Growth of Deciduous and Evergreen Species in Two Contrasting Temperate Forest Stands in Korea: An Intersite Experiment
Abstract
:1. Introduction
2. Results
2.1. Variation in Soil Characteristics and Light Availability in Oak and Pine Forest Stand
2.2. Height Growth, RCD Growth, and Biomass of Fraxinus rhynchophylla, Pinus koraiensis, and Zelkova serrata between Forest Stands and Soil Types
2.3. Principal Component Biplot Analysis
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Plant Materials and Experimental Design
4.3. Soil Analysis
4.4. Light Measurement
4.5. Growth Measurement and Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modrzyński, J.; Chmura, D.J.; Tjoelker, M.G. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Tree Physiol. 2015, 35, 879–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediavilla, S.; Escudero, A. Mature trees versus seedlings: Differences in leaf traits and gas exchange patterns in three co-occurring Mediterranean oaks. Ann. For. Sci. 2003, 60, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Han, S.; Hernandez, J.; An, J.; Nyam-Osor, B.; Jung, M.; Lee, P.; Lee, S. The use of deep container and heterogeneous substrate as potentially effective nursery practice to produce good quality nodal seedlings of Populus sibirica Tausch. Forests 2021, 12, 418. [Google Scholar] [CrossRef]
- Tripathi, S.; Bhadouria, R.; Srivastava, P.; Devi, R.S.; Chaturvedi, R.; Raghubanshi, A.S. Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecol. Processes 2020, 9, 2. [Google Scholar] [CrossRef]
- Gilbert, B.; Wright, S.J.; Muller-Landau, H.C.; Kitajima, K.; Hernandéz, A. Life history trade-offs in tropical trees and Lianas. Ecology 2006, 87, 1281–1288. [Google Scholar] [CrossRef]
- Seiwa, K. Trade-offs between seedling growth and survival in deciduous broadleaved trees in a temperate forest. Ann. Bot. 2007, 99, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.O.; Maldia, L.S.J.; Park, B.B. Research trends and methodological approaches of the impacts of windstorms on forests in tropical, subtropical, and temperate zones: Where are we now and how should research move forward? Plants 2020, 9, 1709. [Google Scholar] [CrossRef]
- Sapkota, I.P.; Oden, P.C. Gap characteristics and their effects on regeneration, dominance and early growth of woody species. J. Plant Ecol. 2009, 2, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Chen, H.Y.; Thomas, S.C.; Shahi, C. Linking resource availability and heterogeneity to understorey species diversity through succession in Boreal Forest of Canada. J. Ecol. 2018, 106, 1266–1276. [Google Scholar] [CrossRef]
- Hart, S.A.; Chen, H.Y. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 2006, 25, 381–397. [Google Scholar] [CrossRef]
- Su, X.; Wang, M.; Huang, Z.; Fu, S.; Chen, H.Y.H. Forest understorey vegetation: Colonization and the availability and heterogeneity of resources. Forests 2019, 10, 944. [Google Scholar] [CrossRef] [Green Version]
- Brenes-Arguedas, T.; Roddy, A.; Coley, P.D.; Kursar, T.A. Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia 2010, 166, 443–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matkala, L.; Salemaa, M.; Bäck, J. Soil total phosphorus and nitrogen explain vegetation community composition in a northern forest ecosystem near a phosphate massif. Biogeosciences 2019, 17, 1535–1556. [Google Scholar] [CrossRef] [Green Version]
- Meijer, S.S.; Holmgren, M.; Van der Putten, W.H. Effects of plant–soil feedback on tree seedling growth under arid conditions. J. Plant Ecol. 2011, 4, 193–200. [Google Scholar] [CrossRef]
- Travlos, I.S.; Karamanos, A.J. Effects of soil texture on vegetative growth of the tropical legume Marama Bean (Tylosema esculentum). J. Agron. 2006, 5, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Kuuluvainen, T.; Hokkanen, T.J.; Järvinen, E.; Pukkala, T. Factors related to seedling growth in a Boreal Scots Pine Stand: A spatial analysis of a vegetation–soil system. Can. J. For. Res. 1993, 23, 2101–2109. [Google Scholar] [CrossRef]
- North, M.; Oakley, B.; Fiegener, R.; Gray, A.; Barbour, M. Influence of light and soil moisture on Sierran mixed-conifer understory communities. Plant Ecol. 2005, 177, 13–24. [Google Scholar] [CrossRef]
