Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain)
Abstract
:1. Introduction
2. Results
2.1. Genotypic Identification and Accession Denomination
2.2. Genetic Structure
2.3. Genetic Diversity and Genetic Differentiation
2.4. Core Collectionsgenetic Diversity and Genetic Differentiation
3. Discussion
3.1. Genotypic Identification and Accession Denominations
3.2. Population Structure, Genetic Diversity and Genetic Differentiation
3.3. Mediterranean Iberian Peninsula Genetic Pool
3.4. Core Collections
4. Materials and Methods
4.1. Plant Material
4.2. Microsatellite Analysis
4.3. Analysis of the Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2013; p. 181. Available online: http://www.fao.org/3/i3394e/i3394e.pdf (accessed on 12 April 2022).
- OIV. State of the World Vitivinicultural Sector in 2019; OIV: Paris, France, 2020; p. 15. Available online: https://www.oiv.int/public/medias/7298/oiv-state-of-the-vitivinicultural-sector-in-2019.pdf (accessed on 12 April 2022).
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Maul, E.; Sudharma, K.N.; Ganesh, A.; Hundemer, M.; Kecke, S.; Marx, G.; Schreiber, T.; Walk, M.; Vom Weg, S.; Mahler-Ries, A.; et al. 30 Years VIVC—Vitis International Variety Catalogue (www.vivc.de). In Proceedings of the XI International Conference on Grapevine Breeding and Genetics, Beijing, China, 28 July–2 August 2014. [Google Scholar]
- This, P.; Jung, A.; Boccacci, P.; Borrego, J.; Botta, R.; Costantini, L.; Crespan, M.; Dangl, G.S.; Eisenheld, C.; Ferreira-Monteiro, F.; et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 2004, 109, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Dangl, G.S.; Mendum, M.L.; Prins, B.H.; Walker, M.A.; Meredith, C.P.; Simon, C.J. Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome 2001, 44, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Zarouri, B.; Vargas, A.M.; Gaforio, L.; Aller, M.; De Andrés, M.T.; Cabezas, J.A. Whole-genome genotyping of grape using a panel of microsatellite multiplex PCRs. Tree Genet. Genomes 2015, 11, 17. [Google Scholar] [CrossRef]
- Lacombe, T.; Boursiquot, J.M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.P.; This, P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Bacilieri, R.; Lacombe, T.; Le Cunff, L.; Di Vecchi-Staraz, M.; Laucou, V.; Genna, B.; Péros, J.P.; This, P.; Boursiquot, J.M. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. 2013, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Emanuelli, F.; Lorenzi, S.; Grzeskowiak, L.; Catalano, V.; Stefanini, M.; Troggio, M.; Grando, M.S. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 2013, 13, 39. [Google Scholar] [CrossRef]
- Van Hintum, T.J.L.; Brown, A.H.D.; Spillane, C.; Hodgkin, T. Core Collections of Plant Genetic Resources; IPGRI Technical. Bullettin No. 3; IPGRI: Rome, Italy, 2000; p. 44. [Google Scholar]
- De Oliveira, G.L.; De Souza, A.P.; De Oliveira, F.A.; Zucchi, M.I.; De Souza, L.M.; Moura, M.F. Genetic structure and molecular diversity of Brazilian grapevine germplasm: Management and use in breeding programs. PLoS ONE 2020, 15, e0240665. [Google Scholar] [CrossRef]
