Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars?
Abstract
:1. Introduction
2. Results
2.1. Environmental Measurements
2.2. Phenological Observations
2.3. Generative Properties
2.4. Determination of Total Soluble Solids (TSS), Total Acids (TA), Total Sugars (TS) and Ascorbic Acid (AA)
2.5. Determination of Total Phenolics (TPC), Radical Scavenging Activity (DPPH), Total Anthocyanins Aglycones (TAA), and Total Flavonols Aglycones (TFA) Contents
2.6. Principal Component Analysis (PCA)
3. Discussion
Principal Component Analysis (PCA)
4. Materials and Methods
4.1. Plant and Berries
4.2. Phenological Observations
4.3. Generative Properties
4.4. Determination of Soluble Solids, Titratable Acidity, Sugars, Sweetness, and Ascorbic Acid
4.5. Determination of Total Phenolic Content
4.6. Quantitative Analysis of Anthocyanin and Flavonols Aglycones
4.7. DPPH Radical Scavenging Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brennan, R. Currants and Gooseberries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 177–196. [Google Scholar]
- Liu, P.; Kallio, H.; Yang, B. Flavonol glycosides and other phenolic compounds in buds and leaves of different varieties of black currant (Ribes nigrum L.) and changes during growing season. Food Chem. 2014, 160, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Cortez, R.E.; de Mejia, E.G. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84, 2387–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. FAOSTAT Crops. Available online: http://faostat.fao.org/beta/en/#data/QCL (accessed on 14 March 2022).
- Berk, S.; Gundogdu, M.; Tuna, S.; Tas, A. Role of Maturity Stages on Phenolic Compounds and Organic Acids Contents in Red Currant Fruits. Int. J. Fruit Sci. 2020, 20, 1054–1071. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Andersson, S.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Ziobron, M.; Kopeć, A.; Skoczylas, J.; Dziadek, K.; Zawistowski, J. Basic chemical composition and concentration of selected bioactive compounds in leaves of black, red and white currant. Appl. Sci. 2021, 11, 7638. [Google Scholar] [CrossRef]
- Mikulič-Petkovsek, M.; Koron, D.; Veberic, R. Quality parameters of currant berries from three different cluster positions. Sci. Hortic. 2016, 210, 188–196. [Google Scholar] [CrossRef]
- Paprstein, F.; Sedlak, J.; Kaplan, J. Rescue of red and white currant germplasm in the Czech Republic. Acta Hortic. 2016, 1133, 49–52. [Google Scholar] [CrossRef]
- Ersoy, N.; Kupe, M.; Gundogdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.). Not. Bot. Horti Agrobot. Cluj Napoca 2018, 46, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Karhu, S.; Bles, C.; Laine, K.; Palonen, P. Improving the performance of red and white currants in high latitude conditions by training methods. Acta Hortic. 2020, 1277, 225–232. [Google Scholar] [CrossRef]
- Larsson, L.; Jensen, P. Effects of mulching on the root and shoot growth of young black currant bushes (Ribes nigrum). Acta Agric. Scand.–B Soil Plant Sci. 1996, 46, 197–207. [Google Scholar] [CrossRef]
- Sønsteby, A.; Roos, M.U.; Heide, M.O. Influence of controlled nutrient feeding during floral initiation and berry development on shoot growth, flowering and berry yield and quality in black currant (Ribes nigrum L.). Sci Hortic. 2017, 225, 638–645. [Google Scholar] [CrossRef]
- Heijerman, G.; Gessel, V.G. Higher profits with planting hole treatment in red currant. Acta Hortic. 2020, 1277, 239–244. [Google Scholar] [CrossRef]
- Djordjevic, B.; Djurovic, D.; Zec, G.; Meland, M.; Akšić Fotirić, M. Effects of shoot age on biological and chemical properties of red currant (Ribes rubrum L.) cultivars. Folia Hortic. 2020, 32, 291–305. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem. 1997, 60, 331–337. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Yang, B. Effects of latitude and weather conditions on sugars, fruit acids and ascorbic acid in currant (Ribes sp.) cultivars. J. Agric. Food Chem. 2009, 89, 2011–2023. [Google Scholar] [CrossRef]
