Vegetation Dynamics in a Loess Grassland: Plant Traits Indicate Stability Based on Species Presence, but Directional Change When Cover Is Considered
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RLF | Raunkiaer’s life forms |
Th | therophyte |
TH | hemitherophyte |
H | hemicryptophyte |
G | geophyte |
Ch | chamaephyte |
N | nanophanerophyte |
M | microphanerophyte |
FLE | floristic element (chorological type) |
SW | seed weight category |
na | not available |
Appendix A
Plots | Plot-1 | Plot-2 | Plot-3 | Plot-4 | RLF | FLE | SW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |||
Species Name | |||||||||||||||
Achillea collina J. Becker | 2.0 | 0.1 | 1.0 | 1.0 | H | CON | 1 | ||||||||
A. pannonica Scheele | 2.0 | 1.0 | 0.1 | 0.5 | 1.0 | 0.1 | 2.0 | 5.0 | 1.0 | 3.0 | 1.0 | 0.5 | H | PON | 1 |
Adonis vernalis L. | 2.0 | 1.0 | 2.0 | 4.0 | 1.0 | 3.0 | 4.0 | 3.0 | 4.0 | 3.0 | 2.0 | 2.0 | H | CON | 7 |
Agrimonia eupatoria L. | 0.1 | 1.0 | 1.0 | 2.0 | 2.0 | 3.0 | 3.0 | H | EUR | 7 | |||||
Agropyron intermedium Host | 0.1 | 9.0 | 0.1 | 10.0 | 2.0 | 15.0 | 14.0 | G | PoM | 6 | |||||
A. repens (L.) P. B. | 0.1 | 1.0 | 5.0 | 0.1 | 3.0 | 10.0 | G | CIR | 5 | ||||||
Ailanthus altissima (Mill.) Swingle | 0.1 | MM | ADV | 7 | |||||||||||
Ajuga reptans L. | 0.1 | H-Ch | EUR | 4 | |||||||||||
Anthericum ramosum L. | 1.0 | G | CEU | 6 | |||||||||||
Arabis hirsuta (L.) Scop. | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.1 | TH-H | CIR | 1 | ||||||
Arrhenatherum elatius (L.) J. et C. Presl | 0.1 | 1.0 | 0.1 | 0.5 | H | EUA | 5 | ||||||||
Asperula cynanchica L. | 0.1 | 0.5 | 1.0 | 1.0 | H | PoM | 3 | ||||||||
Astragalus austriacus Jacq. | 1.0 | 0.5 | 0.5 | H | CON | 3 | |||||||||
A. onobrychis L. | 1.0 | 1.0 | 0.1 | 1.0 | 0.5 | 0.5 | H | CON | 4 | ||||||
Betonica officinalis L. | 0.1 | 0.5 | 0.1 | H | EUA | 4 | |||||||||
Bothriochloa ischaemum (L.) Keng | 0.5 | 0.5 | 0.1 | 0.1 | 1.0 | H | PoM | 2 | |||||||
Brachypodium pinnatum (L.) P. B. | 19.0 | 30.0 | 30.0 | 40.0 | 45.0 | 30.0 | 9.0 | 20.0 | 25.0 | 25.0 | 25.0 | 13.0 | H(Ch) | EUA | 6 |
Brassica elongata Ehrh. | 0.1 | TH-H | CON | 2 | |||||||||||
Briza media L. | 2.0 | 2.0 | 0.5 | 0.1 | 3.0 | 0.1 | 1.0 | H | KOZ | 3 | |||||
Bromus erectus Huds. | 0.1 | 0.1 | H | PaB | 6 | ||||||||||
B. inermis Leyss. | 0.1 | 5.0 | 1.0 | 8.0 | H | CIR | 5 | ||||||||
Campanula bononiensis L. | 0.1 | 0.1 | 2.0 | 0.5 | 0.1 | H | EUA | 1 | |||||||
C. glomerata L. | 2.0 | 0.1 | 0.1 | H | EUA | 1 | |||||||||
Carduus acanthoides L. | 0.1 | TH | EUR | 4 | |||||||||||
Carex humilis Leyss. | 5.0 | 3.0 | 2.0 | 0.1 | 0.1 | 0.1 | 0.5 | 1.0 | 0.5 | H | CON | 4 | |||
C. michelii Host | 1.0 | 1.0 | 0.5 | 2.0 | 5.0 | 3.0 | 38.0 | 15.0 | 13.0 | 0.1 | 0.1 | 1.0 | H | SMO | 5 |
