, 417–427. [Google Scholar] [CrossRef]
- Bouzabata, A.; Cabral, C.; Gonçalves, M.J.; Cruz, M.T.; Bighelli, A.; Cavaleiro, C.; Casanova, J.; Tomi, F.; Salgueiro, L. Myrtus communis L. as source of a bioactive and safe essential oil. Food Chem. Toxicol. 2015, 75, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Hennia, A.; Brada, M.; Nemmiche, S.; Fauconnier, M.-L.; Lognay, G. Chemical composition and antibacterial activity of essential oils of Algerian Myrtus communis L. J. Essent. Oil Res. 2015, 27, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Touaibia, M. Antimicrobial activity of the essential oil of Myrtus communis L. berries growing wild in Algeria. J. Fund. Appl. Sci. 2015, 7, 150–162. [Google Scholar] [CrossRef]
- Hennia, A.; Miguel, M.G.; Brada, M.; Nemmiche, S.; Figueiredo, A.C. Composition, chemical variability and effect of distillation time on leaf and fruits essential oils of Myrtus communis from North Western Algeria. J. Essent. Oil Res. 2016, 28, 146–156. [Google Scholar] [CrossRef]
- Bouzouita, N.; Kachouri, F.; Hamdi, M.; Chaabouni, M.M. Antimicrobial activity of essential oils from Tunisian aromatic plants. Flavour Fragr. J. 2003, 18, 380–383. [Google Scholar] [CrossRef]
- Jamoussi, B.; Romdhane, M.; Abderraba, A.; Ben Hassine, B.; El Gadri, A. Effect of harvest time on the yield and composition of Tunisian myrtle oils. Flavour Fragr. J. 2005, 20, 274–277. [Google Scholar] [CrossRef]
- Messaoud, C.; Zaouali, Y.; Ben Salah, A.; Khoudja, M.L.; Boussaid, M. Myrtus communis in Tunisia: Variability of the essential oil composition in natural populations. Flavour Fragr. J. 2005, 20, 577–582. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Marzouk, B. Variations in essential oil and fatty acid composition during Myrtus communis var. italica fruit maturation. Food Chem. 2009, 112, 621–626. [Google Scholar]
- Messaoud, C.; Béjaoui, A.; Boussaid, M. Fruit color, chemical and genetic diversity and structure of Myrtus communis L. var. italica Mill. morph populations. Biochem. Syst. Ecol. 2011, 39, 570–580. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Kchouk, M.E.; Marzouk, B. Composition of fruit volatiles and annual changes in the leaf volatiles of Myrtus communis var. baetica in Tunisia. Riv. Ital. Delle Sostanze Grasse 2011, 88, 123–129. [Google Scholar]
- Rossi, P.-G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.R.; Gonny, M.; Bolla, J.-M. Antibacterial action of essential oils from Corsica. J. Essent. Oil Res. 2007, 19, 176–182. [Google Scholar] [CrossRef]
- Wannes, W.A.; Marzouk, B. Maturational effect of oil yield and composition of Myrtus communis var. baetica fruit. J. Essent. Oil Bear. Plants 2012, 15, 847–853. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Hamdi, N.; Miladi, R.; Abdelkafi, S. Myrtus communis essential oil: Chemical composition and antimicrobial activities against food spoilage pathogens. Chem. Biodiver. 2014, 11, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, B.; Abbassi, F.; Marzouki, L. Antimicrobial activities effects of the essential oil of spice food Myrtus communis leaves var. italica. J. Essent. Oil Bear. Plants 2014, 17, 1361–1366. [Google Scholar] [CrossRef]