- Milivojevic, J.; Slatnar, A.; Mikulič-Petkovsek, M.; Stampar, F.; Nikolic, M.; Veberic, R. The influence of early yield on the accumulation of major taste and health-related compounds in black and red currant cultivars (Ribes spp.). J. Agric. Food Chem. 2012, 60, 2682–2691. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Mineral composition of fruit in black and red currant. South-West. J. Hortic. Biol. Environ. 2015, 6, 43–51. [Google Scholar]
- Okatan, V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortic 2020, 32, 79–85. [Google Scholar] [CrossRef]
- Vâtcă, S.; Gâdea, S.; Vâtcă, A.; Chînța, D.; Stoian, V. Black currant response to foliar fertilizers–modeling of varietal growth dynamics. J. Plant Nutr. 2020, 43, 2144–2151. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; Vieira do Carmo, M.; Wang, D.; Mocan, A.; Pereira, E.P.; Xavier-Santos, D.; Sant’Ana, A.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Laaksonen, O.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.; Karhu, S.; Yang, B. Compositional diversity among black currant (Ribes nigrum) cultivars originating from European countries. J. Agric. Food Chem. 2019, 67, 5621–5633. [Google Scholar] [CrossRef] [Green Version]
- Slimestad, R.; Solheim, H. Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence and for a healthy human diet. Not. Bot. Hortic. Agrobot. 2018, 46, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Remberg, S.F.; Mage, F.; Haffner, K.; Blomhoff, R. Highbush blueberries Vaccinium corymbosum L., raspberries Rubus idaeus L. and black currants Ribes nigrum L.–influence of cultivar on antioxidant activity and other quality parameters. Acta Hortic. 2007, 744, 259–266. [Google Scholar] [CrossRef]
- Krüger, E.; Dietrich, H.; Hey, M.; Patz, C.D. Effects of cultivar, yield, berry weight, temperature and ripening stage on bioactive compounds of black currants. J. Appl. Bot. Food Qual. 2012, 84, 40–46. [Google Scholar]
- Paunovic, S.; Nikolić, M.; Miletić, R.; Mašković, P. Vitamin and mineral content in black currant (Ribes nigrum L.) fruits as affected by soil management system. Acta Sci. Pol.-Hortorum Cultus 2017, 16, 135–144. [Google Scholar] [CrossRef]
- Andersen, U.B.; Kjaer, K.H.; Erban, A.; Alpers, J.; Hincha, D.; Kopka, J.; Zuther, E.; Pagter, M. Impact of seasonal warming on overwintering and spring phenology of blackcurrant. Environ. Exp. Bot. 2017, 140, 96–109. [Google Scholar] [CrossRef]
- Palacio, S.; Comarerro, J.J.; Maestro, M.; All, A.Q.; Lahoz, E.; Monserrat-Marti, G. Are storage and tree growth related? Seasonal nutrient and carbohydrate dynamics in evergreen and deciduous Mediterranean oaks. Trees-Struct Funct. 2018, 32, 777–790. [Google Scholar] [CrossRef]
- Pedersen, H.L. Juice quality and yield capacity of black currant cultivars in Denmark. Acta Hortic. 2008, 777, 510–516. [Google Scholar] [CrossRef]
- Sønsteby, A.; Heide, O.M. Elevated autumn temperature promotes growth cessation and flower formation in black currant cultivars (Ribes nigrum L.). J. Hortic. Sci. Biotechnol. 2011, 86, 120–127. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Duchovskis, P.; Bobinas, C. Changes in biologically active constituents during ripening in black currants. J. Fruit Ornam. Plant Res. 2006, 14, 236–246. [Google Scholar]
- Milošević, T.; Milošević, N. Vegetative growth, productivity, berry quality attributes and leaf macronutrients content of currants as affected by species and cultivars. Erwerbs-Obstbau 2018, 60, 53–65. [Google Scholar]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Correia, P.J.; Pestana, M.; Martinez, F.; Ribeiro, E.; Gama, F.; Saavedra, T.; Palencia, P. Relationships between strawberry fruit quality attributes and crop load. Sci. Hortic. 2011, 130, 398–403. [Google Scholar]
