Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis
Abstract
:1. Introduction
2. Results
2.1. Organic Solutes and Water Relation
2.2. Ion Accumulation and Translocation
2.3. Oxidative Biomarker
2.4. Antioxidant Enzymes
2.5. Antioxidant Solutes
2.6. Photosynthetic Pigment
2.7. Growth Parameters
2.8. Yield Attributed
2.9. Fixed Oil Constituents
3. Discussion
4. Materials and Methods
4.1. Experimental Layout
4.2. Sampling Date
4.3. Morphological Characteristics
4.4. Total Chlorophyll and Carotenoid Concentration
4.5. Ion Percentage
4.6. Organic Solutes and Water Relations
4.7. Oxidative Biomarkers
4.8. Antioxidant Enzyme Assay
4.9. Antioxidant Metabolites
4.10. Yield and Oil Percentage
4.11. Fatty Acid Profiles
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilani, A.H.; Bashir, S.; Khan, A.-U. Pharmacological basis for the use of Borago officinalis in gastrointestinal, respiratory and cardiovascular disorders. J. Ethnopharmacol. 2007, 114, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Tewari, D.; Bawari, S.; Patni, P.; Sah, A.N. Borage (Borago officinalis L.). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 165–170. [Google Scholar] [CrossRef]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef] [PubMed]
- Sofy, M.R.; Elhindi, K.M.; Farouk, S.; Alotaibi, M.A. Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants 2020, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Akhtar, S.S.; Li, L.; Fu, Q.; Li, Q.; Naeem, M.A.; He, X.; Zhang, Z.; Jacobsen, S.-E. Biochar mitigates combined effects of drought and salinity stress in Quinoa. Agronomy 2020, 10, 912. [Google Scholar] [CrossRef]
- FAO. The future of food and agriculture: Trends and challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, H.; Zeng, J.; Liu, Y.; Wang, X.; Wang, Y.; Kang, H.; Fan, X.; Sha, L.; Zhang, H.; Zhou, Y. Differential responses of two wheat varieties differing in salt tolerance to the combined stress of Mn and salinity. J. Plant Growth Regul. 2020, 39, 795–808. [Google Scholar] [CrossRef]
- Ren, J.; Ye, J.; Yin, L.; Li, G.; Deng, X.; Wang, S. Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy 2020, 10, 663. [Google Scholar] [CrossRef]
- Bukhat, S.; Manzoor, H.; Athar, H.-U.-R.; Zafar, Z.U.; Azeem, F.; Rasul, S. Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. J. Plant Growth Regul. 2019, 39, 809–822. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Chen, L.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. Peer J 2020, 8, e10486. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Al-Amri, S.M. Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) Plants. J. Soil Sci. Plant Nutr. 2019, 19, 887–899. [Google Scholar] [CrossRef]
- Ahmad, S.; Cui, W.; Kamran, M.; Ahmad, I.; Meng, X.; Wu, X.; Su, W.; Javed, T.; El-Serehy, H.A.; Jia, Z. Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J. Plant Growth Regul. 2021, 40, 1270–1283. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noe, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 299–319. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Ghamdi, A.A.M. Sodium nitroprusside application enhances drought tolerance in marjoram herb by promoting chlorophyll biosynthesis and enhancing osmotic adjustment capacity. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Farouk, S.; Omar, M.M. Sweet basil growth, physiological and ultrastructural modification, and oxidative defense system under water deficit and silicon forms treatment. J. Plant Growth Regul. 2020, 39, 1307–1331. [Google Scholar] [CrossRef]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998, 21, 535–553. [Google Scholar] [CrossRef]
