Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication
Abstract
:1. Introduction
2. Chemical Classification of Essential Oil Components
2.1. Biosynthesis of Terpenes
2.2. Terpenes and Meroterpenes
2.3. Biosynthesis of Phenylpropanoids
2.4. Phloroglucinols and Phenylpropanoids
2.5. Parent ‘Skeleton’ and Character of Oxidation
2.6. Less Common and Rare Components
2.7. Colour and Viscosity of Essential Oils
3. Stereochemistry and Isomerism in Essential Oils
3.1. Diastereomers
3.2. Enantiomers (Chirality)
3.3. Fundamentals of Chirality (Enantiomers)
4. Chemical Analysis of Essential Oils
4.1. Gas Chromatography
4.2. Gas Chromatography Stationary Phases (Columns)
4.3. Mass Spectrometric Identification by Comparing to a Mass Spectral Library
4.4. What Name to Use from the NIST Search Results
- (1)
- Common name, which is the old convention where the person who first discovered the molecule typically named it with etymology related to the species from where it was isolated. For example, pinene was isolated from an essential oil produced from a member of the genus Pinus, and the ‘-ene’ in the name represents a double bond in the molecule.
- a.
- Common names are habitually provided with a stereochemical descriptor, i.e., α-pinene, γ-eudesmol, or δ-cadinene. As previously mentioned, these ‘isomers’ are usually a consequence of the position of a double bond, but on occasion they can also represent epimers, or an isomer that is not an enantiomer.
- b.
- These achiral isomers have slightly different mass spectral fragmentation patterns (signatures) and they also elute with different arithmetic indices, so they are usually validated by triangulation of these two metrics (arithmetic index and NIST match) with retention times of confirmed compounds eluting nearby on the chromatogram (within close retention times).
- c.
- A common name is usually short, and has no numbers in it, just English letters that are often combined with the Greek alphabet.
- (2)
- Common name hybridised with IUPAC nomenclature, which is a larger descriptor that is built on top of a common name.
- a.
- For example, germacrene D-4-ol, terpinen-4-ol, or methoxymyodesert-3-ene [18,80]. These are molecules that are very similar to another molecule that received a common name but are distinguished by a hydrogen deficiency (a double bond) or oxidation (an alcohol group or ketone, etc.). A number is used to specify the carbon number in the molecule where the difference occurs, relative to the namesake compound.
- b.
- Numeration of the derivatives of common name compounds does not follow IUPAC rules, it remains consistent with the original common name, i.e., methoxymyodesert-3-ene and myodesert-1-ene are numerated according to myodesertene, even though the numeration changes according to IUPAC rules.
- (3)
- Common name or hybrid common name that is given an enantiomeric descriptor.
- a.
- When the NIST library was created, authentic reference standards were used to build the database of mass spectral fragmentation patterns.
- b.
- It was common for authentic standards to be identified to the exact enantiomer, so when the reference was recorded the enantiomeric descriptors were included in the name, which was saved to the database.
- c.
- The enantiomeric descriptors, such as the plus sign ‘+’ or the R or S descriptors, are an artefact of the data entry process, when the data was being compiled into a library of mass spectral data (such as the NIST library).
- d.
- Enantiomeric descriptors, such as (+)-α-pinene, also known as 1R,5R-α-pinene, are determined using analytic methods, such as polarimetry or chiral GC, but are not determined using routine GC-MS.
- e.
- Thus, when a NIST match suggests a molecule with an enantiomeric descriptor, such as (+)-α-pinene, also known as 1R,5R-α-pinene, it is important to delete the descriptor and claim only the common name, or the hybrid common name, i.e., α-pinene, not (+)-α-pinene, or 1R,5R-α-pinene. This is because it is impossible to be this specific using only GC-MS.
- f.
- From a NIST library match, delete R or S, D or L, d- or l-, + or −, and simplify to the common or IUPAC (or systematic) nomenclature.
- (4)
- IUPAC nomenclature (also known as systematic nomenclature) is a convention established to standardise chemical names for an international audience. The long name is ‘International Union of Pure and Applied Chemistry’. The IUPAC nomenclature was established when common names became too frequent, causing some names to be used twice to describe different things.
- a.