- Kaldmäe, H.; Kikas, A.; Arus, L.; Libek, A.V. Genotype and microclimate conditions influence ripening pattern and quality of black currant (Ribes nigrum L.) fruit. Zemdirbyste–Agric. 2013, 100, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Woznicki, T.; Heide, O.; Sønsteby, A.; Wold, A.B.; Remberg, S.F. Effects of controlled post-flowering temperature and daylength on chemical composition of four black currant (Ribes nigrum L.) cultivars of contrasting origin. Sci. Hortic. 2015, 197, 627–636. [Google Scholar]
- Milivojevic, J.; Maksimovic, V.; Nikolic, M. Sugar and organic acids profile in the fruits of black and red currant cultivars. J. Agric. Sci. 2009, 54, 105–117. [Google Scholar]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. IJAFLS 2019, 3, 350–361. [Google Scholar]
- Sahamishirazi, S.; Moehring, J.; Claupein, W.; Graeff-Hoenninger, S. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content. Food Chem. 2017, 241, 694–701. [Google Scholar] [CrossRef]
- Moreno, D.; Vilanova, M.; Gamero, E.; Intrigliolo, D.S.; Talaverano, M.I.; Uriarte, D.; Valdés, M.E. Effects of preflowering leaf removal on phenolic composition of Tempranillo in the semiarid terroir of western Spain. Am. J. Enol. Vitic. 2015, 66, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Bubola, M.; Rusjan, D.; Lukić, I. Crop level vs. leaf removal: Effects on Istrian Malvasia wine aroma and phenolic acids composition. Food Chem. 2020, 312, 126046. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Zhu, L.; Huang, Y.; Lu, J. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. J. Agric. Food Chem. 2011, 59, 1078–1086. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant Capacity of Black Currant Varies with Organ, Season, and Cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef]
- Giongo, L.; Grisenti, M.; Eccher, M.; Palchetti, A.; Vrhovsek, U.; Mattivi, F. Horticultural and nutritional qualities of white, red and black currants. Acta Hortic. 2008, 777, 167–172. [Google Scholar] [CrossRef]
- Lugasia, A.; Hóvária, J.; Kádára, G.; Denes, F. Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Aliment. 2011, 40, 52–64. [Google Scholar] [CrossRef]
- Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, anthocyanins, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, 164–169. [Google Scholar]
- Plessi, M.; Bertelli, D.; Albasini, A. Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chem. 2007, 100, 419–427. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Karhu, S.; Pihlava, J.M.; Veteläinen, M. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 2016, 204, 14–20. [Google Scholar] [CrossRef]
- Woznicki, T.L.; Heide, O.M.; Sønsteby, A.; Wold, A.B.; Remberg, S.F. Yield and fruit quality of black currant (Ribes nigrum L.) are favoured by precipitation and cool summer conditions. Acta Agric. Scand. B Soil Plant Sci. 2015, 65, 702–712. [Google Scholar]
- Takos, A.M.; Ubi, B.E.; Robinson, S.P.; Walker, A.R. Condensed tannin biosynthesisgenes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Sci. 2006, 170, 487–499. [Google Scholar] [CrossRef]
- Lloyd, A.; Brockman, A.; Aguirre, L.; Campbell, A.; Bean, A.; Cantero, A.; Gonzalez, A. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for Betalain regulation. Plant Cell Physiol. 2017, 58, 1431–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagné, D.; Lin-Wang, K.; Espley, R.V.; Volz, R.K.; How, N.M.; Rouse, S.; Brendolise, C.; Carlisle, C.M.; Kumar, S.; DeSilva, N.; et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 2013, 161, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Volz, R.K.; Kumar, S.; Chagné, D.; Espley, R.; McGhie, T.K.; Allan, A.C. Genetic relationships between red flesh and fruit quality traits in apple. Acta Hortic. 2013, 976, 363–368. [Google Scholar] [CrossRef]
