Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS
Abstract
:1. Introduction
2. Results
2.1. Phenological and Yield Traits
2.2. Physiological Traits
2.3. Relationship between Traits
2.4. Population Structure
2.5. Genome-Wide Association Analysis
2.6. Candidate Gene Annotation
3. Discussion
4. Materials and Methods
4.1. Genetic Materials
4.2. Experimental Designs
- (1)
- Three experiments were conducted during the summer season at the ICARDA Terbol station (35.98 N, 33.88 E, 890 m above sea level). The summer season at the Terbol station, Lebanon runs from June to October and is characterized by hot and dry weather, with temperatures above 35 °C during the flowering and pod set time (Figure 3a). A 50 mm irrigation was provided to the crop every seven days using drip irrigations to ensure enough moisture for crop growth. The soil in Terbol station is a deep and rich clay loam soil.
- (2)
- Two experiments were conducted during the winter season at the ARC Hudeiba Research Station in Sudan (17.56° N, 33.93° E, and 350 m above sea level) in high terrace soil (Almatra) during the 2015/16 and 2016/17 seasons. The winter season at Hudeiba runs from November to March and is characterized by hot and dry weather with daytime temperatures above 32 °C (Figure 3b). Flood irrigation was provided at 10 day intervals to ensure enough moisture in the soil.
- (3)
- One experiment was conducted at Central Ferry Research Farm, USA (Central Ferry, Pullman, WA; 46°43′52′′ N, 117°39′52′′ W) during the spring season from April to August 2017. The Central Ferry location has a Chard silt loam soil (coarse-loamy, mixed, super active, mesic Calcic Haploxerolls). The season is characterized by warm weather during the reproductive and terminal crop cycle (Figure 3b). Using subsurface drip irrigation, 10 mm of water irrigation were provided daily.
4.3. Phenotyping for Heat Stress
4.4. DNA Extraction and Genome by Sequencing Analysis
4.5. Statistical Analysis of Phenotyping Data
4.6. Population Structure and Genome-Wide Association Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villacampa, Y.; Navarro-González, F.J.; Hernández, G.; Laddaga, J.; Confalone, A. Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas. Sustainability 2020, 12, 9829. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba Bean in Cropping Systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Bharucha, Z.P. Sustainable Intensification in Agricultural Systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 24 February 2022).
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional Value of Faba Bean (Vicia faba L.) Seeds for Feed and Food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Koivunen, E.; Partanen, K.; Perttilä, S.; Palander, S.; Tuunainen, P.; Valaja, J. Digestibility and Energy Value of Pea (Pisum sativum L.), Faba Bean (Vicia faba L.) and Blue Lupin (Narrow-Leaf) (Lupinus angustifolius) Seeds in Broilers. Anim. Feed Sci. Technol. 2016, 218, 120–127. [Google Scholar] [CrossRef]
- Maalouf, F.; Ahmed, S.; Bishaw, Z. Chapter 6. Faba Bean. In Beans and Peas; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–131. [Google Scholar]
- Bishop, J.; Potts, S.G.; Jones, H.E. Susceptibility of Faba Bean (Vicia faba L.) to Heat Stress During Floral Development and Anthesis. J. Agron. Crop Sci. 2016, 202, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Abdelmula, A.A.; Abuanja, I.K. Genotypic Responses, Yield Stability, and Association between Characters among Some of Sudanese Faba Bean (Vicia faba L.) Genotypes under Heat Stress. In Proceedings of the Conference on International Agricultural Research for Development, Tropentag 2007; University of Kassel-Witzenhausen and University of Göttingen: Göttingen, Germany, 2007; pp. 1–7. [Google Scholar]
- Lavania, D.; Siddiqui, M.H.; Al-Whaibi, M.H.; Singh, A.K.; Kumar, R.; Grover, A. Genetic Approaches for Breeding Heat Stress Tolerance in Faba Bean (Vicia faba L.). Acta Physiol. Plant. 2015, 37, 1737. [Google Scholar] [CrossRef]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Tokachichu, R.N.; Trethowan, R.M.; Tan, D.K.Y. Effect of High Temperature on the Reproductive Development of Chickpea Genotypes under Controlled Environments. Funct. Plant Biol. 2012, 39, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Konsens, I.; Ofir, M.; Kigel, J. The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Ann. Bot. 1991, 67, 391–399. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hall, A.E. Heat Injury during Early Floral Bud Development in Cowpea. Crop Sci. 1993, 33, 764–767. [Google Scholar] [CrossRef]