- Erickson, C. Historical ecology and future explorations. In Amazonian Dark Earths: Origin, Properties, Management; Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 455–500. [Google Scholar]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ’Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Die Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Pereira da Silva, J., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.S.; Eissa, M.A. Effect of Biochar on CO2 sequestration and productivity of pearl millet plants grown in saline sodic soils. J. Soil Sci. Plant Nutr. 2021, 21, 897–907. [Google Scholar] [CrossRef]
- Ran, C.; Gulaqa, A.; Zhu, J.; Wang, X.; Zhang, S.; Geng, Y.; Guo, L.; Jin, F.; Shao, X. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline & and ash;sodic paddy field condition. J. Plant Growth Regul. 2019, 39, 370–377. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Falcao, N.; Damaceno, J.B.D.; Guerrini, I.A. Biochar yield from shell of brazil nut fruit and its effects on soil acidity and phosphorus availability in central Amazonian yellow oxisol. J. Agric. Sci. 2020, 12, 222. [Google Scholar] [CrossRef]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A panacea for agriculture or just carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Ibrahim, M.E.H.; Ali, A.Y.A.; Zhou, G.; Elsiddig, A.M.I.; Zhu, G.; Nimir, N.E.A.; Ahmad, I. Biochar application affects forage sorghum under salinity stress. Chil. J. Agric. Res. 2020, 80, 317–325. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Wang, X.; Wang, Z.; Zhang, H.; Chen, J.; Liu, X.; Wang, Y.; Li, C. Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). Plants 2021, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Ehardeland, R. Melatonin in plants; Diversity of levels and multiplicity of functions. Front. Plant Sci. 2016, 7, 198. [Google Scholar] [CrossRef]
- Wu, X.; Ren, J.; Huang, X.; Zheng, X.; Tian, Y.; Shi, L.; Dong, P.; Li, Z. Melatonin: Biosynthesis, content, and function in horticultural plants and potential application. Sci. Hortic. 2021, 288, 110392. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Amri, S. Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Ind. Crop. Prod. 2019, 142, 111823. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, H.; Wang, B.; Wu, X.; Lan, R.; Huang, X.; Chen, B.; Chen, G.; Jiang, C.; Wang, J. Exogenous melatonin improves the growth of rice seedlings by regulating redox balance and ion homeostasis under salt stress. J. Plant Growth Regul. 2021, 1–14. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Khan, M.N.; Ali, H.M.; Siddiqui, M.H.; Al -Huqail, A.; AlZuaibr, F.M.; Al-Muwayhi, M.A.; Marraiki, N.; Al-Humaid, L. Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicol. Environ. Saf. 2020, 201, 110822. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Arafa, S.A. Mitigation of salinity stress in canola plants by sodium nitroprusside application. Span. J. Agric. Res. 2018, 16, e0802. [Google Scholar] [CrossRef] [Green Version]
- Farouk, S.; Al-Amri, S.M. Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicol. Environ. Saf. 2019, 180, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yang, H.; Tie, W.; Yan, Y.; Ding, Z.; Liu, Y.; Wu, C.; Wang, J.; Reiter, R.J.; Tan, D.-X.; et al. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality. J. Agric. Food Chem. 2017, 65, 9987–9994. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, S.M.A.; Serag El-Din, W.M.; Farouk, S.; Mokhtar, N.A.Y.O. Integrated effects of biochar and potassium silicate on borage plant under different irrigation regimes in sandy soil. J. Hortic. Sci. Ornam. Plants 2021, 13, 60–76. [Google Scholar] [CrossRef]