- For example, the common name brevifolin can mean two different molecules, either brevifolin (geranium) which is 7,8,9-trihydroxy-1,2-dihydrocyclopenta[c]isochromene-3,5-dione in IUPAC nomenclature, or brevifolin carboxylic acid, which is 1-(2-Hydroxy-4,6-dimethoxyphenyl)ethan-1-one in IUPAC nomenclature.
- b.
- In IUPAC nomenclature, α-pinene is called 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene, and with an enantiomeric descriptor it is (1S)-, or (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene.
- c.
- Evidently the enantiomeric descriptor needs to be removed, i.e., delete (1S)-, or (1R)- and keep the remainder of the name, unless other work was done to confirm the chiral identity.
4.5. Calculation of Arithmetic Indices
- RT is retention time, i.e., RTa is retention time of n-alkane eluting before z,
- z is the essential oil component,
- a is the carbon number of the n-alkane eluting before z,
- b is the carbon number of the n-alkane eluting after z.
4.6. Other Techniques in Chromatographic Analysis
5. Authentication of Essential Oils
5.1. Analytical Methods Used for Authentication of Essential Oils and Natural Volatiles
5.2. Simplistic Methods for Authentication of Essential Oils
5.2.1. UV Absorbance Determination Using Spectrophotometry
5.2.2. Evaporation Ability
5.2.3. Thin Layer Chromatography
6. Suggestions and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scragg, A.H. The production of flavours by plant cell cultures. In Fragrance and Flavours: Chemistry, Bioprocessing and Sustainability, 1st ed.; Berger, R.G., Ed.; Springer: Leipzig, Germany, 2007. [Google Scholar]
- Sadgrove, N.J. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance. J. Ethnopharmacol. 2018, 227, 206–236. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Simmonds, M.S.J. Topical and nutricosmetic products for healthy hair and dermal antiaging using “dual-acting” (2 for 1) plant-based peptides, hormones, and cannabinoids. FASEB Bioadv. 2021, 3, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Padilla-Gonzalez, G.F.; Leuner, O.; Melnikovova, I.; Fernandez-Cusimamani, E. Pharmacology of natural volatiles and essential oils in food, therapy, and disease prophylaxis. Front. Pharmacol. 2021, 12, 740302. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J. Honest nutraceuticals, cosmetics, therapies, and foods (NCTFs): Standardization and safety of natural products. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Pintado, M.; Oliveira, C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals 2021, 14, 295. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Sadgrove, N.J. Southern Africa as a ‘cradle of incense’ in wider African aromatherapy. Sci. Afr. 2020, 9, e00502. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for Australian agriculture. Agriculture 2015, 5, 48–102. [Google Scholar] [CrossRef] [Green Version]
- ISO. International Standards Organisation—Home Page. Available online: http://www.iso.org/iso/home.htm (accessed on 12 September 2021).
- Nsangou, M.F.; Happi, E.N.; Fannang, S.V.; Atangana, A.F.; Waffo, A.F.K.; Wansi, J.D.; Isyaka, S.M.; Sadgrove, N.J.; Sewald, N.; Langat, M.K. Chemical composition and synergistic antimicrobial effects of a vegetatively propagated cameroonian lemon, Citrus x limon (L.) osbeck. ACS Food Sci. Technol. 2021, 1, 354–361. [Google Scholar] [CrossRef]
- Hulley, I.M.; Van Vuuren, S.F.; Sadgrove, N.J.; Van Wyk, B.-E. Antimicrobial activity of Elytropappus rhinocerotis (Asteraceae) against micro-organisms associated with foot odour and skin ailments. J. Ethnopharmacol. 2019, 228, 92–98. [Google Scholar] [CrossRef]