- Henry-Kirk, R.A.; Plunkett, B.; Hall, M.; McGhie, T.; Allan, A.C.; Wargent, J.J.; Espley, R.V. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant Cell Environ. 2018, 41, 675–688. [Google Scholar] [CrossRef]
- Turturică, M.; Oancea, A.M.; Râpeanu, G.; Bahrim, R. Anthocyanins: Naturally occurring fruit pigments with functional properties. Ann. Univ. Dunarea Galati Fascicle VI Food Technol. 2015, 39, 9–24. [Google Scholar]
- Bordonaba, J.G.; Terry, L.A. Biochemical profiling and chemometric analysis of seventeen UK-grown black currant cultivars. J. Agric. Food Chem. 2008, 56, 7422–7430. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, B.; Rakonjac, V.; Fotirić Akšić, M.; Šavikin, K.; Vulić, T. Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 2014, 165, 156–162. [Google Scholar] [CrossRef]
- Eksi Karaagac, H.; Cavus, F.; Kadioglu, B.; Ugur, N.; Tokat, E.; Sahan, Y. Evaluation of nutritional, color and volatiles properties of currant (Ribes spp.) cultivars in Turkey. Food Sci. Technol. 2021, 41, 304–313. [Google Scholar] [CrossRef]
- Palmieri, L.; Grando, M.S.; Sordo, M.; Grisenti, M.; Martens, S.; Giongo, L. Establishment of molecular markers for germplasm management in a worldwide provenance Ribes spp. collection. Plant Omics 2013, 6, 165–174. [Google Scholar]
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The effect of organic and conventional cultivations on antioxidants content in blackcurrant (Ribes nigrum L.) species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- UPOV Code: RIBES_NIG. Protocol for Distinctness, Uniformity and Stability Tests Ribes nigrum L. Blackcurrant. The Community Plant Variety Office (CPVO)-TP/040/2. 2009. Available online: https://cpvo.europa.eu/sites/default/files/documents/ribesnigrum2 (accessed on 20 February 2022).
- AOAC. Official Methods of Analysis, 16th ed; Association of the Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Waterman, P.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publication: Oxford, UK, 1994; p. 16. [Google Scholar]
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C.P. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Sredojević, M.; Milivojević, J.; Gašić, U.; Meland, M.; Natić, M. Chemometric characterization of strawberries and blueberries according to their phenolic profile: Combined effect of cultivar and cultivation system. Molecules 2019, 24, 4310. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Age of Shoot | 2018 | Bud Burst | Beginning of Blooming | Full Blooming | Beginning of Harvesting | 2019 | Bud Burst | Beginning of Blooming | Full Blooming | Beginning of Harvesting |
---|---|---|---|---|---|---|---|---|---|---|---|
Ben Sarek | 2 | 28.02. | 25.03. | 10.04. | 21.06. | 07.03. | 03.04. | 14.04. | 19.06. | ||
3 | 24.02. | 18.03. | 08.04. | 18.06. | 05.03. | 01.04. | 11.04. | 15.06. | |||
Ben Nevis | 2 | 01.03. | 22.03. | 12.04. | 27.06. | 07.03. | 05.04. | 15.04. | 25.06. | ||
3 | 26.02. | 17.03. | 10.04. | 23.06. | 06.03. | 02.04. | 10.04. | 20.06. | |||
Bona | 2 | 24.02. | 16.03. | 02.04. | 14.06. | 03.03. | 03.04. | 16.04. | 14.06. | ||
3 | 22.02. | 14.03. | 01.04. | 09.06. | 01.03. | 01.04. | 08.04. | 09.06. | |||
Ben Lomond | 2 | 03.03. | 20.03. | 07.04. | 30.06. | 10.03. | 05.04. | 16.04. | 26.06. | ||
3 | 27.02. | 14.03. | 04.04. | 26.06. | 06.03. | 01.04. | 10.04. | 23.06. | |||
Ometa | 2 | 02.03. | 21.03. | 14.04. | 12.07. | 08.03. | 03.04. | 14.04. | 01.07. | ||
3 | 26.02. | 16.03. | 11.04. | 05.07. | 05.03. | 01.04. | 11.04. | 27.06. | |||
Tenah | 2 | 01.03. | 21.03. | 14.04. | 26.06. | 08.03. | 03.04. | 14.04. | 20.06. | ||
3 | 26.02. | 18.03. | 10.04. | 24.06. | 06.03. | 02.04. | 11.04. | 16.06. | |||