- Santos, C.; Rodriguez, E. Review on Some Emerging Endpoints of Chromium (VI) and Lead Phytotoxicity; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Liu, D.; Kong, D.D.; Fu, X.K.; Ali, B.; Xu, L.; Zhou, W.J. Influence of exogenous 5-aminolevulinic acid on chlorophyll synthesis and related gene expression in oilseed rape de-etiolated cotyledons under water-deficit stress. Photosynthetica 2016, 54, 468–474. [Google Scholar] [CrossRef]
- Kul, R.; Arjumend, T.; Ekinci, M.; Yildirim, E.; Turan, M.; Argin, S. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Sci. Plant Nutr. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Chrustek, A.; Olszewska-Słonina, D. Melatonin as a powerful antioxidant. Acta Pharm. 2020, 71, 335–354. [Google Scholar] [CrossRef]
- Choi, G.-H.; Back, K. Back suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against cadmium, senescence, salt, and tunicamycin in rice plants. Biomolecules 2019, 9, 589. [Google Scholar] [CrossRef] [Green Version]
- Hwang, O.J.; Back, K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels. Int. J. Mol. Sci. 2019, 20, 5173. [Google Scholar] [CrossRef] [Green Version]
- Weeda, S.; Zhang, N.; Zhao, X.; Ndip, G.; Guo, Y.; Buck, G.A.; Fu, C.; Ren, S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 2014, 9, e93462. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zhu, J.-K. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 2002, 50, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Padan, E.; Venturi, M.; Gerchman, Y.; Dover, N. Na+/H+ antiporters. Biochim. Biophys. Acta 2001, 1505, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Garriga, M.; Raddatz, N.; Very, A.-A.; Sentenac, H.; Rubio-Meléndez, M.E.; González, W.; Dreyer, I. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.—Relationship to plant response to salt stress. J. Plant Physiol. 2017, 210, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, R.; Liu, D.; Wu, Y.; Sun, J.; Tao, J. Melatonin and expression of tryptophan decarboxylase gene (TDC) in herbaceous peony (Paeonia lactiflora Pall.) flowers. Molecules 2018, 23, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, E.C.; Forstreuter, M.; Rillig, M.; Kohler, J. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol. 2015, 96, 114–121. [Google Scholar] [CrossRef]
- Abbasi, H.; Jamil, M.; Haq, A.; Ali, S.; Ahmad, R.; Malik, Z. Parveen Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review. Zemdirb.-Agric. 2016, 103, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Hafez, Y.; Attia, K.; Alamery, S.; Ghazy, A.; Al-Doss, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.H.; Alamri, S.; Al-Khaishany, M.Y.; Khan, M.N.; Al-Amri, A.; Ali, H.M.; Alaraidh, I.A.; Alsahli, A.A. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int. J. Mol. Sci. 2019, 20, 353. [Google Scholar] [CrossRef] [Green Version]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Arnao, M.B.; Ruiz, J.H. Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.M.F.; Salama, K.H.A. Proline and abiotic stresses: Responses and adaptation. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Kostopoulou, Z.; Therios, I.; Roumeliotis, E.; Kanellis, A.; Molassiotis, A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 2015, 86, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Haider, I.; Raza, M.A.S.; Iqbal, R.; Aslam, M.U.; Habib-Ur-Rahman, M.; Raja, S.; Khan, M.T.; Aslam, M.M.; Waqas, M.; Ahmad, S. Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. J. Saudi Chem. Soc. 2020, 24, 974–981. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Shen, G.; Wang, R.; Gao, L.; Kong, F.; Zhang, J. Growth performance, nutrient absorption of tobacco and soil fertility after straw biochar application. Int. J. Agric. Biol. 2016, 18, 983–989. [Google Scholar] [CrossRef]