- Štajner, N.; Tomić, L.; Ivanišević, D.; Korać, N.; Cvetković-Jovanović, T.; Beleski, K.; Angelova, E.; Maraš, V.; Javornik, B. Mi-crosatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genet. Genomes 2014, 10, 127–140. [Google Scholar] [CrossRef]
- Le Cunff, L.; Fournier-Level, A.; Laucou, V.; Vezzulli, S.; Lacombe, T.; Adam-Blondon, A.F.; Bourisquot, J.-M.; This, P. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol. 2008, 31, 8. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-García, R.; Ruiz-García, L.; Bolling, L.; Ocete, R.; López, M.A.; Arnold, C.; Ergul, A.; Söylemezoğlu, G.; Uzun, H.I.; Cabello, F.; et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 2006, 15, 3707–3714. [Google Scholar] [PubMed]
- García de Luján, A.; Lara Benítez, M. La colección de vides del Rancho de la Merced. Junta de Andalucía, Consejería de Agricultura y Pesca: Sevilla, Spain, 1997; p. 157. [Google Scholar]
- Laucou, V.; Lacombe, T.; Dechesne, F.; Siret, R.; Bruno, J.P.; Dessup, M.; This, P. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 2011, 122, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Junta de Andalucía. El Sector del Vino Andaluz en Cifras; Secretaría General de Agricultura y Alimentación: Madrid, Spain, 2017; p. 61. [Google Scholar]
- Tóth, J.P.; Végvári, Z. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res. 2016, 22, 64–72. [Google Scholar] [CrossRef]
- Agustí-Brisach, C.; López-Moral, A.; Raya-Ortega, M.C.; Franco, R.; Roca-Castillo, L.F.; Trapero, A. Occurrence of grapevine trunk diseases affecting the native cultivar Pedro Ximénez in southern Spain. Eur. J. Plant Pathol. 2019, 153, 599–625. [Google Scholar] [CrossRef]
- Cabello, F.; Ortiz, J.M.; Muñoz-Organero, G.; Rodríguez-Torres, I.; Barba, A.B.; Rubio de Miguel, C.; García-Muñoz, S.; De Andrés, M.T.; Sáiz, R. Variedades de Vid en España, 2nd ed.; Editorial Agrícola Española: Madrid, Spain, 2019; p. 552. [Google Scholar]
- Negrul, A.M. Evolution of cultivated forms of grapes. CR Acad. Sci. USSR 1938, 18, 585–588. [Google Scholar]
- García-Muñoz, S.; Lacombe, T.; de Andrés, M.T.; Gaforio, L.; Muñoz-Organero, G.; Laucou, V.; This, P.; Cabello, F. Grape varieties (Vitis vinifera L.) from the Balearic Islands: Genetic characterization and relationship with Iberian Peninsula and Medi-terranean Basin. Genet. Resour. Crop Evol. 2012, 59, 589–605. [Google Scholar] [CrossRef]
- Aradhya, M.K.; Dangl, G.S.; Prins, B.H.; Walker, M.A.; Meredith, C.P. Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet. Res. 2003, 81, 179–192. [Google Scholar] [CrossRef]
- Lia, V.V.; Poggio, L.; Confalonieri, V.A. Microsatellite variation in maize landrace from Northwestern Argentina: Genetic diversity.; population structure and racial affiliation. Theor. Appl. Genet. 2009, 119, 1053–1067. [Google Scholar] [CrossRef]
- De Andrés, M.T.; Benito, A.; Pérez-Rivera, G.; Ocete, R.; Lopez, M.A.; Gaforio, L.; Muñoz-Organero, G.; Cabello, F.; Martínez-Zapater, J.M.; Arroyo-García, R. Genetic diversity of wild grapevine populations in Spain and their genetic relationship with cultivated grapevines. Mol. Ecol. 2012, 21, 800–816. [Google Scholar] [CrossRef]