Silmu | 2 | 01.03. | 19.03. | 12.04. | 23.06. | 09.03. | 06.04. | 15.04. | 20.06. | ||
3 | 25.02. | 16.03. | 10.04. | 18.06. | 06.03. | 04.04. | 12.04. | 18.06. | |||
Titania | 2 | 08.03. | 18.03. | 11.04. | 24.06. | 21.03. | 07.04. | 17.04. | 20.06. | ||
3 | 01.03. | 16.03. | 10.04. | 20.06. | 16.03. | 03.04. | 12.04. | 16.06. | |||
Malling Juel | 2 | 27.02. | 17.03. | 02.04. | 29.06. | 10.03. | 03.04. | 12.04. | 25.06. | ||
3 | 20.02. | 15.03. | 31.03. | 26.06. | 08.03. | 02.04. | 10.04. | 20.06. | |||
Ojebyn | 2 | 01.03. | 17.03. | 13.04. | 29.06. | 08.03. | 05.04. | 15.04. | 25.06. | ||
3 | 24.02. | 15.03. | 12.04. | 26.06. | 06.03. | 03.04. | 11.04. | 20.06. | |||
Tsema | 2 | 02.03. | 19.03. | 05.04. | 27.06. | 10.03. | 04.04. | 13.04. | 24.06. | ||
3 | 24.02. | 13.03. | 01.04. | 22.06. | 06.03. | 01.04. | 09.04. | 18.06. | |||
Triton | 2 | 01.03. | 17.03. | 09.04. | 23.06. | 05.03. | 05.04. | 16.04. | 20.06. | ||
3 | 26.02. | 15.03. | 07.04. | 20.06. | 03.03. | 03.04. | 10.04. | 16.06. | |||
Čačanska Crna | 2 | 26.02. | 16.03. | 31.03. | 24.06. | 10.03. | 05.04. | 14.04. | 23.06. | ||
3 | 22.02. | 11.03. | 29.03. | 20.06. | 08.03. | 03.04. | 10.04. | 20.06. |
(a) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Age of Shoots | Cluster Weight (g) | Cluster Length (cm) | Number of Flowers per Cluster | Number of Berries per Cluster | Fruits Set (%) | Berry Weight (g) | Berry Diameter (mm) | Length of Shoot (cm) | Number of Clusters Per Shoot | Yield per Shoot (kg) | Total Yield per Plant (kg) | % of Shoot Yield in Total Yield |
Ben Sarek | 2 | 10.1 | 5.0 | 6.8 | 6.1 | 88.8 | 1.7 | 14.1 | 69.0 | 21.2 | 0.21 | 2.34 | 27.4 |
3 | 7.7 | 4.6 | 6.2 | 4.9 | 79.2 | 1.3 | 13.1 | 97.1 | 64.9 | 0.57 | 72.6 | ||
Ben Nevis | 2 | 7.2 | 5.5 | 6.5 | 4.4 | 66.8 | 1.6 | 13.8 | 82.3 | 14.3 | 0.10 | 1.50 | 20.8 |
3 | 5.9 | 5.1 | 6.2 | 4.0 | 63.2 | 1.2 | 12.6 | 120.2 | 67.1 | 0.40 | 79.2 | ||
Bona | 2 | 13.4 | 4.4 | 7.1 | 6.4 | 90.6 | 2.1 | 15.7 | 72.8 | 15.6 | 0.21 | 2.11 | 29.7 |
3 | 9.2 | 3.6 | 6.8 | 5.8 | 85.4 | 1.5 | 14.0 | 114.4 | 53.7 | 0.49 | 70.3 | ||
Ben Lomond | 2 | 6.9 | 5.1 | 7.9 | 6.8 | 86.0 | 1.0 | 12.0 | 110.2 | 22.5 | 0.16 | 1.41 | 33.1 |
3 | 5.8 | 5.1 | 7.5 | 6.3 | 84.4 | 0.9 | 11.3 | 148.2 | 54.7 | 0.32 | 66.9 | ||
Ometa | 2 | 6.8 | 5.5 | 8.7 | 7.6 | 87.7 | 0.9 | 12.5 | 81.3 | 21.0 | 0.14 | 1.39 | 30.8 |
3 | 5.8 | 5.2 | 8.3 | 7.7 | 92.0 | 0.7 | 11.9 | 132.6 | 54.9 | 0.32 | 69.2 | ||
Tenah | 2 | 9.7 | 6.0 | 8.3 | 6.3 | 75.2 | 1.5 | 14.1 | 68.1 | 14.6 | 0.14 | 1.66 | 25.5 |
3 | 7.9 | 5.6 | 8.2 | 5.8 | 71.4 | 1.2 | 11.9 | 120.6 | 52.5 | 0.41 | 74.5 | ||
Silmu | 2 | 8.8 | 6.3 | 11.9 | 7.0 | 59.1 | 1.4 | 13.1 | 98.5 | 16.2 | 0.14 | 1.81 | 23.5 |
3 | 8.2 | 5.5 | 10.0 | 6.2 | 61.7 | 1.2 | 12.3 | 153.4 | 56.5 | 0.46 | 76.5 | ||
Titania | 2 | 11.0 | 6.3 | 9.8 | 9.0 | 91.5 | 1.2 | 13.1 | 82.4 | 16.7 | 0.18 | 2.28 | 24.3 |
3 | 9.9 | 6.0 | 9.8 | 9.3 | 94.9 | 1.1 | 11.5 | 139.8 | 58.2 | 0.58 | 75.7 | ||
Malling Juel | 2 | 10.2 | 7.2 | 8.8 | 7.8 | 88.3 | 1.3 | 12.8 | 95.7 | 28.4 | 0.29 | 2.55 | 34.0 |
3 | 8.8 | 6.6 | 8.2 | 7.5 | 91.8 | 1.2 | 11.5 | 157.2 | 63.8 | 0.56 | 66.0 | ||
Ojebyn | 2 | 7.8 | 5.3 | 7.0 | 6.5 | 91.9 | 1.2 | 12.3 | 74.3 | 9.6 | 0.08 | 0.75 | 30.1 |
3 | 6.2 | 5.0 | 7.3 | 7.0 | 95.5 | 0.9 | 11.4 | 117.6 | 28.3 | 0.18 | 69.9 | ||
Tsema | 2 | 12.4 | 6.8 | 12.5 | 9.0 | 72.2 | 1.4 | 13.2 | 106.1 | 25.3 | 0.31 | 2.34 | 40.0 |
3 | 8.4 | 6.4 | 11.7 | 8.7 | 74.3 | 1.0 | 11.1 | 135.1 | 55.9 | 0.47 | 60.0 | ||
Triton | 2 | 7.2 | 5.6 | 10.8 | 7.6 | 70.5 | 0.9 | 11.7 | 57.4 | 13.3 | 0.09 | 1.07 | 26.8 |
3 | 6.1 | 5.6 | 10.0 | 6.5 | 65.0 | 0.8 | 10.5 | 126.6 | 42.6 | 0.26 | 73.2 | ||
Čačanska Crna | 2 | 9.9 | 7.8 | 10.7 | 9.0 | 84.2 | 1.1 | 12.5 | 83.8 | 20.9 | 0.21 | 2.21 | 28.1 |
3 | 8.7 | 7.6 | 10.3 | 8.3 | 80.6 | 1.0 | 11.2 | 129.2 | 61.3 | 0.53 | 71.9 | ||
LSD | 1.8 | 1.1 | 3.6 | 2.6 | 10.3 | 0.3 | 1.2 | 28.4 | 12.8 | 0.09 | 0.38 | ||