- Kongsri, S.; Boonprakob, U.; Byrne, D. Assessment of morphological and physiological responses of peach rootstocks under drought and aluminum stress. Acta Hortic. 2014, 1059, 229–236. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Wu, J.; Antille, D.L. Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica 2017, 55, 532–542. [Google Scholar] [CrossRef]
- Kammann, C.I.; Linsel, S.; Gobling, J.W.; Koyro, H.W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Sanders, G.J.; Arndt, S.K. Osmotic adjustment under drought conditions. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 199–229. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2019, 225, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Kataria, S.; Baghel, L.; Jain, M.; Guruprasad, K.N. Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatal. Agric. Biotechnol. 2019, 18, 101090. [Google Scholar] [CrossRef]
- Campos, M.L.D.O.; de Hsie, B.S.; Granja, J.A.D.A.; Correia, R.M.; de Almeida-Cortez, J.S.; Pompelli, M.F. Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Braz. J. Plant Physiol. 2012, 24, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.Y.; Liu, J.L.; Wang, W.X.; Sun, Y. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 2016, 54, 19–27. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Rathjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.A.; Zang, L.; Ali, B.; Farooq, M.A.; Cui, P.; Yang, S.; Ali, S.; Zhou, W. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 2015, 120, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Dixit, V.; Shyam, R. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 2009, 236, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J.; Sharma, A.; Tao, S.; Zheng, B.; Landi, M.; Yuan, H.; Yan, D. Melatonin stimulates activities and expression Level of antioxidant enzymes and preserves functionality of photosynthetic apparatus in hickory plants (Carya cathayensis Sarg.) under PEG-promoted drought. Agronomy 2019, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Kiani, R.; Arzani, A.; Maibody, S.A.M.M. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front. Plant Sci. 2021, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Russo, N.; Chiodo, A.S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343–6351. [Google Scholar] [CrossRef] [PubMed]
- Khatun, S.; Flowers, T.J. Effects of salinity on seed set in rice. Plant, Cell Environ. 1995, 18, 61–67. [Google Scholar] [CrossRef]
- Qi, Z.-Y.; Wang, K.-X.; Yan, M.-Y.; Kanwar, M.K.; Li, D.-Y.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P.; Zhou, J. Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules 2018, 23, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Cao, Y.; Loka, D.A.; Harris-Shultz, K.R.; Reiter, R.J.; Ali, S.; Liu, Y.; Zhou, Z. Exogenous melatonin improves cotton (Gossypium hirsutum L.) pollen fertility under drought by regulating carbohydrate metabolism in male tissues. Plant Physiol. Biochem. 2020, 151, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, L.; Qin, H.; Jiang, L.; Zou, Y. Fertilizer nitrogen uptake by rice increased by biochar application. Biol. Fertil. Soils 2014, 50, 997–1000. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Meng, J.; Wang, J.-Y.; Fan, S.-X.; Chen, W.-F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron. Sin. 2013, 39, 1445–1451. [Google Scholar] [CrossRef]