- Langat, M.K.; Mayowa, Y.; Sadgrove, N.; Danyaal, M.; Prescott, T.A.K.; Kami, T.; Schwikkard, S.; Barker, J.; Cheek, M. Multi-layered antimicrobial synergism of (E)-caryophyllene with minor compounds, tecleanatalensine B and normelicopine, from the leaves of Vepris gossweileri (I. Verd.) Mziray. Nat. Prod. Res. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Gonçalves-Martins, M.; Jones, G.L. Chemogeography and antimicrobial activity of essential oils from Geijera parviflora and Geijera salicifolia (Rutaceae): Two traditional Australian medicinal plants. Phytochemistry 2014, 104, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Telford, I.R.H.; Greatrex, B.W.; Jones, G.L. Composition and antimicrobial activity of essential oils from the Phebalium squamulosum species complex (Rutaceae) in New South Wales, Australia. Phytochemistry 2014, 97, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Southwell, I.A. A new occurrence of hedycaryol, the precursor of elemol, in Phebalium ozothamnoides (Rutaceae). Phytochemistry 1970, 9, 2243–2245. [Google Scholar] [CrossRef]
- Collins, T.L.; Andrew, R.L.; Greatrex, B.W.; Bruhl, J.J. Reliable analysis of volatile compounds from small samples of Eucalyptus magnificata (Myrtaceae). Aust. Syst. Bot. 2018, 31, 232–240. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-Gonzalez, G.F.; Green, A.; Langat, M.K.; Mas-Claret, E.; Lyddiard, D.; Klepp, J.; Legendre, S.V.A.; Greatrex, B.W.; Jones, G.L.; et al. The diversity of volatile compounds in Australia’s semi-desert genus Eremophila (Scrophulariaceae). Plants 2021, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Sell, C. Chapter 5. Chemistry of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press, Taylor and Francis Group: London, UK, 2010. [Google Scholar]
- Zhao, L.; Chang, W.-c.; Xiao, Y.; Liu, H.-w.; Liu, P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu. Rev. Biochem. 2013, 82, 497–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C. Shikimic acid pathway in biosynthesis of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds; Soto-Hernández, M., García-Mateos, R., Palma-Tenango, M., Eds.; InTech Open: London, UK, 2019; Volume 1. [Google Scholar]
- Malka, S.K.; Cheng, Y. Possible interactions between the biosynthetic pathways of indole glucosinolate and auxin. Front. Plant Sci. 2017, 8, 2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadgrove, N.J.; Telford, I.R.H.; Padilla-González, G.F.; Greatrex, B.W.; Bruhl, J.J. GC–MS ‘chemophenetics’ on Australian pink-flowered Phebalium (Rutaceae) using herbarium leaf material demonstrates phenetic agreement with putative new species. Phytochem. Lett. 2020, 38, 112–120. [Google Scholar] [CrossRef]
- Sadgrove, N.J. Comparing essential oils from Australia’s ‘Victorian Christmas Bush’ (Prostanthera lasianthos Labill., Lamiaceae) to closely allied new species: Phenotypic plasticity and taxonomic variability. Phytochemistry 2020, 176, 112403. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Madeley, L.G.; Van Wyk, B.-E. Volatiles from African species of Croton (Euphorbiaceae), including new diterpenes in essential oil from Croton gratissimus. Heliyon 2019, 5, e02677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadgrove, N.J.; Senbill, H.; Van Wyk, B.-E.; Greatrex, B.W. New labdanes with antimicrobial and acaricidal activity: Terpenes of Callitris and Widdringtonia (Cupressaceae). Antibiotics 2020, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisowski, W.; Sawicka, U.; Mardarowicz, M.; Asztemborska, M.; Łuczkiewiczd, M. Essential oil from herb and rhizome of Peucedanum ostruthium (L. Koch.) ex DC. Zeitzchrift fur Naturforschung C 2001, 56, 930–932. [Google Scholar] [CrossRef]