(b) | |||||||||||||
Cultivar | Age of Shoots | Cluster Weight (g) | Cluster Length (cm) | Number of Flowers per Cluster | Number of Berries per Cluster | Fruits Set (%) | Berry Weight (g) | Berry Diameter (mm) | Length of Shoot (cm) | Number of Clusters per Shoot | Yield per Shoot (kg) | Total Yield per Plant (kg) | % of Shoot Yield in Total Yield |
Ben Sarek | 2 | 9.2 | 6.4 | 9.8 | 6.8 | 69.1 | 1.5 | 13.9 | 59.8 | 17.7 | 0.16 | 1.81 | 27.0 |
3 | 7.2 | 6.3 | 7.5 | 6.1 | 80.9 | 1.2 | 12.1 | 92.5 | 61.0 | 0.44 | 73.0 | ||
Ben Nevis | 2 | 7.5 | 5.2 | 8.0 | 5.1 | 63.9 | 1.5 | 13.6 | 74.7 | 19.7 | 0.15 | 1.68 | 26.4 |
3 | 4.9 | 4.7 | 6.8 | 4.9 | 72.5 | 1.2 | 12.3 | 109.3 | 65.3 | 0.41 | 73.6 | ||
Bona | 2 | 11.3 | 6.6 | 10.4 | 6.5 | 62.8 | 2.0 | 15.2 | 71.5 | 17.0 | 0.19 | 1.91 | 30.2 |
3 | 8.4 | 5.3 | 9.3 | 6.0 | 65.2 | 1.4 | 12.6 | 106.4 | 53.0 | 0.45 | 69.8 | ||
Ben Lomond | 2 | 7.6 | 8.9 | 8.5 | 7.5 | 88.0 | 1.1 | 12.1 | 104.1 | 23.3 | 0.18 | 1.45 | 36.4 |
3 | 5.8 | 8.1 | 7.4 | 6.4 | 85.8 | 0.9 | 10.4 | 144.3 | 52.7 | 0.31 | 63.6 | ||
Ometa | 2 | 7.4 | 7.2 | 10.2 | 6.7 | 66.2 | 1.2 | 12.6 | 77.7 | 11.0 | 0.08 | 1.16 | 21.2 |
3 | 5.8 | 6.2 | 8.3 | 6.2 | 75.1 | 0.9 | 10.2 | 119.3 | 52.7 | 0.30 | 78.8 | ||
Tenah | 2 | 8.9 | 6.9 | 9.6 | 6.5 | 67.6 | 1.5 | 13.4 | 65.2 | 27.7 | 0.25 | 1.73 | 42.8 |
3 | 7.7 | 6.3 | 8.2 | 6.3 | 76.2 | 1.2 | 12.6 | 108.3 | 43.0 | 0.33 | 57.2 | ||
Silmu | 2 | 7.0 | 5.9 | 10.9 | 7.6 | 69.7 | 0.9 | 12.0 | 93.9 | 16.3 | 0.11 | 1.10 | 31.1 |
3 | 5.0 | 5.6 | 8.6 | 5.9 | 68.6 | 0.8 | 10.1 | 139.0 | 50.3 | 0.25 | 68.9 | ||
Titania | 2 | 9.6 | 6.2 | 10.6 | 8.6 | 81.1 | 1.1 | 12.4 | 79.6 | 15.7 | 0.15 | 1.40 | 32.3 |
3 | 5.7 | 5.2 | 7.9 | 6.2 | 78.5 | 0.9 | 10.9 | 132.1 | 56.0 | 0.32 | 67.7 | ||
Malling Juel | 2 | 8.0 | 8.2 | 11.2 | 7.8 | 69.9 | 1.1 | 12.4 | 101.5 | 36.0 | 0.29 | 2.02 | 42.7 |
3 | 5.8 | 6.7 | 9.1 | 5.8 | 64.1 | 1.0 | 11.2 | 149.1 | 67.0 | 0.39 | 57.3 | ||
Ojebyn | 2 | 6.2 | 5.7 | 6.8 | 5.4 | 79.4 | 1.3 | 13.1 | 63.9 | 7.7 | 0.05 | 0.56 | 25.7 |
3 | 5.6 | 5.3 | 5.9 | 4.9 | 82.0 | 1.1 | 11.8 | 103.2 | 24.7 | 0.14 | 74.3 | ||
Tsema | 2 | 11.2 | 10.2 | 15.2 | 9.9 | 65.0 | 1.2 | 12.4 | 97.8 | 34.7 | 0.39 | 2.58 | 45.2 |
3 | 8.8 | 9.0 | 10.6 | 7.9 | 74.6 | 1.1 | 11.7 | 125.4 | 53.3 | 0.47 | 54.8 | ||
Triton | 2 | 7.4 | 6.8 | 8.4 | 6.1 | 72.7 | 1.4 | 13.4 | 59.3 | 21.0 | 0.15 | 1.40 | 33.1 |
3 | 6.0 | 5.9 | 6.9 | 5.6 | 82.2 | 1.0 | 11.3 | 112.5 | 52.3 | 0.31 | 66.9 | ||
Čačanska Crna | 2 | 8.2 | 9.4 | 10.8 | 8.2 | 76.2 | 1.1 | 12.6 | 77.5 | 19.3 | 0.16 | 1.47 | 32.6 |
3 | 6.0 | 7.2 | 8.9 | 6.5 | 72.4 | 0.9 | 11.4 | 124.2 | 55.3 | 0.33 | 67.4 | ||
LSD | 1.8 | 2.3 | 3.5 | 1.4 | 8.3 | 0.4 | 1.7 | 24.4 | 12.3 | 0.08 | 0.43 |
Cultivar | Age of Shoots | 2018 | Total Soluble Solids (%) | Total Acids (%) | Total Sugars (%) | Sweetness | Ascorbic Acid (mg) | 2019 | Total Soluble Solids (%) | Total Acids (%) | Total Sugars (%) | Sweetness | Ascorbic Acid (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ben Sarek | 2′ leaf | 11.6 | 2.1 | 8.4 | 4.0 | 139.1 | 13.2 | 2.4 | 9.2 | 3.8 | 110.9 | ||
3′ leaf | 10.6 | 1.9 | 7.2 | 3.8 | 147.3 | 11.6 | 2.5 | 8.9 | 3.5 | 121.3 | |||
Ben Nevis | 2‘ leaf | 11.2 | 2.0 | 7.6 | 3.8 | 158.3 | 14.1 | 2.6 | 10.5 | 4.0 | 140.8 | ||
3′ leaf | 9.9 | 1.8 | 6.9 | 3.8 | 114.2 | 12.3 | 2.8 | 7.3 | 2.6 | 112.2 | |||
Bona | 2′ leaf | 10.5 | 1.1 | 8.5 | 7.9 | 135.5 | 11.7 | 2.4 | 9.0 | 3.7 | 125.4 | ||
3′ leaf | 8.9 | 1.1 | 7.2 | 6.5 | 121.3 | 10.6 | 2.5 | 6.9 | 2.7 | 106.3 | |||
Ben Lomond | 2′ leaf | 13.4 | 1.6 | 8.2 | 5.1 | 144.5 | 13.8 | 1.6 | 8.5 | 5.3 | 139.5 | ||
3′ leaf | 11.3 | 1.4 | 7.9 | 5.6 | 124.3 | 11.9 | 1.9 | 7.5 | 3.9 | 149.6 | |||
Ometa | 2′ leaf | 16.1 | 1.8 | 13.2 | 7.5 | 126.7 | 18.4 | 3.0 | 13.6 | 4.6 | 149.1 | ||
3′ leaf | 13.6 | 1.6 | 10.2 | 6.4 | 124.3 | 15.3 | 3.2 | 10.3 | 3.2 | 123.6 | |||