- Gollan, T.; Schurr, U.; Schulze, E.-D. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ. 1992, 15, 551–559. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 1997, 113, 559–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mallah, M.H.; Turui, T.; El-Shami, S. Detailed studies on seed oil of Salicornia SOS-7 cultivated at the Egyptian border of Red Sea. Grasas y Aceites 1994, 45, 3859. [Google Scholar] [CrossRef]
- Eganathan, P.; Subramanian, H.M.S.R.; Latha, R.; Rao, C.S. Oil analysis in seeds of Salicornia brachiata. Ind. Crop. Prod. 2006, 23, 177–179. [Google Scholar] [CrossRef]
- Weber, D.; Ansari, R.; Gul, B.; Khan, M.A. Potential of halophytes as source of edible oil. J. Arid Environ. 2007, 68, 315–321. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; FAO fertilizer and plant Nutrition Bulletin No., 19; FAO: Rome, Italy, 2008. [Google Scholar]
- Koller, H.R.C. Leaf area-leaf weight relationship in soybean canopy. Crop Sci. 1972, 12, 216–220. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Fatma, M.; Asgher, M.; Masood, A.; Khan, N.A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ. Exp. Bot. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Malik, R.N.; Husain, S.Z.; Nazir, I. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak. J. Bot. 2010, 42, 291–301. [Google Scholar]
- Kojić, D.; Pajević, S.; Jovanović-Galović, A.; Purać, J.; Pamer, E.; Škondrić, S.; Milovac, S.; Popović, Ž.; Grubor-Lajšić, G. Efficacy of natural aluminosilicates in moderating drought effects on the morphological and physiological parameters of maize plants (Zea mays L.). J. Soil Sci. Nutr. 2012, 12, 113–123. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International (P) Ltd Publishers: New Delhi, India, 2008. [Google Scholar]
- Kaya, C.; Sonmez, O.; Aydemir, S.; Ashraf, M.; Dikilitas, M. Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J. Plant Interact. 2013, 8, 234–241. [Google Scholar] [CrossRef]
- Baque, M.A.; Karim, M.A.; Hamida, A. Role of potassium on water relation behavior of Triticum aestivum L. under water stress conditions. Prog. Agric. 2002, 13, 71–75. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology and Development; Sinauer Associates Inc.: Sunderland, MA, USA, 2015. [Google Scholar]
- Nobel, P.S. Physiochemical and Environmental Plant Physiology; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- Blum, A. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci. 1989, 29, 230–233. [Google Scholar] [CrossRef]
- Aftab, T.; Khan, M.M.A.; da Silva, J.A.T.; Idrees, M.; Naeem, M. Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J. Plant Growth Regul. 2011, 30, 425–435. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Williams, J.A.; Stadtman, E.P.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994, 233, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Xylia, P.; Botsaris, G.; Tzortzakis, N. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Ind. Crop. Prod. 2017, 103, 202–212. [Google Scholar] [CrossRef]
- Alp, S.; Ercisli, S.; Jurikova, T.; Cakir, O.; Gozlekci, S. Bioactive content of rose hips of different wildly grown Rosa dumalis genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 472–476. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 2000. [Google Scholar]