- Jabri, M.A.; Hajaji, S.; Marzouki, L.; El-Benna, J.; Sakly, M.; Sebai, H. Human neutrophils ROS inhibition and protective effects of Myrtus communis leaves essential oils against intestinal ischemia/reperfusion injury. RSC Adv. 2016, 6, 16645–16655. [Google Scholar] [CrossRef]
- Jerbi, A.; Abdennabi, R.; Gharsallah, N.; Flamini, N.; Kammoun, M. Essential oil composition, free-radicalscavenging and antibacterial effect from laves of Myrtus communis in Tunisia. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 621–626. [Google Scholar]
- Lamiri, A.; Lhaloui, S.; Benjilali, B.; Berrada, M. Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res. 2011, 71, 9–15. [Google Scholar] [CrossRef]
- Satrani, B.; Farah, A.; Talbi, M. Effet de la distillation fractioné sur la composition chimique et l’activité antimicrobienne des huiles esentielles du myrte (Myrtys communis L.) du Maroc. Acta Bot. Gall. 2006, 153, 235–342. [Google Scholar] [CrossRef] [Green Version]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Comm. 2014, 9, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Cherrat, L.; Espina, L.; Bakkali, M.; García-Gonzalo, D.; Pagán, R.; Laglaoui, A. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J. Sci. Food Agric. 2014, 94, 1197–1204. [Google Scholar] [CrossRef]
- Farah, A.; Afifi, A.; Fechtal, M.; Chhen, A.; Satrani, B.; Talbi, M.; Chaouch, A. Fractional distillation effect on the chemical composition of Moroccan myrtle (Myrtus communis L.) essential oils. Flavour Fragr. J. 2006, 21, 351–354. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha pipertita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef]
- Omidbaigi, R.; Yahyazadeh, M.; Zare, R.; Taheri, H. The in vitro action of essential oils on Aspergillus flavus. J. Essent. Oil Bear. Plants 2007, 10, 46–52. [Google Scholar] [CrossRef]
- Owlia, P.; Saderi, H.; Rasooli, I.; Sefidkon, F. Antimicrobial characteristics of some herbal oils on Pseudomonas aeruginosa with special reference to their chemical compositions. Iran. J. Pharm. Res. 2009, 8, 107–114. [Google Scholar]
- Owlia, P.; Najafabadi, L.M.; Nadoshan, S.M.; Rasooli, I.; Saderi, H. Effects of sub-minimal inhibitory concentrations of some essential oils on virulence factors of Pseudomonas aeruginosa. J. Essent. Oil Bear. Plants 2010, 13, 465–476. [Google Scholar] [CrossRef]
- Pezhmanmehr, M.; Dastan, D.; Ebrahimi, S.N.; Hadian, J. Essential oil constituents of leaves and fruits of Myrtus communis L. from Iran. J. Essent. Oil Bear. Plants 2010, 13, 123–129. [Google Scholar] [CrossRef]
- Ghasemi, E.; Raofe, F.; Najafi, N.M. Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem. 2011, 126, 1449–1453. [Google Scholar] [CrossRef]
- Goudarzi, M.A.; Hamedi, B.; Malekpoor, F.; Abdizadeh, R.; Pirbalouti, A.G.; Raissy, M. Sensitivity of Lactococcus garvieae isolated from rainbow trout to some Iranian medicinal herbs. J. Med. Plants Res. 2011, 5, 3067–3073. [Google Scholar]
- Tavassoli, M.; Shayeghi, M.; Abai, M.R.; Vatandoost, H.; Khoobdel, M.; Salari, M.; Ghaderi, A.; Rafi, F. Repellency effects of essential oils of myrtle (Myrtus communis), marigold, (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iran J. Arthropod-Borne Dis. 2011, 5, 10–22. [Google Scholar]