- Kakani, V.G.; Prasad, P.V.V.; Craufurd, P.Q.; Wheeler, T.R. Response of in Vitro Pollen Germination and Pollen Tube Growth of Groundnut (Arachis hypogaea L.) Genotypes to Temperature. Plant Cell Environ. 2002, 25, 1651–1661. [Google Scholar] [CrossRef] [Green Version]
- Koti, S.; Reddy, K.R.; Reddy, V.R.; Kakani, V.G.; Zhao, D. Interactive Effects of Carbon Dioxide, Temperature, and Ultraviolet-B Radiation on Soybean (Glycine max L.) Flower and Pollen Morphology, Pollen Production, Germination, and Tube Lengths. J. Exp. Bot. 2005, 56, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, K.H.M.; Nayyar, H. Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits. Front. Plant Sci. 2017, 8, 774. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Perdomo, E.; Vidal, A.; Kreplak, J.; Duborjal, H.; Leveugle, M.; Duarte, J.; Desmetz, C.; Deulvot, C.; Raffiot, B.; Marget, P.; et al. Development of New Genetic Resources for Faba Bean (Vicia faba L.) Breeding through the Discovery of Gene-Based SNP Markers and the Construction of a High-Density Consensus Map. Sci. Rep. 2020, 10, 6790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardis, E.R. The Impact of Next-Generation Sequencing Technology on Genetics. Trends Genet. 2008, 24, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Morozova, O.; Marra, M.A. Applications of Next-Generation Sequencing Technologies in Functional Genomics. Genomics 2008, 92, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, F.; Hu, J.; O’Sullivan, D.M.; Zong, X.; Hamwieh, A.; Kumar, S.; Baum, M. Breeding and Genomics Status in Faba Bean (Vicia faba). Plant Breed. 2019, 138, 465–473. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, D.M.; Angra, D. Advances in Faba Bean Genetics and Genomics. Front. Genet. 2016, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.; Cottage, A.; Wood, T.; Khamassi, K.; Hobbs, D.; Gostkiewicz, K.; White, M.; Khazaei, H.; Ali, M.; Street, D.; et al. A SNP-Based Consensus Genetic Map for Synteny-Based Trait Targeting in Faba Bean (Vicia faba L.). Plant Biotechnol. J. 2016, 14, 177–185. [Google Scholar] [CrossRef]
- Gnanasambandam, A.; Paull, J.; Torres, A.; Kaur, S.; Leonforte, T.; Li, H.; Zong, X.; Yang, T.; Materne, M. Impact of Molecular Technologies on Faba Bean (Vicia faba L.) Breeding Strategies. Agronomy 2012, 2, 132–166. [Google Scholar] [CrossRef] [Green Version]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Edward IV, S.B. Structure of Linkage Disequilibrium in Plants. Annu. Rev. Plant Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review Self-Fertilisation Makes Arabidopsis Particularly Well Suited to GWAS. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Stephens, M. Efficient Multivariate Linear Mixed Model Algorithms for Genome-Wide Association Studies. Nat. Methods 2014, 11, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Ewert, F. Future Crop Production Threatened by Extreme Heat. Environ. Res. Lett. 2014, 9, 041001. [Google Scholar] [CrossRef] [Green Version]
- Sita, K.; Sehgal, A.; Hanumantharao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.; Siddique, K.H.M.; Nayyar, H. Heat-Stress-Induced Reproductive Failures in Chickpea (Cicer arietinum) Are Associated with Impaired Sucrose Metabolism in Leaves and Anthers. Funct. Plant Biol. 2013, 40, 1334–1349. [Google Scholar] [CrossRef]
- Kaur, S.; Kimber, R.B.E.; Cogan, N.O.I.; Materne, M.; Forster, J.W.; Paull, J.G. SNP Discovery and High-Density Genetic Mapping in Faba Bean (Vicia faba L.) Permits Identification of QTLs for Ascochyta Blight Resistance. Plant Sci. 2014, 217–218, 47–55. [Google Scholar] [CrossRef]
- Ocaña-Moral, S.; Gutiérrez, N.; Torres, A.M.; Madrid, E. Saturation Mapping of Regions Determining Resistance to Ascochyta Blight and Broomrape in Faba Bean Using Transcriptome-Based SNP Genotyping. Theor. Appl. Genet. 2017, 130, 2271–2282. [Google Scholar] [CrossRef]
- Heinrich, F.; Wutke, M.; Das, P.P.; Kamp, M.; Gültas, M.; Link, W.; Schmitt, A.O. Identification of Regulatory SNPs Associated with Vicine and Convicine Content of Vicia Faba Based on Genotyping by Sequencing Data Using Deep Learning. Genes 2020, 11, 614. [Google Scholar] [CrossRef]