Proline (mg/g FW) | Soluble Carbohydrates (mg/g DW) | WC | RWC | WSD | WTC | Water Potential | Osmotic Potential | Turgor Potential | Osmotic Adjustment | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 4.625 ± 0.12 e | 145 ± 5.78 c | 86.87 ± 0.92 a | 80.31 ± 0.83 a | 19.68 ± 0.836 c | 9.33 ± 0.63 a | −0.423 ± 0.012 a | −0.626 ± 0.013 a | 0.203 ± 0.001 b | 0.000 e |
S | 6.829 ± 0.10 d | 198 ± 6.10 b | 66.91 ± 2.38 c | 54.03 ± 1.43 c | 45.96 ± 1.433 a | 4.82 ± 0.48 c | −0.850 ± 0.020 b | −0.955 ± 0.022 b | 0.105 ± 0.002 e | 0.329 ± 0.019 d |
S+Mt | 9.261 ± 0.23 b | 242 ± 6.48 ab | 72.24 ± 0.98 c | 73.71 ± 2.17 ab | 26.28 ± 2.179 bc | 4.54 ± 0.10 c | −1.347 ± 0.020 d | −1.514 ± 0.022 d | 0.167 ± 0.002 c | 0.887 ± 0.036 b |
S+Bi | 8.176 ± 0.15 c | 200 ± 15.90 b | 79.17 ± 1.71 b | 71.37 ± 1.95 b | 28.62 ± 1.95 b | 6.39 ± 0.42 bc | −1.030 ± 0.006 c | −1.158 ± 0.007 c | 0.127 ± 0.001 d | 0.531 ± 0.020 c |
S+Mt+Bi | 10.78 ± 0.05 a | 259 ± 11.71 a | 85.01 ± 0.19 ab | 78.62 ± 0.75 a | 21.37 ± 0.75 c | 8.22 ± 0.11 ab | −1.757 ± 0.014 e | −1.975 ± 0.016 e | 0.218 ± 0.001 a | 1.348 ± 0.015 a |
p value | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
LSD at 0.05 | 0.474 | 31.60 | 4.562 | 4.861 | 4.861 | 1.299 | 0.049 | 0.055 | 0.006 | 0.006 |
Shoot | Root | K+ Translocation | Na+ Translocation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Potassium (K+)% | Sodium (Na+)% | K+/Na+ Ratio | Chloride (Cl−, mg/g DW) | K+% | Na+% | K+/Na+ Ratio | Cl− (mg/g DW) | |||
Control | 2.49 ± 0.11 a | 0.107 ± 0.00 e | 23.27 ± 1.07 a | 16.50 ± 0.94 e | 5.58 ± 0.12 a | 0.283 ± 0.10 d | 5.676 ± 1.05 a | 28.81 ± 1.89 d | 0.446 ± 0.03 b | 0.378 ± 0.03 b |
S | 1.11 ± 0.05 c | 0.962 ± 0.00 a | 1.637 ± 0.06 d | 82.36 ± 4.98 a | 3.22 ± 0.16 b | 2.022 ± 0.06 a | 1.543 ± 0.50 de | 106 ± 2.45 a | 0.344 ± 0.01 c | 0.475 ± 0.06 a |
S+Mt | 2.08 ± 0.04 b | 0.405 ± 0.00 c | 4.118 ± 0.13 c | 49.22 ± 0.47 b c | 3.88 ± 0.23 b | 1.147 ± 0.09 c | 3.382 ± 0.08 c | 67.21 ± 0.47 bc | 0.536 ± 0.05 a | 0.353 ± 0.02 b |
S+Bi | 1.79 ± 0.02 bc | 0.697 ± 0.00 b | 3.156 ± 0.03 cd | 60.11 ± 2.87 b | 3.27 ± 0.28 b | 1.781 ± 0.03 b | 1.836 ± 0.10 d | 71.47 ± 0.47 b | 0.547 ± 0.02 ab | 0.391 ± 0.00 b |
S+Mt+Bi | 2.62 ± 0.12 a | 0.326 ± 0.00 d | 8.030 ± 0.15 b | 38.34 ± 1.63 d | 4.68 ± 0.12 a | 1.113 ± 0.08 c | 4.916 ± 0.05 b | 59.64 ± 2.45 c | 0.559 ± 0.02 a | 0.292 ± 0.00 c |
p value | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
LSD at 0.05 | 0.266 | 0.017 | 1.543 | 8.56 | 0.626 | 0.249 | 1.656 | 5.659 | 0.102 | 0.109 |
H2O2 (μM/g FW) | MDA (nM/g FW) | Protein Carbonyl (nM/g FW) | Membrane Permeability% | |
---|---|---|---|---|
Control | 18.75 ± 0.19 c | 9.59 ± 0.47 d | 19.66 ± 0.74 b | 59.46 ± 0.78 c |
S | 51.05 ± 2.65 a | 21.60 ± 0.53 a | 33.97 ± 2.02 a | 87.52 ± 3.54 a |
S+Mt | 26.78 ± 0.57 b | 14.82 ± 1.68 bc | 23.87 ± 1.44 b | 72.44 ± 1.29 b |
S+Bi | 27.83 ± 1.50 b | 16.81 ± 0.94 b | 25.15 ± 1.29 b | 74.37 ± 0.90 b |
S+Mt+Bi | 25.48 ± 2.15 bc | 11.19 ± 0.74 cd | 20.94 ± 0.49 b | 72.03 ± 1.86 b |
p value | *** | *** | *** | *** |
LSD at 0.05 | 5.33 | 3.092 | 4.154 | 6.16 |
Antioxidant Enzymes (unit/mg Protein) | Antioxidant Solutes | |||||
---|---|---|---|---|---|---|
Superoxide Dismutase | Peroxidase | Catalase | Ascorbic Acid (mg/g FW) | Phenol (mg Gallic acid/g DW) | Flavonoid (mg quercetin/g FW) | |
Control | 22.02 ± 1.38 c | 16.79 ± 1.25 b | 65.15 ± 0.47 a | 0.240 ± 0.008 a | 6.730 ± 0.15 c | 1.56 ± 0.07 d |
S | 57.63 ± 3.39 b | 19.55 ± 0.60 b | 30.52 ± 0.65 e | 0.111 ± 0.004 d | 10.19 ± 0.70 b | 2.09 ± 0.01 c |
S+Mt | 71.35 ± 4.81 ab | 26.20 ± 1.74 a | 51.02 ± 0.75 c | 0.182 ± 0.002 bc | 12.39 ± 0.26 ab | 2.89 ± 0.09 ab |
S+Bi | 65.35 ± 2.49 ab | 25.89 ± 0.75 a | 44.22 ± 1.37 d | 0.174 ± 0.008 c | 10.70 ± 0.58 b | 2.58 ± 0.17 bc |