- Moradi, M.; Kaykhaii, M.; Chiasvand, A.R.; Shadabi, S.; Salehinia, A. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L. Phytochem. Anal. 2012, 23, 379–386. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Mirzakhani, M.; Pirbalouti, A.G. Essential oil variation among 21 wild myrtle (Myrtus communis L.) populations collected from different geographical regions in Iran. Ind. Crops Prod. 2013, 51, 328–333. [Google Scholar]
- Zomorodian, K.; Moein, M.; Lori, Z.G.; Ghasemi, Y.; Rahimi, M.J.; Bandegani, A.; Pakshir, K.; Bazargani, A.; Mirzamohammadi, S.; Abbasi, N. Chemical composition and antimicrobial activities of the essential oil from Myrtus communis leaves. J. Essent. Oil Bear. Plants 2013, 16, 76–84. [Google Scholar]
- Bajalan, I.; Pirbalout, A.G. Variation in antibacterial activity and chemical compositions of essential oil from different populations of myrtle. Ind. Crops Prod. 2014, 61, 303–307. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Hamedi, B.; Mehravar, L.; Firouznejhad, M. Diversity in chemical composition and antibacterial activity of essential oils of wild populations of myrtle from natural habitats in Southwestern Iran. Ind. J. Tradit. Knowl. 2014, 13, 484–489. [Google Scholar]
- Saroukolai, A.T.; Nouri-Ganbalani, G.; Rafiee-Dastjerdi, H.; Hadian, J. Antifeedant activity and toxicity of some plant essential oils to Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Plant Prot. Sci. 2014, 50, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Bahmanzadegan, A.; Rowshan, V.; Saharkhiz, M.J. Essential oil composition of Myrtus communis L. under different storage conditions. J. Essent. Oil Bear. Plants 2015, 18, 1467–1475. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Craker, L.E. Diversity in chemical compositions of essential oil of myrtle leaves from various natural habitats in south and southwest Iran. J. For. Res. 2012, 26, 971–981. [Google Scholar]
- Rahimi, M.R.; Zamani, R.; Sadeghi, H.; Tayebi, A.R. An experimental study of different drying methods on the quality and quantity essential oil of Myrtus communis L. leaves. J. Essent. Oil Bear. Plants 2015, 18, 1395–1405. [Google Scholar] [CrossRef]
- Ebrahimabadi, E.H.; Ghoreishi, S.M.; Masoum, S.; Ebrahimabadi, A.H. Combination of GC/FID/Mass spectrometry fingerprints and multivariate calibration techniques for recognition of antimicrobial constituents of Myrtus communis L. essential oil. J. Chrom. B 2016, 1008, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Dejam, M.; Farahmand, Y. Essential oil content and composition of myrtle (Myrtus communis L.) leaves from South of Iran. J. Essent. Oil Bear. Plants 2017, 20, 869–872. [Google Scholar] [CrossRef]
- Ghavami, M.B.; Poorrastgoo, F.; Taghiloo, B.; Mohammadi, J. Reppelency effect of essential oils of some native plants and synthetic repellents against human flea, Pulex irritans (Siphonaptera: Pulicidae). J. Arthropod-Borne Dis. 2017, 11, 105–115. [Google Scholar] [PubMed]
- Khan, M.; Al-Mansour, M.A.; Mousa, A.A.; Alkhathlan, H.Z. Compositional characteristics of the essential oil of Myrtus communis grown in the central part of Saudi Arabia. J. Essent. Oil Res. 2014, 26, 13–18. [Google Scholar] [CrossRef]