- Terral, J.F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.P.; Jung, C.; Fabre, L.; et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010, 105, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, J.; Muñoz-Organero, G.; Zinelabidine, L.H.; De Andrés, M.T.; Cabello, F.; Martínez-Zapater, J.M. Genetic origin of the grapevine cultivar Tempranillo. Am. J. Enol. Vitic. 2012, 63, 549–553. [Google Scholar] [CrossRef]
- Cipriani, G.; Spadotto, A.; Jurman, I.; Di Gaspero, G.; Crespan, M.; Meneghetti, S.; Frare, E.; Vignani, R.; Cresti, M.; Morgante, M.; et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages.; and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 2010, 121, 1569–1585. [Google Scholar] [CrossRef] [PubMed]
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.F.; Bérard, A.; Chauveau, A.; de Andrés, M.T.; Hausmann, L.; Ibáñez, J.; et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, G.; Patterson, N.; Sankararaman, S.; Price, A.L. Estimating and interpreting FST: The impact of rare variants. Genome Res. 2013, 23, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Levadoux, L. Les populations sauvages et cultivées de Vitis vinifera L. Ann. Amélioration Plantes 1956, 6, 59–118. [Google Scholar]
- Imazio, S.; Maghradze, D.; de Lorenzis, G.; Bacilieri, R.; Laucou, V.; This, P.; Scienza, A.; Failla, O. From the cradle of grapevine domestication: Molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genet. Genomes 2013, 9, 641–658. [Google Scholar] [CrossRef]
- Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.M.; Ware, D.; et al. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [Google Scholar] [CrossRef]
- Magris, G.; Jurman, I.; Fornasiero, A.; Paparelli, E.; Schwope, R.; Marroni, F.; Di Gaspero, G.; Morgante, M. The origin of European wine grapes. Nat. Commun. 2021, 12, 7240. [Google Scholar] [CrossRef]
- Grassi, F.; Labra, M.; Imazio, S.; Spada, A.; Sgorbati, S.; Scienza, A.; Sala, F. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 2003, 107, 1315–1320. [Google Scholar] [CrossRef]
- Barnaud, A.; Laucou, V.; This, P.; Lacombe, T.; Doligez, A. Linkage disequilibrium in wild French grapevine; Vitis vinifera L. subsp. silvestris. Heredity 2010, 104, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.C. Studies in the Vegetational History of S.W. Spain. II. Palynological Investigations at Laguna de las Madres; S.W. Spain. J. Biogeogr. 1985, 12, 293–314. [Google Scholar] [CrossRef]
- Hopf, M. Plant remains from Bogazköy, Turkey. Rev. Palaeobot. Palyno. 1992, 73, 99–104. [Google Scholar] [CrossRef]
- Zinelabidine, L.H.; Cunha, J.; Eiras-Dias, J.E.; Cabello, F.; Martínez-Zapater, J.M.; Ibáñez, J. Pedigree analysis of the Spanish grapevine cultivar ‘Hebén’. Vitis 2015, 54, 81–86. [Google Scholar]
- Cantos, M.; Arroyo-García, R.; García, J.L.; Lara, M.; Morales, R.; López, M.Á.; Gallardo, A.; Ocete, C.A.; Rodríguez, Á.; Valle, J.M.; et al. Current distribution and characterization of the wild grapevine populations in Andalusia (Spain). C. R. Biol. 2017, 340, 164–177. [Google Scholar] [CrossRef] [PubMed]