C. tomentosa L. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | G | EUA | 4 | |||
Carlina vulgaris L. | 0.1 | 0.5 | 0.1 | 0.1 | TH-H | EUA | 4 | ||||||||
Centaurea micranthos S.G. Gmel. | 0.1 | 0.1 | TH-H | PON | 4 | ||||||||||
C. pannonica (Heuff.) Simk. | 1.0 | 0.5 | 1.0 | 2.0 | 4.0 | 4.0 | 0.5 | 1.0 | 2.0 | 3.0 | 2.0 | 5.0 | H | PoP | 4 |
C. sadlerana Janka | 3.0 | 5.0 | 7.0 | H | PAN | 6 | |||||||||
Chamaecytisus austriacus (L.) Link | 10.0 | 10.0 | 13.0 | 8.0 | 6.0 | 5.0 | 2.0 | 5.0 | 3.0 | 0.1 | 0.1 | 0.5 | N | PoP | 6 |
Chrysanthemum leucanthemum L. | 0.1 | 0.1 | H | EUA | 2 | ||||||||||
Cirsium arvense (L.) Scop. | 1.0 | 2.0 | 0.1 | G | EUA | 4 | |||||||||
Clinopodium vulgare L. | 9.0 | 3.0 | 1.0 | H | CIR | 2 | |||||||||
Cornus sanguinea L. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | M | SME | 8 | ||||
Coronilla varia L. | 0.1 | 0.1 | H | PoM | 5 | ||||||||||
Crataegus monogyna Jacq. | 0.1 | 1.0 | 0.5 | 2.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 1.0 | 1.0 | 3.0 | M | EUR | 7 |
Dactylis glomerata L. | 1.0 | 2.0 | 0.5 | 2.0 | 1.0 | 0.1 | 0.1 | 8.0 | 2.0 | 0.5 | H | KOZ | 3 | ||
Daucus carota L. | 0.1 | 0.1 | 0.5 | 1.0 | 0.1 | Th-TH | KOZ | 5 | |||||||
Dianthus pontederae Kern. | 0.1 | 0.5 | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | H | PAN | 3 | |
Dorycnium germanicum (Gremli) Rikli | 3.0 | 1.0 | 2.0 | Ch | ALB | 5 | |||||||||
Eryngium campestre L. | 2.0 | 0.5 | 1.0 | 4.0 | 3.0 | 3.0 | 1.0 | 2.0 | 2.0 | 1.0 | 1.0 | 1.0 | H | PoM | 5 |
Euphorbia pannonica Host | 10.0 | 14.0 | 15.0 | 8.0 | 4.0 | 7.0 | 15.0 | 20.0 | 14.0 | 6.0 | 5.0 | 5.0 | H | PaB | 4 |
Falcaria vulgaris Bernh. | 1.0 | 0.5 | 0.1 | 1.0 | 0.1 | 0.1 | Th-TH | EUA | 4 | ||||||
Festuca rupicola Heuff. | 25.0 | 35.0 | 25.0 | 20.0 | 25.0 | 25.0 | 10.0 | 20.0 | 25.0 | 20.0 | 30.0 | 35.0 | H | EUA | 3 |
Filipendula vulgaris Mönch | 15.0 | 10.0 | 8.0 | 8.0 | 11.0 | 5.0 | 15.0 | 12.0 | 12.0 | 15.0 | 12.0 | 10.0 | H | EUA | 3 |
Fragaria viridis Duch. | 0.1 | 0.5 | 0.1 | 1.0 | 1.0 | 0.5 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | H | CON | 2 |
Galium aparine L. | 0.1 | Th | KOZ | 6 | |||||||||||
G. glaucum L. | 1.0 | 1.0 | 0.1 | 1.0 | 1.0 | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1.0 | H | PoM | 4 |
G. verum L. | 7.0 | 8.0 | 5.0 | 6.0 | 15.0 | 5.0 | 5.0 | 15.0 | 6.0 | 5.0 | 10.0 | 2.0 | H | EUA | 3 |
Helictotrichon praeustum (Rchb.) Tzvelev | 1.0 | 1.0 | 0.5 | 0.5 | 2.0 | 6.0 | 5.0 | 10.0 | 3.0 | 2.0 | H | EUR | na | ||
Helictotrichon pubescens (Huds.) Pilger | 1.0 | 1.0 | 0.1 | 1.0 | 2.0 | 1.0 | 1.0 | 0.1 | 0.5 | 5.0 | 0.1 | 1.0 | H | EUA | 5 |
Hieracium cymosum L. | 0.1 | 0.5 | 0.1 | 0.1 | H | EUA | na | ||||||||