- Salazar, K.J.M.; Lago, J.H.G.; Guimarães, E.F.; Kato, M.J. Meroterpenes from Peperomia oreophila Hensch. and Peperomia arifolia Miq. J. Braz. Chem. Soc. 2012, 23, 782–785. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, R.K.; Bojanowski, K. Bakuchiol: A retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int. J. Cosmet. Sci. 2014, 36, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Aprotosoaie, A.C.; Costache, I.I.; Miron, A. Anethole and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 929, 247–267. [Google Scholar] [CrossRef]
- Homburger, F.; Kelley, T.; Friedler, G.; Rusfield, A.B. Toxic and possible carcinogenic effects of 4-allyl-1,2-methylene-dioxybenzene (safrole) in rats on deficient diets. Med. Exp. Int. J. Exp. Med. 1961, 4, 1–11. [Google Scholar] [PubMed]
- Benedetti, M.S.; Malnoë, A.; Broillet, A.L. Absorption, metabolism and excretion of safrole in the rat and man. Toxicology 1977, 7, 69–83. [Google Scholar] [CrossRef]
- Farag, S.E.; Abo-Zeid, M. Degradation of the natural mutagenic compound safrole in spices by cooking and irradiation. Nahrung 1997, 41, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Kalbhen, D.A. Nutmeg as a narcotic. A contribution to the chemistry of pharmacology of nutmeg (Myristica fragrans). Angew. Chem. Int. 1971, 10, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.; Ehlers, D.; Maurer, H.H. Abuse of nutmeg (Myristica fragrans Houtt.): Studies on the metabolism and the toxicologic detection of its ingredients elemicin, myristicin, and safrole in rat and human urine using gas chromagrography/mass spectrometery. Ther. Drug Monit. 2006, 28, 568–575. [Google Scholar] [CrossRef]
- Buckingham, J. Dictionary of Natural Products; Taylor & Francis Group: Oxford, UK, 2000. [Google Scholar]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; EB-Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Goel, D.; Mallavarupa, G.R.; Kumar, S.; Singh, V.; Ali, M. Volatile metabolite compositions of the essential oil from aerial parts of ornamental and artemisinin rich cultivars of Artemisia annua. J. Essent. Oil Res. 2008, 20, 147–152. [Google Scholar] [CrossRef]
- Szmant, H.H.; Halpern, A. Ascaridole in oil of Chenopodium. III. The characterisation of ascaridole. J. Am. Chem. Soc. 1949, 71, 1133–1134. [Google Scholar] [CrossRef]
- Bowles, J.E. The Chemistry of Aromatherapeutic Oils; Allen and Unwin: Crows Nest, NSW, Australia, 2003. [Google Scholar]
- Sadgrove, N.J.; Jones, G.L. Medicinal compounds, chemically and biologically characterised from extracts of Australian Callitris endlicheri and C. glaucophylla (Cupressaceae): Used traditionally in Aboriginal and colonial pharmacopoeia. J. Ethnopharmacol. 2014, 153, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J. Purely australian essential oils past and present: Chemical diversity, authenticity, bioactivity, and commercial Value. Diversity 2022, 14, 124. [Google Scholar] [CrossRef]
- Sobiyi, O.K.; Sadgrove, N.J.; Magee, A.R.; Van Wyk, B.-E. The ethnobotany and major essential oil compounds of anise root (Annesorhiza species, Apiaceae). S. Afr. J. Bot. 2019, 126, 309–316. [Google Scholar] [CrossRef]
- Sadgrove, N.; Jones, G.L. Characterisation and bioactivity of essential oils from Geijera parviflora (Rutaceae): A native bush medicine from Australia. Nat. Prod. Commun. 2013, 8, 747–751. [Google Scholar]
- Sadgrove, N.J.; Lyddiard, D.; Jones, G.L. Bioactive volatiles from Geijera parviflora Lindl. (Rutaceae): Evidence for coumarin chemotypes. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): V World Congress on Medicinal and Aromatic Plants and International Symposium on Plants, as Factories of Natural Substances, Edible and Essential Oils, Brisbane, Australia, 17–22 August 2014; Volume 1125, pp. 145–150. [Google Scholar] [CrossRef]