- Anwar, S.; Crouch, R.A.; Ali, N.A.A.; Al-Fatimi, M.A.; Setzer, W.N.; Wessjohann, L. Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colrectal adenocarcinoma properties. Nat. Prod. Res. 2017, 31, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
LRI | Class | Compound | Relative Abundance (%) | ||||
---|---|---|---|---|---|---|---|
FL | 80FL | 20FL | DL | ||||
1 | 769 | OTHER | hexanal | 0.1 | tr | 0.1 | tr |
2 | 844 | OTHER | 2-hexenal | 0.6 | 0.3 | 1.2 | 0.6 |
3 | 912 | OTHER | isobutyric acid, isobutyl ester | 1.0 | 0.4 | 0.9 | 1.1 |
4 | 927 | MH | α-thujene | 0.1 | 0.2 | 0.4 | 0.6 |
5 | 935 | MH | α-pinene | 38.6 | 36.2 | 41.2 | 41.6 |
6 | 961 | MH | camphene | 0.2 | 0.1 | 0.1 | 0.1 |
7 | 983 | MH | β-pinene | 0.3 | 0.1 | 0.2 | 0.3 |
8 | 990 | MH | myrcene | 0.6 | 0.2 | 0.3 | 0.3 |
9 | 1005 | MH | α-phellandrene | 0.2 | 0.2 | 0.1 | tr |
10 | 1008 | MH | 3-carene | 0.8 | 0.2 | 0.3 | 0.5 |
11 | 1019 | MH | α-terpinene | 0.1 | 0.1 | 0.1 | 0.1 |
12 | 1028 | AH | o-cymene | 0.1 | - | 0.3 | 0.5 |
13 | 1030 | MH | limonene | - | - | 2.9 | 3.3 |
14 | 1036 | MH | cis-sabinene hydrate | 0.7 | - | - | - |
15 | 1049 | OM | 1,8-cineole | 31.0 | 25.5 | 28.2 | 26.1 |
16 | 1052 | MH | α-ocimene | 0.4 | 0.3 | 0.4 | 0.3 |
17 | 1064 | MH | γ-terpinene | 0.5 | 0.3 | 0.5 | 0.4 |
18 | 1074 | OM | cis-linalool oxide | 0.1 | tr | 0.2 | 0.3 |
19 | 1088 | MH | α-terpinolene | 0.5 | 0.5 | 0.7 | 0.7 |
20 | 1100 | OM | linalool | 10.7 | 28.6 | 18.7 | 18.2 |
21 | 1125 | OM | fenchol | 0.1 | tr | tr | - |
22 | 1140 | OM | pinocarveol | 0.2 | tr | 0.2 | - |
23 | 1143 | OM | nerol oxide | 0.1 | - | - | - |
24 | 1154 | OM | pinocarvone | 0.1 | - | - | - |
25 | 1159 | OM | δ-terpineol | 0.1 | tr | - | - |
26 | 1162 | OM | borneol | 0.1 | tr | - | - |
27 | 1168 | OM | terpinen-4-ol | 0.5 | 0.2 | 0.2 | 0.3 |
28 | 1202 | OM | α-terpineol | 1.8 | 2.1 | 1.4 | 2.0 |
29 | 1248 | OM | linalyl acetate | 0.9 | 0.6 | 0.4 | 0.8 |
30 | 1255 | OM | trans-geraniol | 1.3 | 0.2 | - | - |
31 | 1296 | OM | trans-pinocarvyl acetate | 0.1 | tr | - | - |
32 | 1318 | OM | methyl geranate | 0.1 | tr | - | - |
33 | 1347 | OM | α-terpinyl acetate | 0.7 | 0.3 | - | - |
34 | 1356 | OM | nerol acetate | 0.5 | 0.2 | - | - |
35 | 1376 | OM | geranyl acetate | 0.8 | 0.8 | - | - |
36 | 1402 | OM | methyleugenol | 0.9 | 0.3 | - | - |
37 | 1423 | SH | β-caryophyllene | 1.0 | 0.4 | 0.5 | 0.6 |
38 | 1440 | SH | aromadendrene | 0.1 | - | - | - |
39 | 1461 | SH | humulene | 1.0 | 0.5 | 0.4 | 0.6 |
40 | 1492 | OTHER | 2-tridecanone | 0.1 | - | - | - |
41 | 1518 | OTHER | durohydroquinone | 0.8 | 0.7 | - | 0.7 |
42 | 1562 | OS | trans-nerolidol | 0.4 | - | - | - |
43 | 1588 | OS | caryophyllene oxide | 0.4 | tr | - | - |
44 | 1603 | OS | trans-bisabolene oxide | 0.1 | tr | - | - |
45 | 1616 | OS | humulene oxide II | 0.3 | tr | - | - |
46 | 1660 | OTHER | 5,8,11-heptadecatrien-1-ol | 0.1 | - | - | - |
47 | 1705 | OTHER | methyl ketostearate | tr | 0.1 | - | - |
Oil yields | 0.36% | 0.46% | 0.49% | 1.08% | |||
Total identified | 98.9 | 99.9 | 99.7 | 100.0 | |||
Monoterpene hydrocarbons (MH) | 42.9 | 38.5 | 47.2 | 48.2 | |||
Oxygenated monoterpenes (OM) | 50.0 | 59.0 | 49.2 | 47.7 | |||
Sesquiterpene hydrocarbons (SH) | 2.1 | 0.9 | 0.9 | 1.3 | |||
Oxygenated sesquiterpenes (OS) | 1.1 | 0.1 | tr | tr | |||
Aromatic hydrocarbons (AH) | 0.1 | tr | 0.3 | 0.5 | |||