- de Rojas-Clemente y Rubio, S. Ensayo sobre las Variedades de la Vid Común que Vegetan en Andalucía: Con un Índice Etimológico y tres Listas de Plantas en que se Caracterizan Varias Especies Nuevas; Imprenta de Villalpando: Madrid, Spain, 1807; p. 324. [Google Scholar]
- Vargas, A.M.; de Andrés, M.T.; Ibañez, J. Maximization of minority classes in core collections designed for association studies. Tree Genet. Genomes 2016, 12, 28. [Google Scholar] [CrossRef]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.W.; Costich, D.E.; Buckler, E.S. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef]
- Bergamini, C.; Caputo, A.R.; Gasparro, M.; Perniola, R.; Cardone, M.F.; Antonacci, D. Evidences for an alternative genealogy of “Sangiovese”. Mol. Biotechnol. 2013, 53, 278–288. [Google Scholar] [CrossRef]
- Gardiman, M.; Bavaresco, L. The Vitis Germplasm Repository at the CRA-VIT.; Conegliano (Italy): Conservation; Characterization and Valorisation of Grapevine Genetic Resources. Acta Hortic. 2015, 1082, 239–244. [Google Scholar] [CrossRef]
- Maul, E.; Sudharma, K.N.; Kecke, S.; Marx, G.; Müller, C.; Audeguin, L.; Boselli, M.; Boursiquot, J.M.; Bucchetti, B.; Cabello, F.; et al. The European Vitis Database: A technical innovation through an online uploading and interactive modification system. Vitis 2012, 51, 79–85. Available online: http://www.eu-Vitis.de (accessed on 12 April 2022).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; von Holdt, B.M. Structure Harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Falush, D. Documentation for Structure Software: Version 2.2; University of Chicago: Chicago, IL, USA, 2007. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A sim-ulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal; partially clonal; and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Dufour, A.B.; Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multi-variate method. Heredity 2008, 101, 92–103. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Perrier, X.; Jacquemoud-Collet, J.P. DARwin Software. 2006. Available online: http://darwin.cirad.fr/ (accessed on 12 April 2022).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J. Microsatellite Toolkit for Excel; Smurfit Institute of Genetics, Trinity College, University of Dublin: Dublin, Ireland, 2001. [Google Scholar]
- Schoen, D.J.; Brown, A.H. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci. USA 1993, 90, 10623–10627. [Google Scholar] [CrossRef] [PubMed]
- Gouesnard, B.; Bataillon, T.M.; Decoux, G.; Rozale, C.; Schoen, D.J.; David, J.L. MSTRAT: An Algorithm for Building Germ Plasm Core Collections by Maximizing Allelic or Phenotypic Richness. J. Hered. 2001, 92, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Veloso, M.M.; Almandanim, M.C.; Baleiras-Couto, M.; Pereira, H.S.; Carneiro, L.C.; Fevereiro, P.; Eiras-Dias, J. Microsatellite database of grapevine (Vitis vinifera L.) cultivars used for wine production in Portugal. Ciência Técnica Vitivinícola 2010, 25, 53–61. [Google Scholar]