- Nigg, H.N.; Nordby, H.E.; Beier, R.C.; Dillman, A.; Macias, C.; Hansen, R.C. Phototoxic coumarins in limes. Food Chem. Toxicol. 1993, 31, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Mondello, L.; d’Alcontres, I.S.; Duce, R.D.; Crispo, F. On the genuineness of citrus essential oils. Part XL. The composition of the coumarins and psoralens of Calabrian bergamot essential oil (Citrus bergamia Risso). Flavour Fragr. J. 1993, 8, 17–24. [Google Scholar] [CrossRef]
- Romeo, L.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Isothiocyanates: An overview of their antimicrobial activity against human infections. Molecules 2018, 23, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Başer, K.H.C.; Demirci, F. Chemistry of essential oils. In Fragrance and Flavours: Chemistr, Bioprocessing and Sustainability, 1st ed.; Berger, R.G., Ed.; Springer: Leipzig, Germany, 2007. [Google Scholar]
- Brophy, J.J.; Goldsack, R.J.; Bean, A.R.; Forster, P.I.; Lepschi, B.J. Leaf essential oils of the genus Leptospermum (Myrtaceae) in eastern Australia. Part 5. Leptospermum continentale and allies. Flavour Fragr. J. 1999, 14, 98–104. [Google Scholar] [CrossRef]
- Brophy, J.J.; Lassak, E.V.; Boland, D.J. The leaf essential oils of eucalyptus nova-anglica deane & maiden. J. Essent. Oil Res. 1992, 4, 29–32. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Telford, I.R.H.; Greatrex, B.W.; Jones, G.L.; Andrew, R.; Bruhl, J.J.; Langat, M.K.; Melnikovova, I.; Fernandez-Cusimamani, E. Prostanthera (Lamiaceae) as a ‘cradle of incense’: Chemophenetics of rare essential oils from both new and forgotten Australian ‘mint bush’ species. Plants 2020, 9, 1570. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Lyddiard, D.; Collins, T.L.; Greatrex, B.W.; Jones, G.L. Genifuranal and other derivatives: Smoking desert plants. Acta Hortic. 2016, 1125, 181–188. [Google Scholar] [CrossRef]
- Sadgrove, N.; Jones, G.L.; Greatrex, B.W. Isolation and characterisation of (-)-genifuranal: The principal antimicrobial component in traditional smoking applications of Eremophila longifolia (Scrophulariaceae) by Australian Aboriginal peoples. J. Ethnopharmacol. 2014, 154, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Sandasi, M.; Kamatou, G.P.P.; Viljoen, A.M. Chemotaxonomic evidence suggests that Eriocephalus tenuifolius is the source of Cape chamomile oil and not Eriocephalus punctulatus. Biochem. Syst. Ecol. 2011, 39, 328–338. [Google Scholar] [CrossRef]
- Flemming, M.; Kraus, B.; Rascle, A.; Jürgenliemk, G.; Fuchs, S.; Fürst, R.; Heilmann, J. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene. Fitoterapia 2015, 106, 122–128. [Google Scholar] [CrossRef]
- Newall, C.A.; Anderson, L.A.; Phillipson, J.D. Herbal Medicine: A Guide for Health Care Professionals; Pharmaceutical Press: London, UK, 1996; Volume 296, p. 996. [Google Scholar]
- Phumthum, M.; Sadgrove, N.J. High-value plant species used for the treatment of “fever” by the Karen hill tribe people. Antibiotics 2020, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Hulley, I.M.; Ozekg, O.; Sadgrove, N.J.; Tilney, P.M.; Ozekt, O.; Başer, H.C.K. Essential oil composition of a medicinally important Cape species: Pentzia punctata (Asteraceae). S. Afr. J. Bot. 2019, 127, 208–212. [Google Scholar] [CrossRef]
- Hulley, I.M.; Sadgrove, N.J.; Tilney, P.M.; Özek, G.; Yur, S.; Özek, T.; Başer, K.H.C.; van Wyk, B.-E. Essential oil composition of Pentzia incana (Asteraceae), an important natural pasture plant in the Karoo region of South Africa. Afr. J. Range Forage Sci. 2018, 35, 137–145. [Google Scholar] [CrossRef]