Other compounds (OTHER) | 2.7 | 1.5 | 2.1 | 2.4 |
LRI | Class | Compounds | Relative Abundance (%) | ||
---|---|---|---|---|---|
DL March | DL October | ||||
1 | 845 | OTHER | 2-hexenal | 0.1 | 0.1 |
2 | 909 | OTHER | isobutyric acid, isobutyl ester | 0.2 | 1.0 |
3 | 925 | MH | α-thujene | 0.1 | tr |
4 | 935 | MH | α-pinene | 27.4 | 19.5 |
5 | 952 | MH | camphene | tr | 0.1 |
6 | 979 | MH | β-pinene | 0.1 | 0.4 |
7 | 986 | MH | myrcene | 0.1 | 0.6 |
8 | 1004 | MH | α-phellandrene | 0.1 | 0.2 |
9 | 1005 | MH | 3-carene | 0.2 | 0.8 |
10 | 1016 | MH | α-terpinene | tr | 0.1 |
11 | 1025 | AH | o-cymene | 0.3 | 0.1 |
12 | 1034 | OM | 1,8-cineole | 23.6 | 35.1 |
13 | 1046 | MH | α-ocimene | 0.2 | tr |
14 | 1060 | MH | γ-terpinene | 0.3 | 0.7 |
15 | 1074 | OM | cis-linalool oxide | 0.1 | 0.1 |
16 | 1086 | MH | α-terpinolene | 0.4 | 0.7 |
17 | 1097 | OM | linalool | 35.8 | 25.2 |
18 | 1158 | OM | verbenol | 0.1 | 0.1 |
19 | 1167 | OM | terpinen-4-ol | 0.4 | 0.5 |
20 | 1179 | OM | α-terpineol | 3.0 | 2.0 |
21 | 1198 | OM | cis-geraniol | 0.3 | 0.1 |
22 | 1245 | OM | linalyl acetate | 1.0 | 1.3 |
23 | 1255 | OM | trans-geraniol | 1.1 | 1.0 |
24 | 1296 | OM | trans-pinocarvyl acetate | tr | tr |
25 | 1318 | OM | methyl geranate | tr | 0.1 |
26 | 1347 | OM | α-terpinyl acetate | 0.7 | 0.9 |
27 | 1356 | OM | nerol acetate | 0.3 | 0.5 |
28 | 1376 | OM | geranyl acetate | 0.6 | 1.0 |
29 | 1402 | OM | methyleugenol | 0.5 | 1.0 |
30 | 1420 | SH | β-caryophyllene | 1.0 | 1.6 |
31 | 1436 | SH | aromandendrene | tr | 0.2 |
32 | 1457 | SH | humulene | 1.0 | 1.8 |
33 | 1517 | OTHER | durohydroquinone | 0.6 | 1.3 |
34 | 1588 | OS | caryophyllene oxide | 0.2 | 0.5 |
35 | 1603 | OS | trans-bisabolene oxide | 0.1 | 0.1 |
36 | 1617 | OS | humulene oxide II | 0.2 | 0.3 |
37 | 1660 | OTHER | 5,8,11-heptadecatrien-1-ol | tr | 0.2 |
38 | 1705 | OTHER | methyl ketostearate | 0.1 | 0.4 |
Oil yield | 0.96% | 1.02% | |||
Total identified | 100.0 | 99.2 | |||
Monoterpene hydrocarbons (MH) | 28.9 | 23.0 | |||
Oxygenated monoterpenes (OM) | 67.4 | 68.8 | |||
Sesquiterpene hydrocarbons (SH) | 2.0 | 3.5 | |||
Oxygenated sesquiterpenes (OS) | 0.4 | 0.9 | |||
Aromatic hydrocarbons (AH) | 0.3 | 0.1 | |||
Other compounds (OTHER) | 0.9 | 2.9 |
LRI | Class | Compounds | Relative Abundance (%) | ||
---|---|---|---|---|---|
July | October | ||||
1 | 770 | OTHER | hexanal | 0.2 | - |
2 | 841 | OTHER | 2-hexenal | 0.4 | - |
3 | 911 | OTHER | isobutyl isobutyrate | 0.3 | 0.3 |
4 | 927 | MH | α-thujene | 3.3 | 2.0 |
5 | 936 | MH | α-pinene | 11.9 | 21.4 |
6 | 955 | MH | camphene | 0.2 | - |
7 | 980 | MH | β-pinene | 1.3 | 0.9 |
8 | 988 | MH | myrcene | 0.9 | 0.5 |
9 | 1007 | MH | α-phellandrene | 2.0 | 0.3 |
10 | 1010 | MH | 3-carene | 6.5 | 3.8 |
11 | 1018 | MH | α-terpinene | 1.6 | 0.7 |
12 | 1029 | AH | o-cymene | 7.6 | 7.9 |
13 | 1035 | MH | limonene | 0.8 | 6.8 |
14 | 1042 | OM | 1,8-cineole | 6.4 | 12.2 |
15 | 1049 | MH | E-β-ocimene | 4.3 | 1.3 |
16 | 1062 | MH | γ-terpinene | 5.1 | 4.0 |
17 | 1083 | MH | isoterpinolene | 0.1 | Tr |
18 | 1088 | MH | α-terpinolene | 5.2 | 3.9 |
19 | 1091 | AH | p-cymenene | 0.3 | 0.3 |
20 | 1101 | OM | linalool | 8.8 | 9.4 |
21 | 1111 | OTHER | (E)-4,8-dimethylnona-1,3,7-triene | 0.2 | Tr |