H. sabaudum L. | 0.1 | 0.1 | H | CEU | 2 | ||||||||||
Inula sp. | 0.1 | 0.1 | H | CON | na | ||||||||||
Knautia arvensis (L.) Coult. | 1.0 | 2.0 | 2.0 | 1.0 | 1.0 | 1.0 | 2.0 | 1.0 | 0.5 | 1.0 | 1.0 | 1.0 | H | EUA | 5 |
Koeleria cristata (L.) Pers. | 1.0 | 1.0 | 0.1 | 0.1 | 0.1 | H | KOZ | 2 | |||||||
Lathyrus tuberosus L. | 0.1 | 0.1 | H-G | EUA | 7 | ||||||||||
Leontodon hispidus L. | 0.1 | 0.1 | 0.1 | 0.1 | H | EUR | 4 | ||||||||
Ligustrum vulgare L. | 0.1 | M | AsM | 7 | |||||||||||
Linum catharticum L. | 0.1 | 0.1 | 0.1 | Th(H) | EUR | 1 | |||||||||
L. flavum L. | 0.1 | 0.5 | 1.0 | 0.1 | 0.5 | H | PoP | 3 | |||||||
Lotus corniculatus L. | 1.0 | 0.1 | 0.1 | 1.0 | 0.5 | 0.5 | 1.0 | 0.1 | 0.1 | H | EUA | 4 | |||
Luzula campestris (L.) Lam. et DC. | 0.1 | 0.1 | H | KOZ | 3 | ||||||||||
Medicago falcata L. | 3.0 | 0.1 | 0.5 | 5.0 | 2.0 | 2.0 | 5.0 | 2.0 | 3.0 | 3.0 | 5.0 | 2.0 | H | EUA | 4 |
M. lupulina L. | 0.1 | Th-TH | EUA | 4 | |||||||||||
Melilotus officinalis (L.) Pall. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | Th-TH | EUA | 4 | |||||||
Muscari comosum (L.) Mill. | 0.1 | 0.1 | G | SME | 6 | ||||||||||
M. racemosum (L.) Mill. | 0.1 | G | SME | 5 | |||||||||||
Ononis spinosa L. | 1.0 | 1.5 | 1.0 | 0.5 | 0.5 | 0.5 | H-Ch | EUR | 5 | ||||||
Ornithogalum kochii Parl. | 0.1 | 0.5 | 0.1 | 0.1 | G | PoM | na | ||||||||
Orobanche teucrii Holandre | 0.1 | 0.1 | G | CEU | 1 | ||||||||||
Phleum phleoides (L.) Karsten | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | H | CON | 1 | |||||||
Picris hieracioides L. | 0.1 | 0.5 | 2.0 | 0.1 | 0.1 | 0.1 | 0.1 | 1.0 | 0.1 | 2.0 | 1.0 | TH-H | EUA | 3 | |
Pimpinella saxifraga L. | 0.1 | 0.1 | 0.1 | 0.5 | 0.1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.1 | 2.0 | H | EUA | 3 | |
Plantago media L. | 1.0 | 0.5 | 0.5 | 0.5 | 0.1 | 0.1 | H | EUA | 2 | ||||||
Poa pratensis L. | 1.0 | 1.0 | 0.1 | 8.0 | 0.5 | 0.5 | 2.0 | 1.0 | 0.1 | 1.0 | H | KOZ | 2 | ||
Prunella grandiflora (L.) Scholler | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | H | EUR | 3 | |||||||
P. laciniata (L.) Nath. | 0.1 | 0.5 | 0.1 | 0.1 | H | SME | 4 | ||||||||
P. x bicolor Beck | 0.1 | 0.1 | 1.0 | 0.5 | 1.0 | 0.1 | H | SME | na | ||||||
Prunus cerasifera Ehrh. | 0.1 | 0.1 | 0.1 | M | ADV | 8 | |||||||||
P. spinosa L. | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | 0.5 | 0.1 | 0.5 | 0.5 | 4.0 | 8.0 | 13.0 | M | EUR | 8 |
Ranunculus polyanthemos L. | 1.0 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 2.0 | 1.0 | 0.5 | H | PON | 5 | |||
Rhamnus catharticus L. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | M | EUA | 7 | |||
Salvia nemorosa L. | 0.1 | 0.5 | 0.5 | H | EUR | 3 | |||||||||
