Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Comparison of Salinity Tolerance
3.2. Comparison of Ion Accumulation
3.3. Mineral Nutrition
3.4. Limitations and Benefits of the Experimental System and Future Perspectives
4. Materials and Methods
4.1. Plant Material
4.2. Cultivation Conditions and Treatments
4.3. Measurements
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxted, N.; Ford-Lloyd, B.V.; Jury, S.; Kell, S.; Scholten, M. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685. [Google Scholar] [CrossRef]
- Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop wild relatives: Undervalued, underutilized and under threat? Bioscience 2011, 61, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Diez, M.J.; Fita, A.; Herraiz, F.J.; Rodríguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warschefsky, E.; Penmetsa, R.V.; Cook, D.R.; von Wettberg, E. Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 2014, 101, 1791–1800. [Google Scholar] [CrossRef]
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Waters 2018, 10, 1030. [Google Scholar]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2021, 41, 1–31. [Google Scholar] [CrossRef]
- Manchanda, G.; Garg, N. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 2008, 30, 595–618. [Google Scholar] [CrossRef]
- Heywood, V.H.; Zohary, D. A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterr. 1995, 5, 375–415. [Google Scholar]
- Zohary, M.; Heller, D. The Genus Trifolium; Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1984; 606p. [Google Scholar]
- Cabinet of Ministers of Latvia. Provisions on the List of Specially Protected Species and Species of restricted Use. Regulations of the Cabinet of Ministers of Latvia No. 396. 2000. Available online: https://likumi.lv/ta/id/12821-noteikumi-par-ipasi-aizsargajamo-sugu-un-ierobezoti-izmantojamo-ipasi-aizsargajamo-sugu-sarakstu (accessed on 14 March 2022).
- Taylor, N.; Gillett, J. Crossing and morphological relationships among Trifolium species closely related to strawberry and Per-sian clover. Crop Sci. 1988, 28, 636–639. [Google Scholar] [CrossRef]
- Nichols, P.G.H.; Revell, C.K.; Humphries, A.W.; Howie, J.H.; Hall, E.J.; Sandral, G.A.; Ghamkhar, K.; Harris, C.A. Temperate pasture legumes in Australia—Their history, current use, and future prospects. Crop Pasture Sci. 2012, 63, 691–725. [Google Scholar] [CrossRef]
- Huber, H.; Wiggerman, L. Shade avoidance in the clonal herb Trifolium fragiferum: A field study with experimentally manip-ulated vegetation height. Plant Ecol. 1997, 130, 53–62. [Google Scholar] [CrossRef]
- Townsend, C.E. Miscellaneous perennial clovers. In Clover Science and Technology; Taylor, J.L., Ed.; ASA/CSSA/SSSA: Madison, WI, USA, 1985; pp. 563–578. [Google Scholar]
- Pederson, G.A. White clover and other perennial clovers. In Forages—An Introduction to Grassland Agriculture, 5th ed.; Barnes, R.F., Miller, D.A., Nelson, C.J., Eds.; Iowa State University: Ames, IA, USA, 1995; Volume 1, pp. 227–236. [Google Scholar]
- Andersone-Ozola, U.; Jēkabsone, A.; Purmale, L.; Romanovs, M.; Ievinsh, G. Abiotic Stress Tolerance of Coastal Accessions of a Promising Forage Species. Trifolium fragiferum. Plants 2021, 10, 1552. [Google Scholar] [CrossRef]
- Rumbaugh, M.D.; Pendery, B.M.; James, D.W. Variation in the salinity tolerance of strawberry clover (Trifolium fragiferum L.). Plant Soil 1993, 153, 265–271. [Google Scholar] [CrossRef]