- Russo, A.; Bruno, M.; Avola, R.; Cardile, V.; Rigano, D. Chamazulene-rich artemisia arborescens essential oils affect the cell growth of human melanoma cells. Plants 2020, 9, 1000. [Google Scholar] [CrossRef] [PubMed]
- Doimo, L. Azulenes, costols and γ-lactones from cypress-pines (Callitris columellaris, C. glaucophylla and C. intratropica) distilled oils and methanol extracts. J. Essent. Oil Res. 2001, 13, 25–29. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Van Wyk, B.-E. Major volatile compounds in the essential oil of the aromatic culinary herb Pelargonium crispum (Geraniaceae). Nat. Volatiles Essent. Oils 2018, 5, 23–28. [Google Scholar]
- Stanley, W.L.; Lindwall, R.C.; Vannier, S.H. Specific quantitative colorimetric method of analysis for citral in lemon oil. Agric. Food Chem. 1958, 6, 858–860. [Google Scholar] [CrossRef]
- Guenther, E. The Essential Oils—Vol 1: History—Origin in Plants—Production—Analysis; Van Nostrand: New York, NY, USA, 1948. [Google Scholar]
- Guenther, E. The Essential Oils—Vol 1–6; D. Van Nostrand Company, Inc.: New York, NY, USA, 1948. [Google Scholar]
- Venuto, P.B.; Day, A.R. The preparation of allylic alcohols from citral a and citral b. A study of their dehydration reactions. J. Org. Chem. 1964, 23, 2735–2739. [Google Scholar] [CrossRef]
- Brooks, W.H.; Guida, W.C.; Daniel, K.G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 2011, 11, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Leitereg, T.J.; Guadagni, D.G.; Harris, J.; Mon, T.R.; Teranishi, R. Chemical and sensory data supporting the difference between the odors of the enantiomeric carvones. J. Agric. Food Chem. 1971, 19, 785–787. [Google Scholar] [CrossRef]
- Sadgrove, N.; Telford, I.R.H.; Greatrex, B.W.; Dowell, A.; Jones, G.L. Dihydrotagetone, an unusual fruity ketone, is found in enantiopure and enantioenriched forms in additional Australian native taxa of Phebalium (Rutaceae: Boronieae). Nat. Prod. Commun. 2013, 8, 737–740. [Google Scholar] [CrossRef] [Green Version]
- Usuki, Y.; Deguchi, T.; Iio, H. A new concise synthesis of (+)-ipomeamarone, (−)-ngaione, and their stereoisomers. Chem. Lett. 2014, 43, 1882–1884. [Google Scholar] [CrossRef]
- Collins, T.L.; Jones, G.L.; Sadgrove, N. Volatiles from the rare Australian desert plant Prostanthera centralis B.J.Conn (Lamiaceae): Chemical composition and antimicrobial activity. Agriculture 2014, 4, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Sadgrove, N.J.; Greatrex, B.W.; Jones, G.L. α-Cyclodextrin encapsulation enhances antimicrobial activity of cineole-rich essential oils from Australian species of Prostanthera (Lamiaceae). Nat. Volatiles Essent. Oils 2015, 2, 30–38. [Google Scholar]
- Dellar, J.E.; Cole, M.D.; Gray, A.I.; Gibbons, S.; Waterman, P.G. Antimicrobial sesquiterpenes from Prostanthera aff. melissifolia and P. rotundifolia. Phytochemistry 1994, 36, 957–960. [Google Scholar] [CrossRef]
- Hively, R.A.; Hinton, R.E. Variation of the retention index with temperature on squalane substrates. J. Chromatogr. Sci. 1968, 6, 203–217. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Sadgrove, N.J.; Collins, T.L.; Legendre, S.V.A.-M.; Klepp, J.; Jones, G.L.; Greatrex, B.W. The iridoid myodesert-1-ene and elemol/eudesmol are found in distinct chemotypes of the Australian aboriginal medicinal plant eremophila dalyana (Scrophulariaceae). Nat. Prod. Commun. 2016, 11, 1934578X1601100902. [Google Scholar] [CrossRef] [Green Version]
- NIST. NIST Chemistry WebBook: Nist Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 10 February 2022).