S. pratensis L. | 3.0 | 8.0 | 7.0 | 4.0 | 5.0 | 3.0 | 5.0 | 10.0 | 6.0 | 4.0 | 7.0 | 6.0 | H | EUR | 4 |
Sanguisorba minor Scop. | 0.1 | H | EUR | 6 | |||||||||||
Scabiosa ochroleuca L. | 1.0 | 0.1 | 0.1 | 0.1 | 1.0 | 0.1 | 1.0 | H | CON | 4 | |||||
Senecio jacobaea L. | 0.1 | 0.1 | 0.1 | 0.1 | H | EUA | 2 | ||||||||
Seseli annuum L. | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | Th-TH-H | CON | 2 |
Setaria viridis (L.) P. B. | 3.0 | 0.1 | Th | EUA | 3 | ||||||||||
Stachys recta L. | 0.1 | 0.1 | 0.1 | H | PoM | 4 | |||||||||
Taraxacum officinale Weber | 0.1 | 0.1 | 0.1 | 0.1 | H | EUA | 2 | ||||||||
T. serotinum (W. et K.) Poir. | 0.5 | 0.5 | 0.5 | 1.0 | 2.0 | 2.0 | H | PoP | 3 | ||||||
Teucrium chamaedrys L. | 8.0 | 8.0 | 8.0 | 3.0 | 3.0 | 2.0 | 15.0 | 15.0 | 6.0 | 10.0 | 8.0 | 5.0 | Ch | SME | 4 |
Thesium linophyllon L. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | G-H | CEU | 5 | ||||
Thlaspi perfoliatum L. | 0.1 | 0.1 | Th | SME | 2 | ||||||||||
Thymus pannonicus All. | 1.0 | 5.0 | 0.1 | 0.1 | 1.0 | 1.0 | 2.0 | 3.0 | 0.5 | Ch | CEU | na | |||
Tragopogon orientalis L. | 1.0 | 2.0 | 0.1 | 0.1 | 0.5 | 0.1 | TH-H | EUA | 6 | ||||||
Trifolium alpestre L. | 0.1 | 0.1 | 3.0 | 1.0 | 0.1 | 0.1 | H | CEU | 5 | ||||||
Trifolium montanum L. | 1.0 | 3.0 | 1.0 | 3.0 | 1.0 | 1.0 | 2.0 | 5.0 | 1.0 | 1.0 | 2.0 | 1.0 | H | CON | 3 |
Verbascum phoeniceum L. | 0.5 | 1.0 | 0.5 | 0.1 | 1.0 | 0.5 | H | PON | 1 | ||||||
Veronica austriaca L. | 0.1 | 0.1 | 0.1 | 0.1 | H | PON | 1 | ||||||||
Veronica spicata L. | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.5 | 0.1 | H-Ch | EUA | 1 | |||
Viola canina L. | 0.1 | 0.1 | H | EUA | 3 | ||||||||||
indet. dicot. 1 | 0.1 | ||||||||||||||
indet. dicot. 2 | 0.1 | ||||||||||||||
Number of species | 71 | 62 | 69 | 51 | 39 | 45 | 52 | 44 | 48 | 62 | 53 | 63 | |||
Total cover (%) | 140.8 | 169.0 | 141.9 | 141.0 | 144.6 | 120.4 | 160.9 | 178.5 | 161.5 | 162.8 | 172.8 | 155.1 |
References
- Zólyomi, B. Természetes növénytakaró (Natural vegetation). In Magyarország Nemzeti Atlasza (National Atlas of Hungary); Pécsi, M., Ed.; Kartográfiai Vállalat: Budapest, Hungary, 1989; p. 89. [Google Scholar]
- Penksza, K.; Kiss, T.; Herczeg, E.; Nagy, A.; Malatinszky, Á. Anthropogenic impacts and management of natural grasslands on kurgans. In Kurgan Studies: An Environmental and Archaeological Multiproxy Study of Burial Mounds in the Eurasian Steppe Zone; Pető, Á., Barczi, A., Eds.; BAR International Series: Oxford, UK, 2011; pp. 329–338. [Google Scholar]
- Tóth, A.C.; Deák, B.; Nyilas, I.; Bertalan, L.; Valkó, O.; Novák, T. Iron age burial mounds as refugia for steppe specialist plants and invertebrates—Case study from the Zsolca mounds (NE Hungary). Hacquetia 2019, 18, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Szerényi, J. Adatok az Észak-Mezőföld löszflórájához. Kitaibelia 2000, 5, 249–270. [Google Scholar]
