Identification of Potential Pathways of Morella cerifera Seedlings in Response to Alkali Stress via Transcriptomic Analysis
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed Genes
2.2. Gene Ontology (GO) Enrichment Analysis
2.3. Gene Set Enrichment Analysis
2.4. Overview of Core Pathways and qRT-PCR Verification
3. Discussion
4. Materials and Methods
4.1. Plant Treatment and Measurements of Physiological Characteristics
4.2. RNA-Sequencing and Assembly
4.3. DEGs and GSEA Analysis
4.4. qRT-PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, S.M.; Ury, E.A.; Taillie, P.J.; Ungberg, E.A.; Moorman, C.E.; Poulter, B.; Ardón, M.; Bernhardt, E.S.; Wright, J.P. Salinity thresholds for understory plants in coastal wetlands. Plant Ecol. 2021, 223, 323–337. [Google Scholar] [CrossRef]
- Lal, S.; Kumari, A.; Guleria, I.; Dhatwalia, J.; Thakur, S.; Kumari, S.; Sharma, S. An insight on micro propagation of Myrica species for improvement in cultivation practices of nutraceutically important fruits. J. Appl. Biol. Biotechnol. 2021, 9, 34–40. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (Medicago sativa L.). Plant Physiol. Biotechnol. 2021, 163, 128–138. [Google Scholar] [CrossRef]
- Jahan, N.; Lv, Y.; Song, M.; Zhang, Y.; Shang, L.; Lu, Y.; Ye, G.; Qian, Q.; Gao, Z.; Guo, L. Transcriptomic Analysis of Short-Term Salt-Stress Response in Mega Hybrid Rice Seedlings. Agronomy 2021, 11, 1328. [Google Scholar] [CrossRef]
- Park, S.; Wijeratne, A.J.; Moon, Y.; Waterland, N.L. Time-course transcriptomic analysis of Petunia × hybrida leaves under water deficit stress using RNA sequencing. PLoS ONE 2021, 16, e0250284. [Google Scholar] [CrossRef]
- Li, Q.; Ma, C.; Tai, H.; Qiu, H.; Yang, A. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. PLoS ONE 2020, 15, e0243112. [Google Scholar] [CrossRef]
- Wang, W.; Pang, J.; Zhang, F.; Sun, L.; Yang, L.; Zhao, Y.; Yang, Y.; Wang, Y.; Siddique, K.H. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). Plant Physiol. Biotechnol. 2021, 166, 605–620. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Z.; Xu, C.; Li, L.; Yang, C. Multiomics analysis provides insights into alkali stress tolerance of sunflower (Helianthus annuus L.). Plant Physiol. Biotechnol. 2021, 166, 66–77. [Google Scholar] [CrossRef]
- Lu, J.; Swearingen, E.; Hardy, M.; Collins, P.; Wu, B.; Yuan, E.; Lu, D.; Li, C.M.K.; Wang, S.; Ollmann, M. RAB18 is a key regulator of GalNAc conjugated siRNA induced silencing in Hep3B cells. Mol. Ther.-Nucl. Acids 2022, in press. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, A.; Duan, X.; Wang, S.; Sun, X.; Duanmu, H.; Zhu, D.; Chen, C.; Cao, L.; Xiao, J. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta 2016, 244, 681–698. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant Sci. 2021, 12, 1049. [Google Scholar] [CrossRef]
- Heidari, P.; Mazloomi, F.; Nussbaumer, T.; Barcaccia, G. Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments. Plants 2020, 9, 586. [Google Scholar] [CrossRef]