- Abou-Khater, L.; Maalouf, F.; Jighly, A.; Alsamman, A.M.; Rubiales, D.; Rispail, N.; Hu, J.; Ma, Y.; Balech, R.; Hamwieh, A.; et al. Genomic Regions Associated with Herbicide Tolerance in a Worldwide Faba Bean (Vicia faba L.) Collection. Sci. Rep. 2022, 12, 158. [Google Scholar] [CrossRef]
- Luan, X.; Vico, G. Canopy Temperature and Heat Stress Are Increased by Compound High Air Temperature and Water Stress and Reduced by Irrigation—A Modeling Analysis. Hydrol. Earth Syst. Sci. 2021, 25, 1411–1423. [Google Scholar] [CrossRef]
- Maalouf, F.; Nachit, M.; Ghanem, M.E.; Singh, M. Evaluation of Faba Bean Breeding Lines for Spectral Indices, Yield Traits and Yield Stability under Diverse Environments. Crop Pasture Sci. 2015, 66, 1012–1023. [Google Scholar] [CrossRef]
- Maalouf, F.; Pati, S.; Kemal, S.A. Developing Improved Varieties of Faba Bean. In Achieving Sustainable Cultivation of Grain Legumes; Sivasankar, S., Bergvinson, D., Gaur, P., Kumar Agrawal, S., Beebe, S., Tamò, M., Eds.; Burleigh Dodds Science Publishing Limited: London, UK, 2018; Volume 2, ISBN 9781786761408. [Google Scholar]
- Xie, W.; Feng, Q.; Yu, H.; Huang, X.; Zhao, Q.; Xing, Y.; Yu, S.; Han, B.; Zhang, Q. Parent-Independent Genotyping for Constructing an Ultrahigh-Density Linkage Map Based on Population Sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 10578–10583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubero, J.I. Evolutionary Trends in Vicia faba L. Theor. Appl. Genet. 1973, 43, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.; Regina, M. Association Mapping for Frost Tolerance Using Multi-Parent Advanced Generation Inter-Cross (MAGIC) Population in Faba Bean (Vicia faba L.). Genetica 2015, 143, 501–514. [Google Scholar] [CrossRef]
- Oladzad, A.; Porch, T.; Rosas, J.C.; Moghaddam, S.M.; Beaver, J.; Beebe, S.E.; Burridge, J.; Jochua, C.N.; Miguel, M.A.; Miklas, P.N.; et al. Single and Multi-Trait GWAS Identify Genetic Factors Associated with Production Traits in Common Bean under Abiotic Stress Environments. G3 Genes Genomes Genet. 2019, 9, 1881–1892. [Google Scholar] [CrossRef]
- Essemine, J.; Ammar, S.; Bouzid, S. Impact of Heat Stress on Germination and Growth in Higher Plants: Physiological, Biochemical and Molecular Repercussions and Mechanisms of Defence. J. Biol. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, B.; Liu, W.; Lin, Y.; Liang, Z.; He, X.; Peng, Q. Transcriptome Analyses Provide Novel Insights into Heat Stress Responses in Chieh-qua (Benincasa hispida Cogn. Var. Chieh-Qua How). Int. J. Mol. Sci. 2019, 20, 883. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Chiba, Y.; Hirai, M.Y. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. Front. Plant Sci. 2021, 12, 593. [Google Scholar] [CrossRef]
- Sakata, S.; Mizusawa, N.; Kubota-Kawai, H.; Sakurai, I.; Wada, H. Psb28 Is Involved in Recovery of Photosystem II at High Temperature in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta-Bioenerg. 2013, 1827, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Ma, K.; Lu, Z.; Chen, G.; Cui, J.; Tong, P.; Wang, L.; Teng, N.; Jin, B. Transcriptomic and Metabolomic Analysis of the Heat-Stress Response of Populus tomentosa Carr. Forests 2019, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liu, Y.; Tian, J.; Huang, K.; Shi, T.; Dai, X.; Zhang, W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. Front. Plant Sci. 2017, 8, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.; Easwaran, V.; Chau, V.; Okamoto, M.; Ierullo, M.; Kimura, M.; Endo, A.; Yano, R.; Pasha, A.; Gong, Y.; et al. NIN-like Protein 8 Is a Master Regulator of Nitrate-Promoted Seed Germination in Arabidopsis. Nat. Commun. 2016, 7, 13179. [Google Scholar] [CrossRef] [PubMed]
- Brewbake, J.; Kwack, B. The Essential Role of Calcium Ion in Pollen Germination and Pollen Tube Growth. Am. J. Bot. 1963, 50, 859–865. [Google Scholar] [CrossRef]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Goedhart, P.W.; Thissen, J.T.N.M. Biometris GenStat Procedure Library Manual, 19th ed.; Wageningen Biometris; Wageningen-UR: Wageningen, The Netherlands, 2018. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.r-project.org (accessed on 30 November 2021).
