Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structure Elucidation of Compounds
2.2. Cytotoxicity and Anti-HSV-2 Activity of the Compounds
3. Materials and Methods
3.1. Plant Material
3.2. General Experimental Procedures
3.3. Extraction and Isolation
3.4. 3β,7β-Dihydroxy-24-methylenelanosta-8-ene-11-one (1)
3.5. Deightonin (4)
3.6. Cultivation and Quantification of HSV-2
3.7. Assay for Cytotoxic Study
3.8. Assay for Anti-HSV-2 Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- WHO. Herpes simplex Virus. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 15 December 2021).
- Cohen, J.I. Vaccination to reduce reactivation of Herpes simplex virus type 2. J. Infect. Dis. 2017, 215, 844–846. [Google Scholar] [PubMed] [Green Version]
- Betancur-Galvis, L.A.; Morales, G.E.; Forero, J.; Roldan, J.E. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Exp. Ther. 2002, 97, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. Euphorbia thymifolia suppresses Herpes simplex virus-2 infection by directly inactivating virus infectivity. Clin. Exp. Pharmacol. Physiol. 2005, 32, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Lin, T.C.; Yang, C.M.; Wang, K.C.; Lin, L.T.; Lin, C.C. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of Herpes simplex virus type 2 in vitro. J. Antimicrob. Chemother. 2004, 53, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, A.M.; Ascenso, J.R.; Valdeira, L.; Duarte, A.; Frade, J.P.; Freitas, G.; Ferreira, M.J.U. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. Nat. Prod. Res. 2003, 17, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Burkill, H.M. Useful Plants of West Tropical Africa, 2nd ed.; Kew Royal Botanic Gardens: Kew, UK, 1985. [Google Scholar]
- Wang, L.K.; Zheng, C.J.; Li, X.B.; Chen, G.Y.; Han, C.R.; Chen, W.H.; Song, X.P. Two new lanostane triterpenoids from the branches and leaves of Polyalthia oblique. Molecules 2014, 19, 7621–7628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.Y.; Wang, N.L.; Yao, X.S.; Miyata, S.; Kitana, S. Euphane and tirucallane triterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of Xenopus. J. Nat. Prod. 2003, 66, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, K.; Uhara, Y.; Hashimoto, Y. Neolignans of Virola carinata bark. Phytochemistry 1982, 21, 2725–2728. [Google Scholar] [CrossRef]
- Wongsomboon, P.; Rattanajak, R.; Kamchonwongpaisan, S.; Pyne, S.G.; Limtharakul, T. Unique polyacetylenic ester-neolignan derivatives from Mitrephora tomentosa and their antimalarial activities. Phytochemistry 2021, 183, 112615. [Google Scholar] [CrossRef]
- Tsopmo, A.; Kamnaing, P. Terpenoid constituents of Euphorbia sapinii. Phytochem. Lett. 2011, 4, 218–221. [Google Scholar] [CrossRef]
- Valcic, S.; Montenegro, G.; Timmermann, B.N. Lignans from Chilean propolis. J. Nat. Prod. 1998, 61, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Baba, C.; Iseki, K.; Ito, T.; Asakawa, Y.; Kawano, S.; Hashimoto, T. Phenanthrene and phenylpropanoid constituents from the roots of Cymbidium great flower ‘Marylaurencin’ and their antimicrobial activity. J. Nat. Med. 2014, 68, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Waight, E.S.; Razdan, T.K.; Quadri, B.; Harkar, S. Chromones and coumarins from Skimmia laureola. Phytochemistry 1987, 26, 2063–2069. [Google Scholar] [CrossRef]