- Janssen, J.A.M.; Rodwell, J.S. European Red List of Habitats: Part 2. Terrestrial and Freshwater Habitats; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Z.; Liu, J.; Zhu, T.; Wei, X.; Fan, H.; Wang, B. Adaptation mechanisms of salt excluders under saline conditions and its applications. Int. J. Mol. Sci. 2018, 19, 3668. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Res. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Wu, H. Plant salt tolerance and Na+ sensing and transport. Crop J. 2018, 6, 215–225. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Maxted, N.; Scholten, M.; Codd, R.; Ford-Lloyd, B. Creation and use of a national inventory of crop wild relatives. Biol. Conserv. 2007, 140, 142–159. [Google Scholar] [CrossRef]
- Andersone-Ozola, U.; Jēkabsone, A.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Soil chemical properties and mineral nutrition of Latvian accessions of Trifolium fragiferum, a crop wild relative plant species. Environ. Exp. Biol. 2021, 19, 245–254. [Google Scholar]
- Ciocârlan, V.; Georgescu, M.I.; Sǎvulescu, E.; Anastasiu, P. Plopul salt marshes (Tulcea County)—An unique area for halophytes in Romania. Acta Horti Bot. Bucurest. 2013, 40, 27–32. [Google Scholar] [CrossRef]
- Rogers, M.E.; West, D.W. The Effects of Rootzone Salinity and Hypoxia on Shoot and Root Growth in Trifolium Species. Ann. Bot. 1993, 72, 503–509. [Google Scholar] [CrossRef]
- Can, E.; Arslan, M.; Sener, O.; Daghan, H. Response of strawberry clover (Trifolium fragiferum L.) to salinity stress. Res. Crops 2013, 14, 576–584. [Google Scholar]
- Rogers, M.E.; Colmer, T.D.; Frost, K.; Henry, D.; Cornwall, D.; Hulm, E.; Hughes, S.; Nichols, P.G.H.; Craig, A.D. The influence of NaCl salinity and hypoxia on aspects of growth in Trifolium species. Crop Pasture Sci. 2009, 60, 71–82. [Google Scholar] [CrossRef]
- Abogadallah, G.M. Sensitivity of Trifolium alexandrinum L. to salt stress is related to the lack of long-term stress-induced gene expression. Plant Sci. 2010, 178, 491–500. [Google Scholar] [CrossRef]
- Rogers, M.E.; Noble, C.L. Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. Plant Soil 1992, 146, 131–136. [Google Scholar] [CrossRef]
- Ashraf, M. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 361–376. [Google Scholar] [CrossRef]
- Barros, N.L.F.; Marques, D.N.; Tadaiesky, L.B.A.; de Souza, C.R.B. Halophytes and other molecular strategies for the genera-tion of salt-tolerant crops. Plant Physiol. Biochem. 2021, 162, 581–591. [Google Scholar] [CrossRef]
- Cekstere, G.; Karlsons, A.; Grauda, D. Salinity-induced responses and resistance in Trifolium repens L. Urban For. Urban Green. 2015, 14, 225–236. [Google Scholar] [CrossRef]
- Ogburn, R.M.; Edwards, E.J. The ecological water-use strategies of succulent plants. In Advances in Botanical Research; Kader, J.-C., Delseny, M., Eds.; Academic Press: Burlington, MA, USA, 2010; Volume 55, pp. 179–225. [Google Scholar]
- Reimann, C.; Breckle, S. Salt tolerance and ion relations of Salsola kali L.: Differences between ssp. tragus (L.) Nyman and ssp. ruthenica (Iljin) Soó. New Phytol. 1995, 130, 37–45. [Google Scholar] [CrossRef]
- Hajiboland, R.; Bahrami-Rad, S.; Zeinalzade, N.; Atazadeh, E.; Akhani, H.; Poschenrieder, C. Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant Soil 2020, 448, 315–334. [Google Scholar] [CrossRef]
- Palchetti, M.V.; Reginato, M.; Llanes, A.; Hornbacher, J.; Papenbrock, J.; Barboza, G.E.; Luna, V.; Cantero, J.J. New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae, Solanaceae). Plant Physiol. Biochem. 2021, 163, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Belghith, I.; Senkler, J.; Abdelly, C.; Braun, H.-P.; Debez, A. Changes in leaf ecophysiological traits and proteome profile provide new insights into variability of salt response in the succulent halophyte Cakile maritima. Funct. Plant Biol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Pan, Y.-Q.; Guo, H.; Wang, S.-M.; Zhao, B.; Zhang, J.-L.; Ma, Q.; Yin, H.-J.; Bao, A.-K. The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Front. Plant Sci. 2016, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Rasel, M.; Tahjib-Ul-Arif, M.; Hossain, M.A.; Hassan, L.; Farzana, S.; Brestic, M. Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism. J. Plant Growth Regul. 2021, 40, 1853–1868. [Google Scholar] [CrossRef]