S+Mt+Bi | 73.73 ±1.57 a | 26.61 ± 1.69 a | 59.11 ± 0.60 b | 0.222 ± 0.017 ab | 13.37 ± 0.44 a | 3.12 ± 0.11 a |
p value | *** | *** | *** | *** | *** | *** |
LSD at 0.05 | 9.495 | 4.092 | 2.628 | 0.030 | 1.505 | 0.337 |
Plant Height (cm) | Shoot FW (g) | Shoot DW (g) | Leaf Area (cm2) | Total Chlorophyll (mg/g FW) | Total Carotenoids (mg/g FW) | |
---|---|---|---|---|---|---|
Control | 81.1 ± 6.94 a | 1266 ± 52.6 a | 209.3 ± 7.76 a | 1136 ± 56.40 a | 1.85 ± 0.05 a | 0.786 ± 0.03 a |
S | 42.6 ± 0.72 b | 531 ± 14.28 d | 99.75 ± 3.47 d | 351.2 ± 14.68 d | 1.20 ± 0.10 b | 0.206 ± 0.09 b |
S+Mt | 66.5 ± 5.85 ab | 1039 ± 18.28 bc | 159.7 ± 3.48 bc | 734.3 ± 17.75 b | 1.60 ± 0.19 ab | 0.696 ± 0.04 a |
S+Bi | 60.7 ± 6.57 ab | 914 ± 25.75 c | 140.9 ± 7.37 c | 572.6 ± 30.26 c | 1.55 ± 0.10 ab | 0.586 ± 0.02 a |
S+Mt+Bi | 76.9 ± 3.66 a | 1146 ± 31.46 ab | 184.6 ± 6.13 ab | 879.4 ± 26.44 b | 1.72 ± 0.09 ab | 0.699 ± 0.02 a |
p value | ** | *** | *** | *** | * | *** |
LSD at 0.05 | 16.65 | 99.29 | 18.72 | 102.8 | 0.380 | 0.159 |
Seed Yield/Plant | Seed Index | Oil % | Oil Yield/Plant | |
---|---|---|---|---|
Control | 12.76 ± 0.22 a | 17.19 ± 0.27 a | 33.18 ± 0.39 a | 4.23 ± 0.12 a |
S | 6.890 ± 0.17 d | 8.466 ± 0.36 e | 23.43 ± 0.39 d | 1.61 ± 0.06 d |
S+Mt | 9.960 ± 0.37 b | 14.12 ± 0.16 c | 30.49 ± 0.34 bc | 3.03 ± 0.14 bc |
S+Bi | 8.733 ± 0.26 c | 12.91 ± 0.13 d | 29.27 ± 0.43 c | 2.55 ± 0.11 c |
S+Mt+Bi | 10.93 ± 0.21 b | 15.38 ± 0.27 b | 32.22 ± 0.34 ab | 3.52 ± 0.10 b |
p value | *** | *** | *** | *** |
LSD at 0.05 | 0.822 | 0.811 | 1.206 | 0.368 |
Fatty Acids | Control | Salinity (5000 ppm NaCl) | Salinity + Bi (5%) + Mt (100 µM) | p Value | LSD at 0.05 |
---|---|---|---|---|---|
Myristic acid (C14:0) | 0.08 ± 0.001 b | 0.08 ± 0.001 b | 0.09 ± 0.001 a | * | 0.001 |
Palmitic acid (C16:0) | 13.25 ± 0.005 a | 12.15 ± 0.004 b | 11.61 ± 0.007 c | ** | 0.841 |
Palmitoleic acid (C16:1) | 0.21 ± 0.009 b | 0.19 ± 0.004 c | 0.24 ± 0.007 a | ** | 0.752 |
Margaric acid (C17:0) | 0.05 ± 0.000 | 0.06 ± 0.000 | 0.05 ± 0.000 | ns | |
Stearic acid (C18:0) | 3.58 ± 0.081 b | 4.03 ± 0.087 a | 4.01 ± 0.072 ab | * | 0.004 |
Oleic acid (C18:1) | 19.46 ± 0.001 | 19.13 ± 0.001 | 19.58 ± 0.001 | ns | |
Linoleic acid (C18:2) | 35.59 ± 0.004 b | 35.85 ± 0.004 b | 36.16 ± 0.002 a | * | 0.017 |
α-Linolenic acid (Omega-6, C18:3n6) | 18.14 ± 0.001 ab | 19.24 ± 0.002 a | 19.52 ± 0.003 a | * | 0.020 |
α-Linolenic acid (Omega-3, C18:3n3) | 0.13 ± 0.00 b | 0.13 ± 0.001 b | 0.17 ± 0.002 a | ** | 0.006 |
Archidic acid (C20:0) | 0.21 ± 0.004 c | 0.25 ± 0.003 b | 0.27 ± 0.004 a | ** | 0.018 |
Cis-11-Eicosenoic acid (C20:1) | 3.02 ± 0.001 b | 3.79 ± 0.004 a | 3.98 ± 0.007 a | * | 0.009 |
Total saturated% | 17.17 ± 0.007 a | 16.57 ± 0.006 ab | 16.03 ± 0.002 b | * | 0.098 |
Total unsaturated% | 76.55 ± 0.006 b | 78.33 ± 0.006 b | 79.65 ± 0.005 a | ** | 1.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farouk, S.; AL-Huqail, A.A. Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis. Plants 2022, 11, 765. https://doi.org/10.3390/plants11060765
Farouk S, AL-Huqail AA. Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis. Plants. 2022; 11(6):765. https://doi.org/10.3390/plants11060765
Chicago/Turabian StyleFarouk, Saad, and Arwa Abdulkreem AL-Huqail. 2022. "Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis" Plants 11, no. 6: 765. https://doi.org/10.3390/plants11060765
APA StyleFarouk, S., & AL-Huqail, A. A. (2022). Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis. Plants, 11(6), 765. https://doi.org/10.3390/plants11060765