- Wang, M.; Ye, X.; Wang, Y.; Su, D.; Liu, S.; Bu, Y. Transcriptome dynamics and hub genes of green alga Nannochloris sp. JB17 under NaHCO3 stress. Algal Res. 2021, 54, 102185. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, X.; Wu, Y.; Hu, Y.; Cheng, L.; Zhao, T.; Huang, Z.; Wang, Y. Quantitative proteomic analysis of Malus halliana exposed to salt-alkali mixed stress reveals alterations in energy metabolism and stress regulation. Plant Growth Regul. 2020, 90, 205–222. [Google Scholar] [CrossRef]
- Zou, C.; Liu, D.; Wu, P.; Wang, Y.; Gai, Z.; Liu, L.; Yang, F.; Li, C.; Guo, G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol. Biol. 2020, 102, 645–657. [Google Scholar] [CrossRef]
- Wani, K.I.; Naeem, M.; Castroverde, C.D.M.; Kalaji, H.M.; Albaqami, M.; Aftab, T. Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int. J. Mol. Sci. 2021, 22, 9656. [Google Scholar] [CrossRef]
- Sun, Y.C.; Han, S.C.; Yao, M.Z.; Wang, Y.M.; Geng, L.W.; Wang, P.; Lu, W.H.; Liu, H.B. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J. Sep. Sci. 2021, 44, 497–512. [Google Scholar] [CrossRef]
- Cao, K.; Sun, Y.; Han, C.; Zhang, X.; Zhao, Y.; Jiang, Y.; Jiang, Y.; Sun, X.; Guo, Y.; Wang, X. The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress. Ind. Crop. Prod. 2021, 170, 113766. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, X.; Liu, Y.; Shi, M.; Zhang, W.; Fan, Y.; Yao, Y.; Zhang, J.; Qin, S. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Int. J. Biol. Macromol. 2021, 182, 938–949. [Google Scholar] [CrossRef]
- Feng, N.; Yu, M.; Li, Y.; Jin, D.; Zheng, D. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotox. Environ. Saf. 2021, 220, 112369. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Z.; Gao, S.; Lv, Y.; Chen, Z.; Cao, B.; Xu, K. Different responses of two Chinese cabbage (Brassica rapa L. ssp. Pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. Planta 2021, 254, 102. [Google Scholar]
- Farhat, N.; Kouas, W.; Braun, H.P.; Debez, A. Stability of thylakoid protein complexes and preserving photosynthetic efficiency are crucial for the successful recovery of the halophyte Cakile maritima from high salinity. Plant Physiol. Biotechnol. 2021, 166, 177–190. [Google Scholar] [CrossRef]
- Guo, R.; Zhou, J.; Hao, W.P.; Gong, D.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Tian, J.; Li, H. Germination, growth, photosynthesis and ionic balance in Setaria viridis seedlings subjected to saline and alkaline stress. Can. J. Plant Sci. 2011, 91, 1077–1088. [Google Scholar] [CrossRef]
- Zhao, C.; Nawaz, G.; Cao, Q.; Xu, T. Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Sci. Hortic. 2022, 291, 110560. [Google Scholar] [CrossRef]
- Rehaman, A.; Mishra, A.K.; Ferdose, A.; Per, T.S.; Hanief, M.; Jan, A.T.; Asgher, M. Melatonin in Plant Defense against abiotic stress. Forests 2021, 12, 1404. [Google Scholar] [CrossRef]
- Jia, X.M.; Zhu, Y.F.; Hu, Y.; Zhang, R.; Cheng, L.; Zhu, Z.L.; Zhao, T.; Zhang, X.; Wang, Y.X. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic. Res. 2019, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Gao, Q.X.; Zhang, Y.G.; Li, L.; Mohamad, O.A.; Rao, M.P.N.; Xiao, M.; Hozzein, W.N.; Alkhalifah, D.H.; Tao, Y. Transcriptomic and ectoine analysis of halotolerant Nocardiopsis gilva YIM 90087T under salt stress. Front. Microbiol. 2018, 9, 618. [Google Scholar] [CrossRef]