Tenah | 2′ leaf | 13.5 | 1.8 | 9.7 | 5.3 | 137.3 | 13.6 | 1.9 | 9.1 | 4.7 | 128.5 | ||
3′ leaf | 11.6 | 1.7 | 8.6 | 5.1 | 142.3 | 11.1 | 2.1 | 8.1 | 3.9 | 111.3 | |||
Silmu | 2′ leaf | 13.5 | 1.4 | 9.1 | 6.4 | 132.7 | 16.2 | 2.0 | 11.5 | 5.8 | 137.3 | ||
3′ leaf | 10.6 | 1.2 | 8.6 | 7.2 | 124.6 | 13.6 | 2.1 | 10.2 | 4.9 | 113.5 | |||
Titania | 2′ leaf | 12.9 | 1.3 | 9.1 | 7.0 | 121.3 | 13.7 | 1.4 | 9.3 | 6.9 | 145.4 | ||
3′ leaf | 9.6 | 1.2 | 8.2 | 6.6 | 111.5 | 11.2 | 1.7 | 7.9 | 4.8 | 136.3 | |||
Malling Juel | 2′ leaf | 13.9 | 1.6 | 10.0 | 6.3 | 153.7 | 14.8 | 2.0 | 10.4 | 5.1 | 144.3 | ||
3′ leaf | 10.6 | 1.8 | 9.2 | 5.1 | 132.3 | 12.3 | 2.3 | 8.2 | 3.5 | 174.5 | |||
Ojebyn | 2′ leaf | 12.7 | 1.5 | 7.1 | 4.8 | 122.4 | 14.1 | 2.8 | 10.9 | 4.0 | 109.1 | ||
3′ leaf | 9.9 | 1.4 | 7.2 | 5.1 | 112.3 | 11.6 | 2.8 | 7.6 | 2.7 | 89.3 | |||
Tsema | 2′ leaf | 13.7 | 1.5 | 9.0 | 6.0 | 169.0 | 13.4 | 2.1 | 9.9 | 4.7 | 147.8 | ||
3′ leaf | 11.1 | 1.4 | 8.1 | 5.8 | 123.5 | 10.9 | 2.3 | 7.2 | 3.1 | 124.3 | |||
Triton | 2′ leaf | 14.3 | 1.5 | 10.9 | 7.2 | 154.9 | 14.1 | 2.1 | 10.4 | 5.0 | 126.9 | ||
3′ leaf | 13.1 | 1.4 | 10.3 | 7.4 | 124.6 | 12.3 | 2.6 | 9.2 | 3.5 | 102.6 | |||
Čačanska Crna | 2′ leaf | 13.2 | 1.1 | 11.0 | 9.7 | 175.3 | 15.3 | 2.5 | 12.7 | 5.1 | 130.2 | ||
3′ leaf | 11.3 | 1.4 | 8.2 | 6.1 | 158.3 | 12.2 | 2.6 | 8.1 | 3.1 | 148.3 | |||
LSD | 2.7 | 0.4 | 2.1 | 14.2 | 2.1 | 0.6 | 1.8 | 12.2 |
(a) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Age of Shoots | Total Phenolic Content | Total Anthocyanins Aglycones | Delphinidin 3-Rutinoside | Delphinidin 3-Glucoside | Cyanidin 3-Rutinoside | Cyanidin 3-Glucoside | DPPH | Kempferol | Myricetin | Quercetin | Total Flavonols |
Ben Sarek | 2 | 196.3 | 465.8 | 198.2 | 88.2 | 165.3 | 14.1 | 4.2 | 1.9 | 3.1 | 7.6 | 12.6 |
3 | 154.3 | 348.5 | 145.3 | 45.8 | 148.2 | 9.2 | 5.2 | 1.7 | 3.3 | 6.3 | 11.2 | |
Ben Nevis | 2 | 154.2 | 649.1 | 226.3 | 112.3 | 245.3 | 65.2 | 4.2 | 2.1 | 3.2 | 7.3 | 12.6 |
3 | 126.3 | 491.5 | 206.2 | 98.1 | 145.2 | 42.0 | 5.2 | 1.7 | 3.0 | 5.3 | 10.0 | |
Bona | 2 | 142.3 | 429.3 | 187.0 | 77.0 | 154.1 | 11.2 | 5.2 | 1.1 | 2.4 | 6.4 | 9.8 |
3 | 122.3 | 325.5 | 134.1 | 42.1 | 137.0 | 12.3 | 5.7 | 1.0 | 2.1 | 5.4 | 8.5 | |
Ben Lomond | 2 | 198.6 | 658.3 | 228.6 | 114.6 | 247.6 | 67.5 | 2.6 | 1.2 | 3.1 | 4.5 | 8.8 |
3 | 156.3 | 374.7 | 146.4 | 54.4 | 149.3 | 24.6 | 4.0 | 1.2 | 3.3 | 4.2 | 8.7 | |
Ometa | 2 | 202.3 | 765.8 | 289.2 | 127.2 | 301.2 | 48.2 | 4.1 | 1.0 | 2.1 | 8.1 | 11.2 |
3 | 184.2 | 560.7 | 223.2 | 95.2 | 198.2 | 44.1 | 4.4 | 0.7 | 1.9 | 7.2 | 9.8 | |
Tenah | 2 | 123.0 | 425.0 | 175.0 | 40.0 | 187.0 | 23.0 | 5.2 | 1.2 | 2.8 | 7.9 | 11.8 |
3 | 121.3 | 293.9 | 139.0 | 21.0 | 114.0 | 19.9 | 5.6 | 0.9 | 2.6 | 7.0 | 10.4 | |
Silmu | 2 | 136.2 | 467.7 | 196.6 | 86.6 | 163.7 | 20.8 | 4.5 | 1.2 | 2.7 | 5.3 | 9.2 |
3 | 123.3 | 373.9 | 143.7 | 51.7 | 156.6 | 21.9 | 5.2 | 1.0 | 2.8 | 5.7 | 9.5 | |
Titania | 2 | 123.0 | 419.7 | 182.1 | 72.1 | 149.2 | 16.3 | 6.1 | 1.0 | 2.1 | 4.2 | 7.3 |
3 | 111.2 | 382.8 | 185.3 | 37.2 | 142.1 | 18.2 | 7.2 | 0.6 | 2.5 | 3.7 | 6.8 | |
Malling Juel | 2 | 156.3 | 619.9 | 209.4 | 133.8 | 228.4 | 48.3 | 4.3 | 1.5 | 1.7 | 7.4 | 10.6 |
3 | 142.3 | 404.7 | 127.2 | 103.6 | 130.1 | 43.8 | 4.8 | 1.3 | 2.1 | 6.9 | 10.3 | |
Ojebyn | 2 | 136.3 | 398.5 | 176.8 | 66.8 | 143.9 | 11.0 | 6.0 | 1.1 | 1.5 | 6.2 | 8.7 |
3 | 123.3 | 361.6 | 180.0 | 31.9 | 136.8 | 12.9 | 6.3 | 0.9 | 1.9 | 5.3 | 8.0 | |
Tsema | 2 | 154.2 | 595.3 | 221.7 | 121.5 | 216.1 | 36.0 | 4.0 | 1.2 | 3.7 | 9.2 | 14.1 |
3 | 123.5 | 355.5 | 114.9 | 91.3 | 117.8 | 31.5 | 5.6 | 1.1 | 3.0 | 8.2 | 12.3 | |
Triton | 2 | 141.3 | 426.9 | 162.6 | 81.0 | 158.1 | 25.2 | 5.2 | 1.1 | 1.7 | 5.1 | 7.9 |
3 | 117.2 | 428.4 | 194.2 | 46.1 | 161.0 | 27.1 | 5.4 | 1.0 | 1.6 | 5.0 | 7.5 | |