- Wickham, H. Programming with Ggplot2. In ggplot2. Use R! Springer: Cham, Switzerland, 2016; pp. 241–253. [Google Scholar]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S. Genetic Data Analysis. Methods for Discrete Population Genetic Data.; Sinauer Associates: Sunderland, MA, USA, 1990. [Google Scholar] [CrossRef]
Terbol, Lebanon | Hudeiba, Sudan | Pullman, WA, USA | ||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2016 | 2017 | 2017 | |
GY | 0.017 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
PLHT | <0.001 | <0.001 | <0.001 | <0.001 | 0.335 | <0.001 |
DFLR | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | NA |
DMAT | NA | <0.001 | 0.004 | <0.001 | 0.003 | NA |
NPP | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | NA |
NSP | 0.004 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 |
CL | NA | NA | NA | 0.004 | 0.009 | NA |
PG | 0.015 | <0.001 | <0.05 | NA | NA | NA |
HSW | 0.049 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Genotypes (G) | Environment (E) * | G × E | |
---|---|---|---|
DF | 133 | 5 | 665 |
GY | <0.001 | <0.001 | <0.398 |
PLHT | <0.001 | <0.001 | <0.001 |
DFLR | <0.001 | <0.001 | <0.001 |
DMAT | <0.001 | <0.001 | <0.001 |
NPP | <0.001 | <0.001 | <0.001 |
NSP | <0.001 | <0.001 | <0.001 |
CL | <0.001 | 0.118 | <0.001 |
PG | <0.001 | <0.001 | <0.001 |
HSW | <0.001 | <0.001 | <0.001 |
GY | DFLR | DMAT | PLHT | NPP | NSP | HSW | PG | Cl | ||
---|---|---|---|---|---|---|---|---|---|---|
Year | Summer Terbol, Lebanon | |||||||||
2015 | Range | 0.0–55 | 36–102 | NA | 16.7–8 | 0.0–47.6 | 0.0–30.5 | 13–156 | 0.0–50.4 | NA |
Mean | 9.0 | 51.85 | NA | 60.89 | 7.63 | 10.15 | 68.95 | 8.87 | NA | |
2016 | Range | 0.0–29 | 34–65 | 90–152 | 18–80 | NA | 0–31 | 20–200 | 0.0–73 | NA |
Mean | 1.4 | 46 | 94.5 | 54.29 | NA | 2.07 | 80.43 | 15.8 | NA | |
2017 | Range | 0.9–12 | 34.7–74.5 | 111–121 | 20–92.3 | 0–22.6 | 0–163.8 | 3–103 | 0.0–120 | NA |
Mean | 13.7 | 49.7 | 117.4 | 65.9 | 7.3 | 32.3 | 23.3 | 28.4 | NA | |
Hudeiba, Sudan | ||||||||||
2016 | Range | 0.0–11 | 27.5–91 | 91–114 | 21.3–64.9 | 0.0–21.1 | 0.0–35.5 | 9.9–88 | NA | 28–65 |
Mean | 1.26 | 50.68 | 103 | 48.8 | 1.62 | 2.72 | 47.68 | NA | 41.2 | |
2017 | Range | 0.0–12 | NA | 63–117 | 14.1–66.9 | 0.0–22.14 | 0.0–20.5 | NA | NA | 17–50 |
Mean | 1.3 | NA | 107 | 42.86 | 2.22 | 1.56 | NA | NA | 40.3 | |
Central Ferry, WA, USA | ||||||||||