- Marsal, G.; Mateo-Sanz, J.M.; Canals, J.M.; Zamora, F.; Fort, F. SSR analysis of 338 accessions planted in Penedès (Spain) reveals 28 unreported molecular profiles of Vitis vinifera L. Am. J. Enol. Vitic. 2016, 67, 466–470. [Google Scholar] [CrossRef]
Accessions | Genotypes | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identified | Unidentified | Total analyzed | SSR genotypes represented by only one accession | SSR genotypes represented by two or more accessions | Different SSR genotypes | |||||||||||
Correct accession name | Verified synonymies * | Not verified synonymies | Without accession name | Wrong accession name | Total | Total | Wine | Dual-use | Table | Interbreeding cross | Rootstock | Undefined | ||||
264 | 358 | 101 | 43 | 125 | 891 | 46 | 937 | 350 | 587 | 521 | 297 | 121 | 29 | 24 | 4 | 46 |
STRUCTURE K = 7 | Genotypes with ancestry (Q) > 0.78 | Admixed | |||||||||
group | sP1 | sP2 | sP3 | sP4 | sP5 | sP6 | sP7 | Total | |||
genotypes | 73 | 37 | 42 | 35 | 51 | 23 | 23 | 284 | 237 | ||
Assigned in other STRUCTURE K and DAPC | Not assigned (Q < 0,78) | ||||||||||
Total | |||||||||||
STRUCTURE Q≥0.78 | K = 2 | 73/0 | 23/0 | 9/7 | 0/30 | 2/26 | 0/20 | 0/17 | 207 | 77 | |
K = 3 | 72/0/0 | 8/1/0 | 0/33/0 | 0/0/16 | 0/0/42 | 0/0/14 | 0/21/0 | 207 | 77 | ||
K = 5 | 73/0/0/0/0 | 0/29/0/0/0 | 0/0/41/0/0 | 0/4/2/2/0 | 0/0/0/48/0 | 0/0/0/1/17 | 0/0/0/0/22 | 239 | 45 | ||
STRUCTUREGreater Q value | K = 2 | 73/0 | 37/0 | 22/20 | 0/35 | 5/46 | 1/22 | 0/23 | 284 | ||
K = 3 | 73/0/0 | 25/12/0 | 1/41/0 | 0/10/25 | 3/0/48 | 0/1/22 | 0/23/0 | 284 | |||
K = 5 | 73/0/0/0/0 | 1/36/0/0/0 | 0/0/42/0/0 | 0/15/6/12/2 | 0/0/0/51/0 | 0/0/0/1/22 | 0/0/0/0/23 | 284 | |||
DAPC | K=7 admixed allocation in DAPC groups | ||||||||||
DAPC = 2 | 28/45 | 19/18 | 32/10 | 29/6 | 41/10 | 13/10 | 8/15 | 71/166 | |||
DAPC = 3 | 0/5/68 | 1/20/16 | 0/36/6 | 15/20/0 | 47/2/2 | 22/1/0 | 3/19/1 | 79/89/69 | |||
DAPC = 5 | 1/1/67/4/0 | 0/37/0/0 | 40/1/0/1/0 | 1/2/0/23/9 | 0/5/0/7/39 | 0/1/0/1/21 | 4/2/0/14/3 | 31/67/35/50/54 |
Locus | All Accessions (521) | Vitis vinifera (481) | ||||
---|---|---|---|---|---|---|
PIC | N | <1% | PIC | N | <1% | |
MD7 | 0.790 | 17 | 6 | 0.772 | 13 | 4 |
MD32 | 0.794 | 13 | 5 | 0.796 | 11 | 3 |
ZAG62 | 0.794 | 15 | 6 | 0.786 | 10 | 2 |
ZAG79 | 0.841 | 14 | 3 | 0.830 | 12 | 1 |
EVA2 | 0.854 | 21 | 10 | 0.849 | 17 | 6 |
ISV2 | 0.842 | 23 | 13 | 0.829 | 18 | 10 |
VVS2 | 0.823 | 17 | 6 | 0.819 | 15 | 4 |
MD5 | 0.844 | 16 | 7 | 0.839 | 10 | 1 |
MD27 | 0.811 | 15 | 7 | 0.806 | 10 | 2 |
MD25 | 0.734 | 14 | 9 | 0.730 | 12 | 7 |
MD28 | 0.865 | 22 | 11 | 0.858 | 18 | 7 |
ISV4 | 0.786 | 13 | 6 | 0.780 | 12 | 5 |
ISV3 | 0.626 | 13 | 7 | 0.623 | 10 | 4 |
Sample | N | Na | Ne | Ho | He | F | PI | |
---|---|---|---|---|---|---|---|---|
Most represented countries | Spain | 82 | 9.15 | 5.08 | 0.829 | 0.790 | −0.053 | 6.02 × 10−16 |
Portugal | 98 | 9.38 | 5.52 | 0.852 | 0.809 | −0.054 | 8.10 × 10−17 | |
Italy | 57 | 8.31 | 5.02 | 0.835 | 0.785 | −0.065 | 1.27 × 10−15 | |