- Molnár, Z.; Biró, M.; Bartha, S.; Fekete, G. Past Trends, Present State and Future Prospects of Hungarian Forest-Steppes. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Plant and Vegetation; Werger, M.J.A., van Staalduinen, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 6, pp. 209–252. [Google Scholar] [CrossRef]
- Zólyomi, B. Rekonstruált növénytakaró. [Reconstructed vegetation.] 1:1500000. In Magyarország Nemzeti Atlasza; Radó, S., Ed.; Kartográfiai Vállalat: Budapest, Hungary, 1967; pp. 21–31. [Google Scholar]
- Zólyomi, B.; Fekete, G. The Pannonian loess steppe: Differentiation in space and time. Abstr. Bot. 1994, 18, 29–41. [Google Scholar]
- Liu, T.S.; Guo, Z.T.; Wu, N.Q.; Lu, H.Y. Prehistoric vegetation on the Loess Plateau: Steppe or forest? J. Southeast Asian Earth Sci. 1996, 13, 341–346. [Google Scholar] [CrossRef]
- Li, X.; Sun, N.; Dodson, J.; Zhou, X.; Zhao, K. Vegetation characteristics in the western Loess plateau between 5200 and 4300 cal. B.P. based on fossil charcoal records. Veget. Hist. Archaeobot. 2013, 22, 61–70. [Google Scholar] [CrossRef]
- Wu, G.-L.; Zhang, Z.-N.; Wang, D.; Shi, Z.-H.; Zhu, Y.-J. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China. J. Hydrol. 2014, 519, 1362–1367. [Google Scholar] [CrossRef]
- Miñarro, F.; Martinez, U.; Bilenca, D.; Olmos, F. Río de la Plata Grasslands or Pampas & Campos (Argentina, Uruguay and Brazil)—Temperate grasslands of South America. In Proceedings of the World Temperate Grasslands Conservation Initiative Workshop, Hohhot, China, 28–29 June 2008; pp. 24–33. [Google Scholar]
- Paruelo, J.M.; Jobbágy, E.G.; Oesterheld, M.; Golluscio, R.A.; Aguiar, M.R. The Grasslands and Steppes of Patagonia and the Rio de la Plata Plains. In The Physical Geography of South America; Veblen, T., Young, K., Orme, A., Eds.; Oxford University Press: Oxford, UK, 2007; Chapter 14; pp. 232–248. [Google Scholar] [CrossRef]
- Virágh, K.; Fekete, G. Degradation stages in a xeroseries: Composition, similarity, grouping, coordination. Acta Bot. Acad. Sci. Hung. 1984, 30, 427–459. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:A1984ATM0900014 (accessed on 26 February 2022).
- Fekete, G.; Tóthmérész, B. Vegetation science in Hungary. J. Veg. Sci. 1993, 4, 279–282. [Google Scholar] [CrossRef]
- Nagy, Z.; Tuba, Z.; Szente, K.; Úzvölgyi, J.; Fekete, G. Photosynthesis and water-use efficiency during degradation of a semiarid loess steppe. Photosynthetica 1994, 30, 307–311. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:A1994PT73600018 (accessed on 26 February 2022).