- Bai, N.; He, K.; Roller, M.; Zheng, B.; Chen, X.; Shao, Z.; Peng, T.; Zheng, Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 2008, 56, 11668–11674. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Yang, Y.; Zhang, L.; Cao, Y.; Yao, W.; Tang, Y.; Ding, A. A Natural triterpene derivative from Euphorbia kansui inhibits cell proliferation and induces apoptosis against rat intestinal epithelioid cell line in vitro. Int. J. Mol. Sci. 2015, 16, 18956–18975. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gao, L.; Li, Z.; Yan, X.; Yang, Y.; Tang, Y.; Cao, Y.; Ding, A. Bio-guided isolation of the cytotoxic terpenoids from the roots of Euphorbia kansui against human normal cell lines L-O2 and GES-1. Int. J. Mol. Sci. 2012, 13, 11247–11259. [Google Scholar] [CrossRef] [PubMed]
- Duarte, N.; Lage, H.; Ferreira, M.J.U. Three new jatrophane polyesters and antiproliferative constituents from Euphorbia tuckeyana. Planta Med. 2008, 74, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, N.; Ferreira, M.J.U. Lagaspholones A and B: Two new jatropholane-type diterpenes from Euphorbia lagascae. Org. Lett. 2007, 9, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Prasain, J.K.; Matsushige, K.; Kadota, S.S. Chemical constituents of Brazilian propolis and their cytotoxic activities. J. Nat. Prod. 1998, 61, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-X.; Mou, J.-F.; Luo, Q.; Mo, Q.-H.; Zhou, X.-L.; Huang, X.; Xu, Q.; Tan, X.-D.; Chen, X.; Liang, C.-Q. Anti-hepatitis B virus activity of esculetin from Microsorium fortunei in vitro and in vivo. Molecules 2019, 24, 3475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Z.; Yan, W.; Chen, Q.L.; Huang, W.Y.; Yang, Z.; Li, X.; Wang, X.H. Inhibition viral RNP and anti-inflammatory activity of coumarins against influenza virus. Biomed. Pharmacother. 2017, 87, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Yu, T.; Zhao, J.X.; Sun, Y.G.; Jiang, J.B.; Duan, Z.B.; Wang, W.K.; Hu, Y.L.; Lei, H.M.; Li, H.Q. Antiviral activities of natural compounds derived from traditional Chinese medicines against porcine circovirus type 2 (PCV2). Biotechnol. Bioprocess Eng. 2015, 20, 180–187. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent advances in the production and applications of ellagic acid and its derivatives: A review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef] [PubMed]
- Mucsi, I.; Molnár, J.; Motohashi, N. Combination of benzo[a]phenothiazines with acyclovir against Herpes simplex virus. Int. J. Antimicrob. Agents 2001, 18, 67–72. [Google Scholar] [CrossRef]
- Virók, D.P.; Eszik, I.; Mosolygó, T.; Önder, K.; Endrész, V.; Burián, K. A direct quantitative PCR-based measurement of Herpes simplex virus susceptibility to antiviral drugs and neutralizing antibodies. J. Virol. Methods 2017, 242, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Hurst, B.L.; Evans, W.J.; Clyde, N.; Wright, S.; Peterson, C.; Jung, K.H.; Day, C.W. Evaluation of cell viability dyes in antiviral assays with RNA viruses that exhibit different cytopathogenic properties. J. Virol. Methods 2017, 246, 51–57. [Google Scholar] [CrossRef] [PubMed]
Position | 1H | 13C |
---|---|---|
1a | 1.02, m | 33.9 |
1b | 2.56, m | |
2 | 1.66–1.72, m (2H) | 28.0 |