France | 113 | 9.08 | 4.80 | 0.855 | 0.779 | −0.102 | 2.37 × 10−15 | |
Total | 350 | 11.31 | 5.64 | 0.845 | 0.813 | −0.042 | 5.38 × 10 −17 | |
Inferred by STRUCTURE according to Q ≥ 0.78 | sP1 | 73 | 6.92 | 3.97 | 0.828 | 0.728 | −0.143 | 2.13 × 10 −13 |
sP2 | 37 | 7.85 | 4.65 | 0.834 | 0.770 | −0.085 | 5.03 × 10 −15 | |
sP3 | 42 | 7.08 | 3.95 | 0.799 | 0.730 | −0.101 | 1.72 × 10 −13 | |
sP4 | 35 | 7.77 | 4.51 | 0.829 | 0.765 | −0.087 | 9.78 × 10 −15 | |
sP5 | 51 | 7.38 | 4.35 | 0.849 | 0.754 | −0.126 | 2.40 × 10 −14 | |
sP6 | 21 | 4.77 | 3.45 | 0.817 | 0.695 | −0.176 | 6.21 × 10 −12 | |
Total | 258 | 11.08 | 5.76 | 0.828 | 0.816 | −0.019 | 3.61 × 10 −17 | |
Inferred by STRUCTURE according to the highest Q | sP1 | 110 | 9.08 | 4.43 | 0.841 | 0.754 | −0.119 | 1.84 × 10 −14 |
sP2 | 90 | 9.62 | 5.14 | 0.839 | 0.795 | −0.058 | 4.54 × 10 −16 | |
sP3 | 70 | 8.62 | 4.52 | 0.825 | 0.764 | −0.086 | 8.20 × 10 −15 | |
sP4 | 78 | 8.85 | 4.90 | 0.825 | 0.785 | −0.055 | 1.13 × 10 −15 | |
sP5 | 85 | 9.23 | 4.77 | 0.851 | 0.775 | −0.098 | 3.01 × 10 −15 | |
sP6 | 44 | 7.23 | 4.21 | 0.818 | 0.743 | −0.102 | 6.75 × 10 −14 | |
Total | 477 | 12.62 | 5.78 | 0.835 | 0.817 | −0.025 | 3.01 × 10 −17 | |
All Vitis vinifera * | 481 | 12.92 | 5.79 | 0.835 | 0.818 | −0.025 | 2.91 × 10 −17 |
Core Collections | |||
---|---|---|---|
Core-35 (No Rare Alleles) | Core-63 (All Alleles) | ||
sP1 | Q ≥ 0.78 | 3 | 6 |
admix | 5 | 8 | |
sP percent | 7.27% | 12.72% | |
Core percent | 22.85% | 22.22% | |
sP2 | Q ≥ 0.78 | 2 | 6 |
admix | 1 | 4 | |
sP percent | 3.33% | 11.11% | |
Core percent | 8.58% | 15.87% | |
sP3 | Q ≥ 0.78 | 4 | 5 |
admix | 2 | 4 | |
sP percent | 8.57% | 12.85% | |
Core percent | 17.14% | 14.29% | |
sP4 | Q ≥ 0.78 | 4 | 6 |
admix | 3 | 4 | |
sP percent | 8.97% | 12.82% | |
Core percent | 20% | 15.87% | |
sP5 | Q ≥ 0.78 | 4 | 5 |
admix | 3 | 8 | |
sP percent | 8.23% | 15.29% | |
Core percent | 20% | 20.63% | |
sP6 | Q ≥ 0.78 | - | - |
admix | 3 | 4 | |
sP percent | 6.81% | 9.09% | |
Core percent | 8.58% | 7.35% | |
sP7 | Q ≥ 0.78 | - | - |
admix | 1 | 3 | |
sP percent | 25% | 75% | |
Core percent | 2.85% | 4.76% | |
He | 0.825 | 0.833 | |
Ho | 0.873 | 0.840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cretazzo, E.; Moreno Sanz, P.; Lorenzi, S.; Benítez, M.L.; Velasco, L.; Emanuelli, F. Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain). Plants 2022, 11, 1088. https://doi.org/10.3390/plants11081088
Cretazzo E, Moreno Sanz P, Lorenzi S, Benítez ML, Velasco L, Emanuelli F. Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain). Plants. 2022; 11(8):1088. https://doi.org/10.3390/plants11081088
Chicago/Turabian StyleCretazzo, Enrico, Paula Moreno Sanz, Silvia Lorenzi, Miguel Lara Benítez, Leonardo Velasco, and Francesco Emanuelli. 2022. "Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain)" Plants 11, no. 8: 1088. https://doi.org/10.3390/plants11081088
APA StyleCretazzo, E., Moreno Sanz, P., Lorenzi, S., Benítez, M. L., Velasco, L., & Emanuelli, F. (2022). Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain). Plants, 11(8), 1088. https://doi.org/10.3390/plants11081088