- Winaya, A.; Zainudin, A. The identification of osmoprotectant compounds from Jatropha curcas Linn. plant for natural drought stress tolerance. Energy Rep. 2020, 6, 626–630. [Google Scholar] [CrossRef]
- Fang, Y.; Coulter, J.A.; Wu, J.; Liu, L.; Li, X.; Dong, Y.; Ma, L.; Pu, Y.; Sun, B.; Niu, Z. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS ONE 2021, 16, e0245494. [Google Scholar] [CrossRef]
- Li, Z.; Gao, L.; Chang, P.; Chen, Z.; Zhang, X.; Yin, W.; Fan, Y.; Wang, X. The impact of Elsinoë ampelina infection on key metabolic properties in Vitis vinifera ‘Red Globe’ Berries via Multiomics approaches. Mol. Plant Microbe Interact. 2021, 35, MPMI-09. [Google Scholar] [CrossRef]
- Laranjeira, S.; Amorim-Silva, V.; Esteban, A.; Arró, M.; Ferrer, A.; Tavares, R.M.; Botella, M.A.; Rosado, A.; Azevedo, H. Arabidopsis squalene epoxidase 3 (SQE3) complements SQE1 and is important for embryo development and bulk squalene epoxidase activity. Mol. Plant 2015, 8, 1090–1102. [Google Scholar] [CrossRef] [Green Version]
- Bali, S.; Gautam, V.; Kaur, P.; Khanna, K.; Kaur, R.; Vig, A.P.; Ohri, P.; Bhardwaj, R. Interaction of salicylic acid with plant hormones in plants under abiotic stress. In Salicylic Acid: A Multifaceted Hormone; Springer: Singapore, 2017; pp. 201–219. [Google Scholar] [CrossRef]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef] [Green Version]
- Hongna, C.; Leyuan, T.; Junmei, S.; Xiaori, H.; Xianguo, C. Exogenous salicylic acid signal reveals an osmotic regulatory role in priming the seed germination of leymus chinensis under salt-alkali stress. Environ. Exp. Bot. 2021, 188, 104498. [Google Scholar] [CrossRef]
- Lephatsi, M.M.; Meyer, V.; Piater, L.A.; Dubery, I.A.; Tugizimana, F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021, 11, 457. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yan, X.; Guo, J. Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance. PLoS ONE 2020, 15, e0244365. [Google Scholar] [CrossRef]
- Yan, F.; Zhu, Y.; Zhao, Y.; Wang, Y.; Li, J.; Wang, Q.; Liu, Y. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. BMC Genom. 2020, 21, 423. [Google Scholar] [CrossRef]
- Zhang, P.; Duo, T.; Wang, F.; Zhang, X.; Yang, Z.; Hu, G. De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genom. 2021, 22, 82. [Google Scholar] [CrossRef]
- Jiao, Y.; Sha, C.; Shu, Q. Integrated physiological and metabolomic analyses of the effect of potassium fertilizer on Citrus fruit splitting. Plants 2022, 11, 499. [Google Scholar] [CrossRef]
- Sewe, S.O.; Silva, G.; Sicat, P.; Seal, S.E.; Visendi, P. Trimming and validation of illumina short reads using Trimmomatic, Trinity assembly, and assessment of RNA-seq data. In Plant Bioinformatics; Humana: New York, NY, USA, 2022; pp. 211–232. [Google Scholar] [CrossRef]
- Zong, L.; Zheng, S.; Meng, Y.; Tang, W.; Li, D.; Wang, Z.; Tong, X.; Xu, B. Integrated transcriptomic analysis of the miRNA-mRNA interaction network in thin endometrium. Front. Genet. 2021, 12, 183. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Hull, D.M.; Harrell, E.; van Vliet, A.H.; Correa, M.; Thakur, S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018–2019. PLoS ONE 2021, 16, e0246571. [Google Scholar] [CrossRef]