- Youn, W.B.; Hernandez, J.O.; Park, B.B. Effects of shade and planting methods on the growth of Heracleum moellendorffii and Adenophora divaricata in different soil moisture and nutrient conditions. Plants 2021, 10, 2203. [Google Scholar] [CrossRef]
- Hubbell, S.P.; Foster, R.B.; O’Brien, S.T.; Harms, K.E.; Condit, R.; Wechsler, B.; Wright, S.J.; de Lao, S.L. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 1999, 283, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Khurana, E.; Singh, J.S. Impact of life-history traits on response of seedlings of five tree species of tropical dry forest to Shade. J. Trop. Ecol. 2006, 22, 653–661. [Google Scholar] [CrossRef]
- Onwuka, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res. 2018, 8, 34–37. [Google Scholar] [CrossRef]
- Yan, Q.; Gang, Q.; Zhu, J. Size-dependent patterns of seed rain in gaps in temperate secondary forests, Northeast China. Forests 2019, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Yang, H.M.; Kang, S.K. Natural regeneration of Fraxinus mandshurica and F. rhynchophylla in the natural deciduous forest. For. Sci. Technol. 2010, 6, 1–6. [Google Scholar] [CrossRef]
- Yeo, U.S.; Lee, D.K. Early regeneration of Fraxinus rhynchophylla in the understorey of Larix kaempferi stands in response to thinning. For. Int. J. For. Res. 2006, 79, 167–176. [Google Scholar] [CrossRef]
- Lu, D.; Zhu, J.; Sun, Y.; Hu, L.; Zhang, G. Gap closure process by lateral extension growth of canopy trees and its effect on woody species regeneration in a temperate secondary forest, Northeast China. Silva Fenn. 2015, 49, 1310. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.B.; Reich, P.B. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytol. 1999, 143, 143–154. [Google Scholar] [CrossRef]
- Valladares, F.; Martinez-Ferri, E.; Balaguer, L.; Perez-Corona, E.; Manrique, E. Low leaf-level response to light and nutrients in Mediterranean Evergreen oaks: A conservative resource-use strategy? New Phytol. 2000, 148, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Day, M.E.; Zazzaro, S.; Perkins, L.B. Seedling ontogeny and environmental plasticity in two co-occurring shade-tolerant conifers and implications for environment-population interactions. Am. J. Bot. 2014, 101, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Giertych, M.J.; Karolewski, P.; Oleksyn, J. Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance. Acta Physiol. Plant. 2015, 37, 216. [Google Scholar] [CrossRef] [Green Version]
- Heberling, J.M.; Fridley, J.D. Resource-use strategies of native and invasive plants in eastern North American forests. New Phytol. 2013, 200, 523–533. [Google Scholar] [CrossRef]
- Choi, J.H.; Kwon, K.W.; Chung, J.C. Effect of artificial shade treatment on the growth and biomass production of several deciduous tree species. J. Korean Soc. 2002, 21, 65–75. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. 2009. Available online: http://www.worldagroforestry.org/af/treedb/ (accessed on 2 March 2022).
- Song, U. Forest litter and shrubs act as an understory filter for the survival of Quercus mongolica seedlings in Mt. Kwan-ak, South Korea. Sci. Rep. 2019, 9, 4193. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-K.; Chang, N.-K. Litter production and decomposition in the Pinus rigida Plantation in Mt. Kwan-ak. Korean J. Ecol. 1989, 12, 9–20. [Google Scholar]
- Ji, M.; Jin, G.; Liu, Z. Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. J. For. Res. 2021, 32, 2459–2471. [Google Scholar] [CrossRef]
- Yi, X.; Xiao, Z.; Zhang, Z. Seed dispersal of Korean pine Pinus koraiensis labeled by two different tags in a northern temperate forest, northeast China. Ecol. Res. 2007, 23, 379–384. [Google Scholar] [CrossRef]
- Oyama, H.; Fuse, O.; Tomimatsu, H.; Seiwa, K. Variable seed behavior increases recruitment success of a hardwood tree, Zelkova serrata, in spatially heterogeneous forest environments. For. Ecol. Manag. 2018, 415–416, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, J.; Yan, Q. Seed germination of Pinus koraiensis in response to light regimes caused by shading and seed positions. For. Syst. 2012, 21, 426. [Google Scholar] [CrossRef] [Green Version]
- Jung, B.-N.; Choi, Y.-J.; Shin, H.-D.; Park, J.-H. Macruropyxis fraxini on Fraxinus rhynchophylla: Confirmation in the Korean Peninsula after 82 years and the first record in South Korea. Mycobiology 2020, 48, 518–521. [Google Scholar] [CrossRef]