- Fekete, G.; Virágh, K.; Aszalós, R.; Précsényi, I. Static and dynamic approaches to landscape heterogeneity in the Hungarian forest-steppe zone. J. Veg. Sci. 2000, 11, 375–382. [Google Scholar] [CrossRef]
- Fóti, S.; Balogh, J.; Nagy, Z.; Ürmös, Z.; Bartha, S.; Tuba, Z. Temporal and spatial variability and pattern of soil respiration in loess grassland. Community Ecol. 2008, 9, 57–64. [Google Scholar] [CrossRef]
- Zimmermann, Z.; Szabó, G.; Csathó, A.I.; Kapocsi, J.S.; Szentes, S.; Juhász, M.; Házi, J.; Komoly, C.; Virágh, K.; Harkányiné Székely, Z.; et al. The impact of the lesser blind mole rat [Nannospalax (superspecies leucodon)] on the species composition and diversity of a loess steppe in Hungary. Appl. Ecol. Env. Res. 2014, 12, 577–588. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967; pp. 1–203. [Google Scholar]
- Johnson, M.P.; Frost, N.J.; Mosley, M.W.J.; Roberts, M.F.; Hawkins, S.J. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecol. Lett. 2003, 6, 126–132. [Google Scholar] [CrossRef]
- Hjort, J.; Heikkinen, R.K.; Luoto, M. Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers. Conserv. 2012, 21, 3487–3506. [Google Scholar] [CrossRef]
- Carballeira, R.; Pontevedra-Pombal, X. Diversity of testate Amoebae as an indicator of the conservation status of peatlands in Southwest Europe. Diversity 2021, 13, 269. [Google Scholar] [CrossRef]
- Wehnert, A.; Wagner, S.; Huth, F. Effects of pure and mixed pine and oak forest stands on carabid beetles. Diversity 2021, 13, 127. [Google Scholar] [CrossRef]
- Mod, H.K.; Heikkinen, R.K.; le Roux, P.C.; Wisz, M.S.; Luoto, M. Impact of biotic interactions on biodiversity varies across a landscape. J. Biogeogr. 2016, 43, 2412–2423. [Google Scholar] [CrossRef]
- Castagneyrol, B.; Jactel, H. Unraveling plant–animal diversity relationships: A meta-regression analysis. Ecology 2012, 93, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 2006, 9, 870–886. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.; Singh, B.K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosyst. 2010, 88, 147–158. [Google Scholar] [CrossRef]
- Hooper, D.U.; Bignell, D.E.; Brown, V.K.; Brussaard, L.; Dangerfield, J.M.; Wall, D.H.; Wardle, D.A.; Coleman, D.C.; Giller, K.E.; Lavelle, P.; et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 2000, 50, 1049–1061. [Google Scholar] [CrossRef]
- Liu, J.-J.; Xu, Y.; Shan, Y.-X.; Burgess, K.S.; Ge, X.J. Biotic and abiotic factors determine species diversity–productivity relationships in mountain meadows. J. Plant Ecol. 2021, 14, 1175–1188. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations and Communities; Blackwell Scientific Publication: Oxford, UK, 1986; pp. 1–876. [Google Scholar]
- Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat. 1985, 125, 827–852. Available online: https://www.jstor.org/stable/2461449 (accessed on 12 March 2022). [CrossRef]
- Csontos, P. A Természetes Magbank Kutatásának Módszerei; Scientia Kiadó: Budapest, Hungary, 2001; pp. 1–155. Available online: https://www.researchgate.net/publication/351241955_A_termeszetes_magbank_kutatasanak_modszerei (accessed on 12 March 2022).