- Santos, A.S.; de Andrade, E.M.; de Oliveira Sousa, A.R.; do Carmo Costa, M.M.; Togawa, R.; Grynberg, P.; Pirovani, C.P.; Oliveira, S.A.S.; dos Santos Soares Filho, W.; Coelho Filho, M.A. Transcriptome profile of drought responsive candidate genes in varieties of citrus rootstocks with different tolerance strategies. Sci. Hortic. 2021, 277, 109838. [Google Scholar] [CrossRef]
- Agostini, R.B.; Rius, S.P.; Vargas, W.A.; Campos-Bermudez, V.A. Proteome impact on maize silks under the priming state induced by Trichoderma root colonization. Planta 2021, 253, 115. [Google Scholar] [CrossRef]
- He, P.; Wang, H.; Yan, Y.; Zhu, G.; Chen, Z. Development and application of a multiplex fluorescent PCR for shigella detection and species identification. J. Fluores. 2022, 32, 707–713. [Google Scholar] [CrossRef]
- Kaur, G.; Verma, R.; Mukhopadhyay, C.S.; Sethi, R. Elevated pulmonary levels of Axin2 in mice exposed to herbicide 2,4-D with or without endotoxin. J. Biochem. Mol. Toxicol. 2021, 35, e22912. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
Treatment | Total Read Count | Q20 (%) | Q30 (%) | Total Mapped |
---|---|---|---|---|
Control | 53,821,293 | 98.75% | 94.04% | 86% |
LAS | 56,937,296 | 98.96% | 94.79% | 86% |
HAS | 54,063,143 | 98.25% | 96.64% | 84% |
Gene Set ID | GO Term | Gene Set Size | NES | |
---|---|---|---|---|
LAS | HAS | |||
GO:0009943 a | Adaxial/abaxial axis specification | 18 | −1.77 | - |
GO:0051187 a | Cofactor catabolism | 73 | −1.75 | - |
GO:0010027 a | Thylakoid membrane organization | 40 | −1.76 | - |
GO:0008252 a | Nucleotidase activity | 11 | −1.77 | - |
GO:0017001 a | Antibiotic catabolism | 63 | −1.74 | - |
GO:0010497 a | Plasmodesmata-mediated intercellular transport | 9 | −1.71 | - |
GO:0015772 a | Oligosaccharide transport | 7 | −1.81 | - |
GO:0009668 a | Plastid membrane organization | 41 | −1.72 | - |
GO:0015770 a | Sucrose transport | 6 | −1.82 | - |
GO:0046417 c | Chorismate metabolism | 10 | 2.34 | 2.16 |
GO:0005977 c | Glycogen metabolism | 17 | −1.80 | −1.86 |
GO:0006112 c | Energy reserve metabolism | 17 | −1.81 | −1.88 |
GO:0032544 c | Plastid translation | 15 | −1.75 | −1.82 |
GO:1905393 c | Plant organ formation | 82 | −1.73 | −1.80 |
GO:0016810 c | Hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds | 79 | −1.91 | −1.79 |
GO:0019684 c | Photosynthesis, light reaction | 83 | −1.74 | −1.79 |
GO:0003002 c | Regionalization | 112 | −1.73 | −1.74 |
GO:0000313 c | Organellar ribosome | 34 | −1.73 | −1.74 |
GO:0072598 c | Protein localization to chloroplast | 34 | −1.73 | −1.73 |
GO:0009706 c | Chloroplast inner membrane | 71 | −1.75 | −1.73 |
GO:0016811 c | hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds, in linear amides | 41 | −1.74 | −1.72 |
GO:0044436 c | Thylakoid part | 314 | −1.76 | −1.69 |
GO:0009528 c | Plastid inner membrane | 73 | −1.78 | −1.72 |
GO:0009535 c | Chloroplast thylakoid membrane | 284 | −1.79 | −1.70 |
GO:0055035 c | Plastid thylakoid membrane | 285 | −1.79 | −1.70 |
GO:0034357 c | Photosynthetic membrane | 300 | −1.77 | −1.68 |
GO:0009534 c | Chloroplast thylakoid | 358 | −1.73 | −1.68 |
GO:0048449 c | Floral organ formation | 15 | −1.71 | −1.69 |
GO:0009579 c | Thylakoid | 410 | −1.80 | −1.68 |