- Dūmiņš, K.; Andersone-Ozola, U.; Samsone, I.; Elferts, D.; Ievinsh, G. Growth and physiological performance of a coastal species Trifolium fragiferum as asffected by a coexistence with Trifolium repens, NaCl treatment and inoculation with rhizobia. Plants 2021, 10, 2196. [Google Scholar] [CrossRef]
- Romero, J.M.; Marañón, T. Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): Effects of NaCl salinity and plant age. New Phytol. 1996, 132, 565–573. [Google Scholar] [CrossRef]
- Han, G.; Liu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Front. Plant Sci. 2020, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Sofy, M.R.; Elhindi, K.M.; Farouk, S.; Alotaibi, M.A. Zinc and Paclobutrazol Mediated Regulation of Growth, Upregulating Antioxidant Aptitude and Plant Productivity of Pea Plants under Salinity. Plants 2020, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Canalejo, A.; Martínez-Domínguez, D.; Córdoba, F.; Torronteras, R. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora. Estuar. Coast. Shelf Sci. 2014, 146, 68–75. [Google Scholar] [CrossRef]
- Grieve, C.M.; Poss, J.; Grattan, S.; Shouse, P.; Lieth, J.; Zeng, L. Productivity and Mineral Nutrition of Limonium Species Irrigated with Saline Wastewaters. HortScience 2005, 40, 654–658. [Google Scholar] [CrossRef]
- Yepes, L.; Chelbi, N.; Vivo, J.-M.; Franco, M.; Agudelo, A.; Carvajal, M.; Martínez-Ballesta, M.D.C. Analysis of physiological traits in the response of Chenopodiaceae, Amaranthaceae, and Brassicaceae plants to salinity stress. Plant Physiol. Biochem. 2018, 132, 145–155. [Google Scholar] [CrossRef]
- Mbarki, S.; Skalicky, M.; Vachova, P.; Hajihashemi, S.; Jouini, L.; Zivcak, M.; Tlustos, P.; Brestic, M.; Hejnak, V.; Khelil, A.Z. Comparing Salt Tolerance at Seedling and Germination Stages in Local Populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 2020, 9, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, W.J.; Broughton, W.J. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Genet. 2009, 7, 312–320. [Google Scholar] [CrossRef]
- Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz, L.; et al. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front. Microbiol. 2020, 11, 509919. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zhang, P.; Cao, Y.; Hu, T.; Yang, P. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 2016, 402, 247–261. [Google Scholar] [CrossRef]
- Irshad, A.; Rehman, R.N.U.; Abrar, M.; Saeed, Q.; Sharif, R.; Hu, T. Contribution of rhizobium-legume symbiosis in salt stress tolerance in Medicago truncatula evaluated through photosynthesis, antioxidant enzymes, and compatible solutes accumulation. Sustainability 2021, 13, 3369. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Shukla, P.S.; Gupta, K.; Jha, B. Bioengineering for Salinity Tolerance in Plants: State of the Art. Mol. Biotechnol. 2013, 54, 102–123. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Tipirdamaz, R.; Gagneul, D.; Duhazé, C.; Aïnouche, A.; Monnier, C.; Özkum, D.; Larher, F. Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ. Exp. Bot. 2006, 57, 139–153. [Google Scholar] [CrossRef]
- Grigore, M.N.; Boscaiu, M.; Vicente, O. Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur. J. Plant Sci. Biotechnol. 2011, 5, 12–19. [Google Scholar]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Afrin, S.; Bashar, K.K.; Afrin, T.; Mahamud, A.G.M.S.U.; Polash, M.A.S.; Hossain, M.T.; Sohel, M.A.T.; Brestic, M.; et al. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