3 | 3.32, dd (11.2, 5.0) | 78.8 |
4 | – | 38.5 |
5 | 1.42, m | 45.5 |
6a | 1.69, m | 28.6 |
6b | 1.83, d (13.8) | |
7 | 4.27, br s | 65.6 |
8 | – | 157.3 |
9 | – | 141.6 |
10 | – | 38.6 |
11 | – | 200.4 |
12a | 2.42, d (16.7) | 51.6 |
12b | 2.58, d (16.7) | |
13 | – | 44.3 |
14 | – | 50.9 |
15a | 1.39, m | 29.8 * |
15b | 2.37, m | |
16a | 1.43, m | 29.8 * |
16b | 2.05, m | |
17 | 1.69, m | 50.7 |
18 | 0.92, s (3H) | 18.11 |
19 | 1.17 s (3H) | 18.12 |
20 | 1.43, m | 36.4 |
21 | 0.92, d (6.5) (3H) | 18.5 |
22a | 1.16, m | 34.7 |
22b | 1.58, m | |
23a | 1.90, m | 31.3 |
23b | 2.12, m | |
24 | – | 156.7 |
25 | 2.23 sept (6.7) | 34.0 |
26 | 1.03 *, d (6.7) (3H) | 22.0 |
27 | 1.02 *, d (6.7) (3H) | 22.1 |
28 | 1.05, s (3H) | 28.3 |
29 | 0.85, s (3H) | 16.2 |
30 | 1.01, s (3H) | 25.9 |
1′a | 4.73, br s | 106.3 |
1′b | 4.66, d (1.2) |
Position | 1H | 13C |
---|---|---|
1 | – | 132.7 |
2 | 6.91, m | 108.9 |
3 | – | 146.9 |
4 | – | 146.0 |
5 | 6.88 *, m | 114.5 |
6 | 6.88 *, m | 119.76, 119.74 |
7 | 5.46, d (7.6) | 88.9 |
8 | 3.78, m | 50.7 |
9a | 4.47, dd (11.2, 5.4) | 65.72, 65.67 |
9b | 4.29, dt (11.2, 7.8) | |
1′ | – | 134.93, 134.96 |
2′ | 6.79 *, m | 111.19, 112.23 |
3′ | – | 127.5 |
4′ | – | 147.8 |
5′ | – | 144.6 |
6′ | 6.79 *, m | 115.27, 115.35 |
7′ | 4.56, br d (7.0) | 84.76, 84.87 |
8′ | 5.93 *, ddd (17.1, 10.3, 7.0)5.92 *, ddd (17.1, 10.3, 7.0) | 138.90, 138.95 |
9′a | 5.29, dd (17.1, 1.2) | 116.5 |
9′b | 5.23, dd (10.3, 1.6) | |
4-OH | 5.61, s | - |
3-OCH3 | 3.87, s (3H) | 56.2 |
5′-OCH3 | 3.90, s (3H) | 56.3 |
7′-OCH3 | 3.34, s (3H) | 56.5 |
9-Ac Me | 2.01, s (3H) | 20.9 |
9-Ac CO | – | 170.9 |
Compounds | CC50 | Anti-HSV-2 Activity IC50 | Selectivity Index |
---|---|---|---|
3β,7β-Dihydroxy-24-methylenelanosta-8-ene-11-one (1) | 35.49 ± 1.62 µM | 7.05 ± 0.25 µM | 5.03 |
Kansenone (2) | 52.14 ± 2.21 µM | inactive | |
Euphorbol-7-one (3) | 7.84 ± 0.96 µM | 2.42 ± 0.06 µM | 3.23 |
Deightonin (4) | 39.76 ± 4.73 µM | 11.73 ± 0.79 µM | 3.389 |
Dehydrodiconiferyl-diacetate (5) | 82.533 ± 8.94 µM | inactive | |
Marylaurencinol D (6) | 71.64 ± 5.83 µM | inactive | |
Scoparon (7) | 0.35 ± 0.016 µM | 0.032 ± 0.0021 µM | 10.923 |
3,4,3′-Tri-O-methylellagic acid (8) | 25.74 ± 1.84 µM | inactive | |
Acyclovir | 100 ± 6.15 µM | 0.77 ± 0.032 µM | 129.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidu, M.B.; Kúsz, N.; Tsai, Y.-C.; Vágvölgyi, M.; Berkecz, R.; Kókai, D.; Burián, K.; Hohmann, J.; Rédei, D. Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. Plants 2022, 11, 764. https://doi.org/10.3390/plants11060764
Saidu MB, Kúsz N, Tsai Y-C, Vágvölgyi M, Berkecz R, Kókai D, Burián K, Hohmann J, Rédei D. Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. Plants. 2022; 11(6):764. https://doi.org/10.3390/plants11060764
Chicago/Turabian StyleSaidu, Muhammad Bello, Norbert Kúsz, Yu-Chi Tsai, Máté Vágvölgyi, Róbert Berkecz, Dávid Kókai, Katalin Burián, Judit Hohmann, and Dóra Rédei. 2022. "Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2" Plants 11, no. 6: 764. https://doi.org/10.3390/plants11060764
APA StyleSaidu, M. B., Kúsz, N., Tsai, Y. -C., Vágvölgyi, M., Berkecz, R., Kókai, D., Burián, K., Hohmann, J., & Rédei, D. (2022). Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. Plants, 11(6), 764. https://doi.org/10.3390/plants11060764