Čačanska Crna | 2 | 189.5 | 524.1 | 243.0 | 124.0 | 218.6 | 38.5 | 4.1 | 0.9 | 2.6 | 6.6 | 10.0 |
3 | 174.2 | 384.3 | 136.2 | 93.8 | 120.3 | 34.0 | 4.4 | 0.8 | 2.1 | 6.2 | 9.1 | |
LSD | 24.2 | 124.5 | 44.6 | 24.7 | 33.2 | 16.5 | 1.2 | 0.4 | 1.2 | 2.3 | 3.1 | |
(b) | ||||||||||||
Cultivar | Age of Shoots | Total Phenolic Content | Total Anthocyanins Aglycones | Delphinidin 3-Rutinoside | Delphinidin 3-Glucoside | Cyanidin 3-Rutinoside | Cyanidin 3-Glucoside | DPPH | Kempferol | Myricetin | Quercetin | Total Flavonols |
Ben Sarek | 2 | 228.3 | 753.6 | 311.2 | 142.3 | 278.6 | 21.5 | 2.8 | 2.1 | 3.0 | 6.7 | 11.8 |
3 | 201.3 | 687.3 | 255.3 | 125.2 | 289.6 | 17.2 | 3.2 | 2.0 | 3.1 | 6.2 | 11.3 | |
Ben Nevis | 2 | 225.0 | 676.0 | 275.3 | 112.3 | 265.2 | 23.2 | 3.0 | 2.3 | 3.2 | 7.3 | 12.8 |
3 | 212.3 | 441.9 | 201.0 | 98.2 | 123.5 | 19.2 | 3.1 | 2.1 | 3.0 | 6.4 | 11.5 | |
Bona | 2 | 202.3 | 708.8 | 300.0 | 131.1 | 267.4 | 10.3 | 3.0 | 1.3 | 3.2 | 8.2 | 12.7 |
3 | 186.2 | 646.1 | 244.1 | 114.0 | 278.4 | 9.6 | 3.1 | 1.2 | 2.9 | 7.6 | 11.7 | |
Ben Lomond | 2 | 245.3 | 700.8 | 291.7 | 159.2 | 221.4 | 28.5 | 2.1 | 1.5 | 2.3 | 6.3 | 10.1 |
3 | 233.6 | 575.6 | 250.4 | 127.9 | 180.1 | 17.2 | 2.3 | 1.2 | 2.1 | 6.1 | 9.5 | |
Ometa | 2 | 298.3 | 1160.8 | 475.3 | 265.2 | 333.1 | 87.2 | 2.4 | 2.1 | 2.1 | 8.5 | 12.7 |
3 | 275.3 | 803.3 | 321.2 | 112.3 | 285.6 | 84.2 | 2.7 | 1.3 | 1.9 | 7.2 | 10.4 | |
Tenah | 2 | 198.2 | 454.0 | 261.1 | 51.0 | 118.9 | 23.0 | 3.6 | 2.3 | 2.9 | 8.3 | 13.5 |
3 | 175.6 | 363.8 | 177.0 | 31.2 | 141.4 | 14.2 | 4.0 | 1.5 | 2.7 | 7.0 | 11.2 | |
Silmu | 2 | 178.3 | 747.2 | 309.6 | 140.7 | 277.0 | 19.9 | 3.1 | 1.1 | 3.1 | 6.3 | 10.5 |
3 | 154.2 | 684.5 | 253.7 | 123.6 | 288.0 | 19.2 | 3.3 | 1.0 | 2.3 | 5.3 | 8.6 | |
Titania | 2 | 179.5 | 659.2 | 255.1 | 126.2 | 262.5 | 15.4 | 4.0 | 1.2 | 3.1 | 4.1 | 8.4 |
3 | 165.3 | 603.0 | 209.2 | 109.1 | 273.5 | 11.2 | 4.0 | 1.0 | 3.2 | 4.0 | 8.2 | |
Malling Juel | 2 | 254.3 | 634.0 | 272.5 | 140.0 | 202.2 | 19.3 | 3.1 | 1.4 | 2.7 | 7.3 | 11.4 |
3 | 222.2 | 515.8 | 231.2 | 108.7 | 160.9 | 15.0 | 3.9 | 1.3 | 2.8 | 7.2 | 11.3 | |
Ojebyn | 2 | 196.2 | 648.6 | 260.4 | 120.9 | 257.2 | 10.1 | 4.1 | 1.0 | 2.5 | 6.6 | 10.0 |
3 | 166.3 | 583.8 | 203.9 | 103.8 | 268.2 | 7.9 | 4.3 | 0.8 | 2.6 | 5.3 | 8.7 | |
Tsema | 2 | 224.0 | 609.4 | 260.2 | 127.7 | 189.9 | 31.6 | 2.7 | 1.2 | 3.2 | 7.3 | 11.7 |
3 | 201.2 | 505.8 | 188.9 | 96.4 | 193.2 | 27.3 | 3.6 | 1.4 | 3.1 | 7.1 | 11.6 | |
Triton | 2 | 201.3 | 677.0 | 274.6 | 135.1 | 243.0 | 24.3 | 3.0 | 1.0 | 2.3 | 5.3 | 8.6 |
3 | 186.9 | 622.2 | 199.7 | 118.0 | 282.4 | 22.1 | 3.1 | 0.9 | 2.1 | 5.7 | 8.6 | |
Čačanska Crna | 2 | 234.3 | 585.9 | 310.2 | 33.7 | 225.3 | 16.7 | 3.0 | 1.0 | 2.3 | 7.8 | 11.0 |
3 | 213.5 | 482.8 | 282.4 | 53.5 | 121.4 | 25.5 | 3.3 | 0.9 | 2.5 | 8.2 | 11.6 | |
LSD | 36.4 | 214.4 | 39.8 | 18.9 | 44.1 | 14.4 | 0.6 | 0.7 | 0.9 | 2.3 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djordjević, B.; Djurović, D.; Zec, G.; Dabić Zagorac, D.; Natić, M.; Meland, M.; Fotirić Akšić, M. Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars? Plants 2022, 11, 866. https://doi.org/10.3390/plants11070866
Djordjević B, Djurović D, Zec G, Dabić Zagorac D, Natić M, Meland M, Fotirić Akšić M. Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars? Plants. 2022; 11(7):866. https://doi.org/10.3390/plants11070866
Chicago/Turabian StyleDjordjević, Boban, Dejan Djurović, Gordan Zec, Dragana Dabić Zagorac, Maja Natić, Mekjell Meland, and Milica Fotirić Akšić. 2022. "Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars?" Plants 11, no. 7: 866. https://doi.org/10.3390/plants11070866
APA StyleDjordjević, B., Djurović, D., Zec, G., Dabić Zagorac, D., Natić, M., Meland, M., & Fotirić Akšić, M. (2022). Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars? Plants, 11(7), 866. https://doi.org/10.3390/plants11070866