- Salisbury, E.J. The Reproductive Capacity of Plants; G. Bell and Sons: London, UK, 1942; pp. 1–244. [Google Scholar]
- Salisbury, E.J. Seed size and mass in relation to environment. Proc. R. Soc. Ser. B-Biol. 1974, 186, 83–88. [Google Scholar] [CrossRef]
- Csontos, P. The applicability of a seed ecological database (SEED) in botanical research. Seed Sci. Res. 1998, 8, 47–51. [Google Scholar] [CrossRef]
- Csontos, P.; Tamás, J.; Podani, J. Slope aspect affects the seed mass spectrum of grassland vegetation. Seed Sci. Res. 2004, 14, 379–385. [Google Scholar] [CrossRef]
- Deák, B.; Radai, Z.; Lukács, K.; Kelemen, A.; Kiss, R.; Bátori, Z.; Kiss, P.J.; Valkó, O. Fragmented dry grasslands preserve unique components of plant species and phylogenetic diversity in agricultural landscapes. Biodivers. Conserv. 2020, 29, 4091–4110. [Google Scholar] [CrossRef]
- Kuhn, T.; Domokos, P.; Kiss, R.; Ruprecht, E. Grassland management and land use history shape species composition and diversity in Transylvanian semi-natural grasslands. Appl. Veg. Sci. 2021, 24, e12585. [Google Scholar] [CrossRef]
- Păcurar, F.; Balázsi, Á.; Rotar, I.; Vaida, I.; Reif, A.; Vidican, R.; Rușdea, E.; Stoian, V.; Sângeorzan, D. Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape. Rom. Biotechnol. Lett. 2020, 25, 1128–1135. [Google Scholar] [CrossRef]
- Reitalu, T.; Johansson, L.J.; Sykes, M.T.; Hall, K.; Prentice, H.C. History matters: Village distances, grazing and grassland species diversity. J. Appl. Ecol. 2010, 47, 1216–1224. [Google Scholar] [CrossRef]
- Reitalu, T.; Sykes, M.T.; Johansson, L.J.; Lönn, M.; Hall, K.; Vandewalle, M.; Prentice, H.C. Small-scale plant species richness and evenness in semi-natural grasslands respond differently to habitat fragmentation. Biol. Conserv. 2009, 142, 899–908. [Google Scholar] [CrossRef]
- Shaheen, H.; Khan, S.M.; Harper, D.M.; Ullah, Z.; Qureshi, R.A. Species diversity, community structure, and distribution patterns in Western Himalayan alpine pastures of Kashmir, Pakistan. Mt. Res. Dev. 2011, 3, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Briggs, J.M.; Knapp, A.K.; Blair, J.M.; Heisler, J.L.; Hoch, G.A.; Lett, M.S.; McCarron, J.K. An ecosystem in transition: Causes and consequences of the conversion of mesic grassland to shrubland. BioScience 2005, 55, 243–254. [Google Scholar] [CrossRef]
- Knapp, A.K.; Briggs, J.M.; Collins, S.L.; Archer, S.R.; Bret-Harte, M.S.; Ewers, B.E.; Peters, D.P.; Young, D.R.; Shaver, G.R.; Pendall, E.; et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob. Chang. Biol. 2008, 14, 615–623. [Google Scholar] [CrossRef]
- Kesting, S. Shrub Encroachment of Temperate Grasslands: Effects on Plant Biodiversity and Herbage Production. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2009; pp. 1–63. [Google Scholar]
- Debreczy, Z. Fluctuating-dynamic equilibrium of photophil, xerophil rupicolous plant communities and scrub woods at the lower arid woodland limit. Ann. Hist.-Nat. Musei Natl. Hung. 1987, 79, 89–112. Available online: http://publication.nhmus.hu/annales/cikkreszletes.php?idhoz=2467 (accessed on 12 March 2022).
- Stroh, C.L.; De Steven, D.; Guntenspergen, G.R. Effect of climate fluctuations on long-term vegetation dynamics in Carolina bay wetlands. Wetlands 2008, 28, 17–27. [Google Scholar] [CrossRef]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Vilalta, J.M.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Yates, S.; Mooney, H.A. Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecol. Monogr. 2007, 77, 545–568. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Teleki, B.; Sonkoly, J.; Erdős, L.; Tóthmérész, B.; Prommer, M.; Török, P. High resistance of plant biodiversity to moderate native woody encroachment in loess steppe grassland fragments. Appl. Veg. Sci. 2020, 23, 175–184. [Google Scholar] [CrossRef]
- Chytrý, M.; Sedláková, I.; Tichý, L. Species richness and species turnover in a successional heathland. Appl. Veg. Sci. 2001, 4, 89–96. [Google Scholar] [CrossRef]
- Mészáros, T.; Józan, Z. Az évjárat hatása az Adonis vernalis L. Aculeata megporzóira. Bot. Közlem. 2020, 107, 45–55. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I.; Reif, A.; Vidican, R.; Stoian, V.; Gärtner, S.M.; Allen, R.B. Impact of climate on vegetation change in a mountain grassland—Succession and fluctuation. Not. Bot. Horti Agrobot. 2014, 42, 347–356. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; pp. 1–192. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 12 March 2022).