Treatment | TF1 | TF2 | TF4 | TF7 | TF8 | TF9 |
---|---|---|---|---|---|---|
Number of stolons (n) | ||||||
0 | 19.8 ± 3.0 a | 25.0 ± 2.7 a | 18.8 ± 2.1 a | 26.8 ± 3.6 a | 18.0 ± 2.4 a | 30.8 ± 5.8 a |
0.5 | 20.9 ± 4.3 a | 21.8 ± 3.3 a | 17.6 ± 2.6 a | 22.6 ± 4.2 a | 16.8 ± 1.0 a | 28.6 ± 3.1 a |
1 | 18.8 ± 3.7 a | 25.8 ± 3.0 a | 18.2 ± 1.9 a | 37.6 ± 8.0 a | 16.8 ± 1.9 a | 24.2 ± 2.3 a |
2 | 12.7 ± 5.5 a | 16.2 ± 2.0 b | 16.2 ± 1.9 a | 18.0 ± 2.6 b | 18.2 ± 3.0 a | 18.4 ± 6.0 b |
5 | 12.1 ± 1.4 b | 14.8 ± 3.6 b | 10.2 ± 1.3 b | 14.0 ± 2.0 b | 13.2 ± 1.3 b | 14.2 ± 3.8 b |
Total stolon length (m) | ||||||
0 | 7.38 ± 0.91 a | 7.43 ± 1.00 a | 3.92 ± 0.70 a | 10.28 ± 1.03 a | 5.18 ± 1.16 a | 6.35 ± 1.27 a |
0.5 | 6.67 ± 0.81 a | 7.10 ± 1.10 a | 4.05 ± 0.57 a | 8.23 ± 2.14 a | 4.74 ± 0.36 a | 4.97 ± 0.68 a |
1 | 4.56 ± 0.67 b | 6.29 ± 0.83 a | 2.87 ± 0.41 a | 10.54 ± 2.04 a | 3.72 ± 0.64 ab | 4.11 ± 0.32 ab |
2 | 3.63 ± 0.93 bc | 3.94 ± 0.32 b | 1.88 ± 0.30 b | 4.88 ± 0.59 b | 2.65 ± 0.49 b | 2.70 ± 0.99 bc |
5 | 2.12 ± 0.20 c | 2.21 ± 0.41 c | 0.82 ± 0.09 c | 2.43 ± 0.34 c | 1.35 ± 0.27 c | 1.54 ± 0.35 c |
Number of leaves (n) | ||||||
0 | 272 ± 33 a | 321 ± 24 a | 175 ± 21 a | 348 ± 47 a | 274 ± 45 a | 397 ± 92 a |
0.5 | 366 ± 43 a | 346 ± 49 a | 204 ± 33 a | 314 ± 40 a | 241 ± 27 a | 464 ± 48 a |
1 | 229 ± 46 a | 338 ± 33 a | 175 ± 19 a | 443 ± 58 a | 247 ± 33 a | 374 ± 44 a |
2 | 289 ± 78 a | 247 ± 16 b | 151 ± 14 a | 294 ± 25 a | 291 ± 40 a | 322 ± 61 a |
5 | 168 ± 23 b | 206 ± 34 b | 82 ± 10 b | 153 ± 20 b | 133 ± 16 b | 214 ± 52 b |
Code | Associated Water Reservoir | Habitat | Location | Coordinates | Soil EC (mS m−1) |
---|---|---|---|---|---|
TF1 | Lake Liepājas | Salt-affected wet shore meadow | City of Liepāja, Latvia | 56°29′29″ N, 21°1′38″ E | 380 ± 124 |
TF2 | River Lielupe | Salt-affected shore meadow | City of Jūrmala, Lielupe, River Lielupe Estuary, Latvia | 57°0′11″ N, 23°55′56″ E | 85 ± 5 |
TF4 | – | Degraded urban land | City of Rīga, Vidzeme Suburb, Latvia | 56°57′46″ N, 24°7′2″ E | 69 ± 6 |
TF7 | The Gulf of Riga of the Baltic Sea | Dry coastal meadow | Town of Ainaži, Latvia | 57°52′8″ N, 24°21′10″ E | 65 ± 4 |
TF8 cv. ‘Palestine’ | na | na | na | na | na |
TF9 | The Baltic Sea | Salt-affected wet coastal meadow | Hammeren, Bornholm, Denmark | 55°17′54″ N 14°46′17″ E | 2749 ± 209 |
Treatment | Added Salinity (mM) | Amount of Added NaCl (g) | Concentration of Added Na (g L−1) | Soil EC (mS m−1) | Soil Suspension (1:5) EC (mS cm−1) |
---|---|---|---|---|---|
Control | 0 | 0 | 0 | 71.7 ± 7.3 | 0.27 ± 0.05 |
0.5 | 22 | 1.27 | 0.5 | 210.4 ± 10.0 | 0.50 ± 0.02 |
1 | 44 | 2.54 | 1.0 | 353.8 ± 31.0 | 1.96 ± 0.17 |
2 | 87 | 5.08 | 2.0 | 514.5 ± 36.9 | 3.04 ± 0.72 |
5 | 217 | 12.70 | 5.0 | 3602.2 ± 327.5 | 9.77 ± 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jēkabsone, A.; Andersone-Ozola, U.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum. Plants 2022, 11, 797. https://doi.org/10.3390/plants11060797
Jēkabsone A, Andersone-Ozola U, Karlsons A, Romanovs M, Ievinsh G. Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum. Plants. 2022; 11(6):797. https://doi.org/10.3390/plants11060797
Chicago/Turabian StyleJēkabsone, Astra, Una Andersone-Ozola, Andis Karlsons, Māris Romanovs, and Gederts Ievinsh. 2022. "Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum" Plants 11, no. 6: 797. https://doi.org/10.3390/plants11060797
APA StyleJēkabsone, A., Andersone-Ozola, U., Karlsons, A., Romanovs, M., & Ievinsh, G. (2022). Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum. Plants, 11(6), 797. https://doi.org/10.3390/plants11060797