GO:0043650 c | Dicarboxylic acid biosynthesis | 21 | 2.27 | 2.05 |
GO:0042651 c | Thylakoid membrane | 300 | −1.77 | −1.69 |
GO:0031976 c | Plastid thylakoid | 359 | −1.73 | −1.68 |
GO:0009423 c | Chorismate biosynthesis | 6 | 2.10 | 1.95 |
GO:0005992 b | Trehalose biosynthesis | 10 | - | 2.32 |
GO:0005991 b | Trehalose metabolism | 12 | - | 2.21 |
GO:0019843 b | rRNA binding | 86 | - | −1.90 |
GO:0000786 b | Nucleosome | 23 | - | −1.87 |
GO:0006333 b | Chromatin assembly or disassembly | 31 | - | −1.83 |
GO:0045332 b | Phospholipid translocation | 6 | - | 2.04 |
GO:0046271 b | Phenylpropanoid catabolism | 10 | - | 2.05 |
GO:1901259 b | Chloroplast rRNA processing | 13 | - | −1.77 |
GO:1905268 b | Negative regulation of chromatin organization | 18 | - | −1.77 |
GO:0009522 b | Photosystem I | 24 | - | −1.78 |
GO:0046274 b | Lignin catabolic process | 10 | - | 2.05 |
GO:0045815 b | Positive regulation of gene expression, epigenetic | 10 | - | −1.77 |
GO:0009765 b | Photosynthesis, light harvesting | 22 | - | −1.77 |
GO:0007389 b | Pattern specification process | 138 | - | −1.78 |
GO:0046351 b | Disaccharide biosynthesis | 20 | - | 2.01 |
GO:0031204 b | Posttranslational protein targeting to membrane, translocation | 7 | - | 1.99 |
GO:0046658 b | Anchored component of the plasma membrane | 95 | - | −1.75 |
GO:0042447 b | Hormone catabolism | 12 | - | 2.05 |
GO:0016584 b | Nucleosome positioning | 7 | - | −1.74 |
GO:0031491 b | Nucleosome binding | 17 | - | −1.75 |
GO:0031492 b | Nucleosomal DNA binding | 5 | - | −1.70 |
GO:0046113 b | Nucleobase catabolism | 8 | - | −1.71 |
GO:0072596 b | Establishment of protein localization to chloroplast | 32 | - | −1.71 |
GO:0009941 b | Chloroplast envelope | 500 | - | −1.71 |
GO:0004805 b | Trehalose-phosphatase activity | 6 | - | 1.97 |
GO:0010206 b | Photosystem II repair | 8 | - | −1.69 |
GO:0031936 b | Negative regulation of chromatin silencing | 9 | - | −1.69 |
GO:0009798 b | Axis specification | 32 | - | −1.72 |
GO:0051053 b | Negative regulation of DNA metabolism | 32 | - | −1.68 |
GO:0030145 b | Manganese ion binding | 28 | - | −1.71 |
GO:0045036 b | Protein targeting the chloroplast | 32 | - | −1.71 |
GO:0000018 b | Regulation of DNA recombination | 20 | - | −1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Xie, R.-J.; Jia, H.-M. Identification of Potential Pathways of Morella cerifera Seedlings in Response to Alkali Stress via Transcriptomic Analysis. Plants 2022, 11, 1053. https://doi.org/10.3390/plants11081053
Jiao Y, Xie R-J, Jia H-M. Identification of Potential Pathways of Morella cerifera Seedlings in Response to Alkali Stress via Transcriptomic Analysis. Plants. 2022; 11(8):1053. https://doi.org/10.3390/plants11081053
Chicago/Turabian StyleJiao, Yun, Rang-Jin Xie, and Hui-Min Jia. 2022. "Identification of Potential Pathways of Morella cerifera Seedlings in Response to Alkali Stress via Transcriptomic Analysis" Plants 11, no. 8: 1053. https://doi.org/10.3390/plants11081053
APA StyleJiao, Y., Xie, R.-J., & Jia, H.-M. (2022). Identification of Potential Pathways of Morella cerifera Seedlings in Response to Alkali Stress via Transcriptomic Analysis. Plants, 11(8), 1053. https://doi.org/10.3390/plants11081053