- Lin, L.; He, J.; Xie, L.; Cui, G. Prediction of the suitable area of the Chinese white pines (Pinus subsect. strobus) under climate changes and implications for their conservation. Forests 2020, 11, 996. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Sun, Y.; Yan, Q. Response of Pinus koraiensis seedling growth to different light conditions based on the assessment of photosynthesis in current and one-year-old needles. J. For. Res. 2014, 25, 53–62. [Google Scholar] [CrossRef]
Soil Horizon | A Horizon | B Horizon | ||||||
---|---|---|---|---|---|---|---|---|
Forest Type | Oak Stand | Pine Stand | Oak Stand | Pine Stand | ||||
(GB) | (RY) | (GB) | (RY) | |||||
Soil texture | ||||||||
Sand (%) | 74.3 | (2.2) | 62.3 | (1.9) | 77.9 | (3.2) | 58.1 | (1.0) |
Silt (%) | 19.4 | (2.4) | 26.7 | (1.2) | 16.2 | (0.8) | 27.2 | (1.3) |
Clay (%) | 6.3 | (0.7) | 10.9 | (0.8) | 5.9 | (2.5) | 14.7 | (0.4) |
Organic matter (%) | 2.3 | (0.3) | 4.8 | (0.3) | 0.5 | (0.1) | 2.0 | (0.3) |
pH | 5.43 | (0.12) | 4.87 | (0.09) | 5.57 | (0.09) | 4.93 | (0.07) |
Total nitrogen (%) | 0.13 | (0.01) | 0.16 | (0.00) | 0.05 | (0.01) | 0.09 | (0.01) |
Available phosphorus (mg kg−1) | 17.67 | (3.53) | 14.33 | (2.85) | 7.00 | (1.00) | 5.67 | (0.88) |
Exchangeable K+ (cmolc kg−1) | 0.34 | (0.02) | 0.11 | (0.01) | 0.21 | (0.03) | 0.10 | (0.02) |
Exchangeable Ca2+ (cmolc kg−1) | 1.56 | (0.34) | 1.10 | (0.11) | 1.23 | (0.17) | 0.82 | (0.06) |
Exchangeable Mg2+ (cmolc kg−1) | 0.67 | (0.02) | 0.22 | (0.03) | 0.41 | (0.06) | 0.14 | (0.04) |
Exchangeable Na+ (cmolc kg−1) | 0.10 | (0.01) | 0.08 | (0.01) | 0.09 | (0.01) | 0.11 | (0.01) |
CEC (cmolc kg−1) | 6.82 | (0.46) | 10.01 | (0.44) | 4.03 | (1.18) | 8.91 | (0.32) |
Stands | Dominant Species | Average Height (m) | DBH (cm) | Density (Trees ha−1) | Basal Area (m2 ha−1) |
---|---|---|---|---|---|
Oak | Quercus acutissima | 13.7 (2.0) | 39.8 (11.2) | 500 (33) | 78 (15) |
Pine | Pinus rigida | 18.1 (1.8) | 26.7 (1.8) | 800 (58) | 47 (8) |
Plant Traits | Species | ||
---|---|---|---|
Fraxinus rhynchophylla | Pinus koraiensis | Zelkova serrata | |
Functional type | Broadleaf deciduous | Needle-leaf evergreen | Broadleaf deciduous |
Growth rate | Semi-fast-growing | Slow-growing | Fast-growing |
Native range | East Asia (temperate) | East Asia (temperate) | East Asia (temperate) |
Mature size | DBH: 50–60 cm; height: 25–30 m [23] | DBH: >50 cm; height: >22–40 m [35] | DBH: 50–60 cm; height: 20–25 m |
Seed dispersal | By wind | By animals (e.g., birds, squirrels, and rodents) [36] | Seed-bearing shoot [37] |
Seed/cone size/mass | Very small winged seed (c.a. 10 g/300 pcs) | Large (500–600 mg) [38] | 1 g/90 shoot-seeds |
Seedling architecture | Epigeal | Epigeal | Epigeal |
Habitat requirements | Moist, fertile soils; hillsides and river valleys [39] | Deep fertile soil; wide range of rainfall levels [40] | Tolerates most soil types, with pH of about 7.5, moist, and well-drained soils |
Light requirement | In between full-sun and shade-tolerant [23] | In between full-sun and shade-tolerant [41] | Full sunlight |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.B.; Ko, Y.; Hernandez, J.O.; Byambadorj, S.-O.; Han, S.H. Growth of Deciduous and Evergreen Species in Two Contrasting Temperate Forest Stands in Korea: An Intersite Experiment. Plants 2022, 11, 841. https://doi.org/10.3390/plants11070841
Park BB, Ko Y, Hernandez JO, Byambadorj S-O, Han SH. Growth of Deciduous and Evergreen Species in Two Contrasting Temperate Forest Stands in Korea: An Intersite Experiment. Plants. 2022; 11(7):841. https://doi.org/10.3390/plants11070841
Chicago/Turabian StylePark, Byung Bae, Youngtak Ko, Jonathan O. Hernandez, Ser-Oddamba Byambadorj, and Si Ho Han. 2022. "Growth of Deciduous and Evergreen Species in Two Contrasting Temperate Forest Stands in Korea: An Intersite Experiment" Plants 11, no. 7: 841. https://doi.org/10.3390/plants11070841
APA StylePark, B. B., Ko, Y., Hernandez, J. O., Byambadorj, S. -O., & Han, S. H. (2022). Growth of Deciduous and Evergreen Species in Two Contrasting Temperate Forest Stands in Korea: An Intersite Experiment. Plants, 11(7), 841. https://doi.org/10.3390/plants11070841