- Ujvári, G.; Borsodi, A.K.; Megyes, M.; Mucsi, M.; Szili-Kovács, T.; Szabó, A.; Szalai, Z.; Jakab, G.; Márialigeti, K. Comparison of soil bacterial communities from juvenile maize plants of a long-term monoculture and a natural grassland. Agronomy 2020, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Dövényi, Z. Magyarország Kistájainak Katasztere, 2nd ed.; MTA Földrajztudományi Kutatóintézet: Budapest, Hungary, 2010; p. 876. [Google Scholar]
- Muraina, T.O.; Xu, C.; Yu, Q.; Yang, Y.; Jing, M.; Jia, X.; Jaman, M.S.; Dam, Q.; Knapp, A.K.; Collins, S.L.; et al. Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. J. Ecol. 2021, 109, 1665–1675. [Google Scholar] [CrossRef]
- Simon, T. A Magyarországi Edényes Flóra Határozója. Harasztok—Virágos Növények, 4th ed.; Nemzeti Tankönyvkiadó: Budapest, Hungary, 2000; p. 976. [Google Scholar]
- Horváth, F.; Dobolyi, Z.K.; Morschhauser, T.; Lőkös, L.; Karas, L.; Szerdahelyi, T. FLÓRA Adatbázis 1.2—Taxonlista és Attribútum-Állomány; FLÓRA Munkacsoport, MTA-ÖBKI, MTM Növénytára: Vácrátót, Hungary, 1995; pp. 1–267. [Google Scholar]
- Tworek, S. Factors affecting temporal dynamics of avian assemblages in a heterogeneous landscape. Acta Ornithol. 2004, 39, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 12 March 2022).
- InStat. GraphPad InStat, Version 3.06, for Windows; GraphPad Software, Inc.: San Diego, CA, USA, 2003. [Google Scholar]
2018 | 2019 | 2020 | |
---|---|---|---|
P1 | 3.0426 | 2.8841 | 2.7083 |
P2 | 2.7015 | 2.4605 | 2.6303 |
P3 | 2.8729 | 2.9251 | 2.8833 |
P4 | 3.1803 | 2.9649 | 3.0256 |
Compared Turnover Rates | Rank Sum Difference | p-Value | Significance |
---|---|---|---|
species turnover | |||
2018/19 vs. 2019/20 | −5.0 | p > 0.05 | ns |
2018/19 vs. 2018/20 | −7.0 | p < 0.05 | * |
2019/20 vs. 2018/20 | −2.0 | p > 0.05 | ns |
vegetation turnover | |||
2018/19 vs. 2019/20 | +2.0 | p > 0.05 | ns |
2018/19 vs. 2018/20 | −5.0 | p > 0.05 | ns |
2019/20 vs. 2018/20 | −7.0 | p < 0.05 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csontos, P.; Tamás, J.; Kovács, Z.; Schellenberger, J.; Penksza, K.; Szili-Kovács, T.; Kalapos, T. Vegetation Dynamics in a Loess Grassland: Plant Traits Indicate Stability Based on Species Presence, but Directional Change When Cover Is Considered. Plants 2022, 11, 763. https://doi.org/10.3390/plants11060763
Csontos P, Tamás J, Kovács Z, Schellenberger J, Penksza K, Szili-Kovács T, Kalapos T. Vegetation Dynamics in a Loess Grassland: Plant Traits Indicate Stability Based on Species Presence, but Directional Change When Cover Is Considered. Plants. 2022; 11(6):763. https://doi.org/10.3390/plants11060763
Chicago/Turabian StyleCsontos, Péter, Júlia Tamás, Zsófia Kovács, Judit Schellenberger, Károly Penksza, Tibor Szili-Kovács, and Tibor Kalapos. 2022. "Vegetation Dynamics in a Loess Grassland: Plant Traits Indicate Stability Based on Species Presence, but Directional Change When Cover Is Considered" Plants 11, no. 6: 763. https://doi.org/10.3390/plants11060763
APA StyleCsontos, P., Tamás, J., Kovács, Z., Schellenberger, J., Penksza, K., Szili-Kovács, T., & Kalapos, T. (2022). Vegetation Dynamics in a Loess Grassland: Plant Traits Indicate Stability Based on Species Presence, but Directional Change When Cover Is Considered. Plants, 11(6), 763. https://doi.org/10.3390/plants11060763