22 | 1125 | OM | fenchol | 0.1 | Tr |
23 | 1131 | OM | cis-2-norbornanol | 0.1 | 0.2 |
24 | 1149 | OM | pinocarveol | 0.1 | 0.1 |
25 | 1177 | OM | isoborneol | 0.2 | 0.3 |
26 | 1184 | OM | terpinen-4-ol | 1.9 | 0.8 |
27 | 1191 | OM | ocimenol | 0.3 | - |
28 | 1201 | OM | α-terpineol | 6.1 | 3.6 |
29 | 1218 | OM | fenchyl acetate | tr | Tr |
30 | 1229 | OM | cis-geraniol | 0.3 | 0.2 |
31 | 1247 | OM | linalyl acetate | 1.4 | 2.9 |
32 | 1252 | OM | trans-geraniol | 1.8 | 1.5 |
33 | 1286 | OM | bornyl acetate | 0.1 | 0.1 |
34 | 1320 | OM | methyl geranate | 0.3 | 0.2 |
35 | 1348 | OM | α-terpinyl acetate | 3.6 | 0.4 |
36 | 1356 | OM | nerol acetate | 0.4 | 0.3 |
37 | 1375 | OM | geranyl acetate | 0.9 | 0.7 |
38 | 1401 | OM | methyleugenol | 1.7 | 1.1 |
39 | 1424 | SH | β-caryophyllene | 4.3 | 2.6 |
40 | 1430 | SH | γ-elemene | tr | - |
41 | 1434 | SH | aromandendrene | 0.2 | 0.2 |
42 | 1461 | SH | humulene | 2.9 | 2.0 |
43 | 1494 | SH | guaia-1(10),11-diene | 0.2 | 0.2 |
44 | 1499 | SH | bicyclogermacrene | 0.2 | 0.1 |
45 | 1506 | SH | 3-carene, 4-acetyl | 0.3 | 0.1 |
46 | 1518 | OTHER | durohydroquinone | 0.6 | 0.5 |
47 | 1521 | SH | δ-cadinene | 0.1 | Tr |
48 | 1566 | SH | germacrene B | 0.7 | 0.3 |
49 | 1574 | OS | isoaromadendrene epoxide | tr | - |
50 | 1586 | OS | spathulenol | 0.9 | 0.8 |
51 | 1589 | OS | caryophyllene oxide | 1.3 | 3.2 |
52 | 1594 | OS | globulol | 0.2 | Tr |
53 | 1607 | OS | calarene epoxide | 0.2 | 0.2 |
54 | 1619 | OS | humulene epoxide II | 0.6 | 1.5 |
55 | 1635 | OS | aromandendrene epoxide | 0.1 | 0.1 |
56 | 1644 | OS | ledene oxide | 0.3 | 0.3 |
Oil yield | 0.59% | 0.48% | |||
Total identified | 99.5 | 100.0 | |||
Monoterpene hydrocarbons (MH) | 42.9 | 45.5 | |||
Oxygenated monoterpenes (OM) | 34.3 | 34.0 | |||
Sesquiterpene hydrocarbons (SH) | 8.9 | 5.5 | |||
Oxygenated sesquiterpenes (OS) | 3.7 | 6.0 | |||
Aromatic hydrocarbons (AH) | 7.9 | 8.2 | |||
Other compounds (OTHER) | 1.8 | 0.8 |
Plant Material | Fresh Leaves | −80 °C Frozen Leaves | −20 °C Frozen Leaves | Dried Leaves | Dried Unripe Fruits | Dried Ripe Fruits |
---|---|---|---|---|---|---|
Year 2018 | 7 July | 7 July | 7 July | 7 July | - | - |
Year 2019 | - | - | - | 3 March | 3 July | 2 October |
2 October |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliani, C.; Bottoni, M.; Milani, F.; Todero, S.; Berera, P.; Maggi, F.; Santagostini, L.; Fico, G. Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study. Plants 2022, 11, 754. https://doi.org/10.3390/plants11060754
Giuliani C, Bottoni M, Milani F, Todero S, Berera P, Maggi F, Santagostini L, Fico G. Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study. Plants. 2022; 11(6):754. https://doi.org/10.3390/plants11060754
Chicago/Turabian StyleGiuliani, Claudia, Martina Bottoni, Fabrizia Milani, Sefora Todero, Patrizia Berera, Filippo Maggi, Laura Santagostini, and Gelsomina Fico. 2022. "Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study" Plants 11, no. 6: 754. https://doi.org/10.3390/plants11060754
APA StyleGiuliani, C., Bottoni, M., Milani, F., Todero, S., Berera, P., Maggi, F., Santagostini, L., & Fico, G. (2022). Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study. Plants, 11(6), 754. https://doi.org/10.3390/plants11060754