- Bicchi, C.; Liberto, E.; Matteodo, M.; Sgorbini, B.; Mondello, L.; Zellner, B.d.A.; Costa, R.; Rubiolo, P. Quantitative analysis of essential oils: A complex task. Flavour Fragr. J. 2008, 23, 382–391. [Google Scholar] [CrossRef]
- Eyres, G.; Marriott, P.J.; Dufour, J.-P. The combination of gas chromatography–olfactometry and multidimensional gas chromatography for the characterisation of essential oils. J. Chromatogr. A 2007, 1150, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Capetti, F.; Marengo, A.; Cagliero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Adulteration of essential oils: A multitask issue for quality control. Three case studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) cheel. Molecules 2021, 26, 5610. [Google Scholar] [CrossRef]
- Schmidt, E.; Wanner, J. Adulteration of essential oils. In Handbook of Essential Oils, 3rd ed.; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mosandl, A. Enantioselective capillary gas chromatography and stable isotope ratio mass spectrometry in the authenticity control of flavors and essential oils. Foods Rev. Int. 1995, 11, 597–664. [Google Scholar] [CrossRef]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Cassabianca, H.; Haq, S.; Lin, H.-K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography–mass spectrometry. J. Chromatogr. A 2012, 1261, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Telford, I.R.H.; Bruhl, J.J. Phebalium verrucosum (Rutaceae: Boronieae), new status for a taxon excluded from P. squamulosum on morphological and phytochemical evidence. Telopea 2014, 16, 127–132. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Schipilliti, L.; Bonaccorsi, I.L.; Occhiuto, C.; Dugo, P.; Mondello, L. Authentication of citrus volatiles based on carbon isotope ratios. J. Essent. Oil Res. 2018, 30, 1–15. [Google Scholar] [CrossRef]
- Bounaas, K.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; de la Guardia, M.; El Hattab, M. Essential oil counterfeit identification through middle infrared spectroscopy. Microchem. J. 2018, 139, 347–356. [Google Scholar] [CrossRef]
- Martin, G.; Remaud, G.; Martin, G. Authentication of natural flavours using SNIF-NMR® new developments on mustard oil and safron. Dev. Food Sci. 1995, 37, 355–378. [Google Scholar]
- Al Riza, D.F.; Widodo, S.; Purwanto, Y.A.; Kondo, N. Combined fluorescence-transmittance imaging system for geographical authentication of patchouli oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 155–160. [Google Scholar] [CrossRef] [PubMed]
Non-Polar Columns | Polar Columns |
---|---|
ZB-1; DB-1; OV-1; SE-30; PB-1; OV-101; DB-5; DB-5MS; HP-5MS; BP-1; SPB-5; BPX-5; RTX-1 | PEG-20M; PEG 4000; Carbowax 20M; Carbowax 4000; HP-Wax; DB-Wax; Supelcowax; Supelcowax-10; Innowax |
Symbol | Cell ID | Excel Formula |
---|---|---|
RTz | A2–A13 | Retention time value obtained experimentally from GC-MS chromatogram |
RTa | B2–B13 | =@IF(A2 > H$13,H$13,IF(A2 > H$12,H$12,IF(A2 > H$11,H$11,IF(A2 > H$10,H$10,IF(A2 > H$9,H$9,IF(A2 > H$8,H$8,IF(A2 > H$7,H$7,IF(A2 > H$6,H$6,IF(A2 > H$5,H$5,IF(A2 > H$4,H$4,IF(A2 > H$3,H$3,IF(A2 > H$2,H$2,error)))))))))))) |
RTb | C2–C13 | =IF(B2 = H$2,H$3,IF(B2 = H$3,H$4,IF(B2 = H$4,H$5,IF(B2 = H$5,H$6,IF(B2 = H$6,H$7,IF(B2 = H$7,H$8,IF(B2 = H$8,H$9,IF(B2 = H$9,H$10,IF(B2 = H$10,H$11,IF(B2 = H$11,H$12,IF(B2 = H$12,H$13,IF(B2 = H$13,H$14)))))))))))) |
a | D2–D13 | =IF(B3 = H$2,8,IF(B3 = H$3,9,IF(B3 = H$4,10,IF(B3 = H$5,11,IF(B3 = H$6,12,IF(B3 = H$7,13,IF(B3 = H$8,14,IF(B3 = H$9,15,IF(B3 = H$10,16,IF(B3 = H$11,17,IF(B3 = H$12,18,IF(B3 = H$13,19)))))))))))) |
AI | E2–E13 | =100*(D4 + (A4-B4)/(C4-B4)) |
No. | G2–G13 | Carbon number of alkane from homologous series of n-alkanes |
RT | H2–H13 | Retention time of alkane from homologous series of n-alkanes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. https://doi.org/10.3390/plants11060789
Sadgrove NJ, Padilla-González GF, Phumthum M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants. 2022; 11(6):789. https://doi.org/10.3390/plants11060789
Chicago/Turabian StyleSadgrove, Nicholas J., Guillermo F. Padilla-González, and Methee Phumthum. 2022. "Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication" Plants 11, no. 6: 789. https://doi.org/10.3390/plants11060789
APA StyleSadgrove, N. J., Padilla-González, G. F., & Phumthum, M. (2022). Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants, 11(6), 789. https://doi.org/10.3390/plants11060789