2017 | Range | 1.3–29 | NA | NA | 33.9–81.8 | NA | 3–16 | 20–194 | NA | NA |
Mean | 13.96 | NA | NA | 59.36 | NA | 14.01 | 98.5 | NA | NA |
DFLR | DMAT | GYP | HSW | NPP | NSP | PLHT | PG | |
---|---|---|---|---|---|---|---|---|
DMAT | 0.26 ** | - | ||||||
GYP | 0.12 | −0.02 | - | |||||
HSW | −0.31 *** | −0.13 | 0.11 | - | ||||
NPP | −0.02 | −0.07 | 0.37 *** | −0.19 * | - | |||
NPP | 0.07 | 0.10 | 0.21 * | 0.14 | −0.29 ** | - | ||
PLHT | −0.40 *** | −0.06 | 0.25 ** | 0.36 *** | −0.14 | 0.17 | - | |
PG | 0.12 | 0.00 | 0.29 ** | −0.32 *** | 0.32 ** | −0.04 | −0.06 | |
CL | −0.05 | −0.07 | 0.07 | 0.0 | −0.03 | −0.09 | 0.25*** | 0.03 |
IG | ORIGIN | PLHT | NPP | GYP | PG | |
---|---|---|---|---|---|---|
subsp. faba var. major | VF420 | Afghanistan | 53.34 | 4.85 | 5.21 | 20.2 |
FB2648 | France | 61.79 | 11.65 | 20.14 | 29.41 | |
subsp. faba var. equina Pers | IG11908 | Ethiopia | 56.55 | 8.53 | 12.01 | 17.91 |
IG11982 | Iraq | 58.29 | 11.13 | 13.01 | 17.05 | |
IG12110 | Algeria | 60.78 | 8.98 | 9.87 | 26.24 | |
IG13945 | Sudan | 67.13 | 9.17 | 21.7 | 18.49 | |
IG99664 | ICARDA | 63.78 | 10.67 | 9.51 | 44.82 | |
Vf351 | Turkey | 58.62 | 11.27 | 13.53 | 25.23 | |
FB2509 | France | 60.12 | 12.2 | 10.25 | 57.01 | |
IG14026 | ETH | 59.77 | 7.47 | 8.25 | 16.76 | |
subsp. faba var. minor pers | IG12659 | Ethiopia | 48.49 | 8.74 | 12.32 | 18.39 |
IG13958 | Syria | 63.13 | 9.87 | 6.34 | 34.22 | |
FB1165 | Spain | 55.87 | 9.79 | 11.21 | 22.61 | |
subsp. paucijuga Beck | Vf301 | Czech Republic | 45.83 | 11.4 | 7.68 | 19.2 |
VF626 | Unknown | 10.758 | 54.5 | 6.901 | 27.44 | |
Mean of tested populations | 7.2 | 34.5 | 5.15 | 14 | ||
Standard error | 7.9 | 5.15 | 5.1 | 14.5 |
Trait | QTLID | SNP | Allele1 | Allele0 | AF | P |
---|---|---|---|---|---|---|
NPP | NPP_8 | SNODE_40333_LENGTH_77_COV_34.987015_87 | T | A | 0.18 | 3.70 × 10−6 |
NPP_9 | SNODE_559376_LENGTH_95_COV_1.252632_60 | A | T | 0.45 | 6.20 × 10−12 | |
NSP | NSP_4 | SCONTIG82391_71 | T | G | 0.09 | 3.5 × 10−6 |
NSP_4 | SCONTIG82391_72 | C | T | 0.09 | 3.5 × 10−6 | |
NSP_4 | SCONTIG82391_73 | A | T | 0.09 | 3.5 × 10−6 | |
NSP_5 | SNODE_11884_LENGTH_82_COV_596.182922_61 | A | G | 0.09 | 1.0 × 10−7 | |
HSW | HSW_6 | SNODE_9908_LENGTH_67_COV_43.895523_45 | A | G | 0.17 | 7.1 × 10−7 |
GYP | GYP_3 | SCONTIG72702_49 | A | G | 0.5 | 2.3 × 10−6 |
CT | CT_2 | SCONTIG50196_81 | C | T | 0.06 | 6.0 × 10−7 |
PG | PG_1 | SCONTIG82855_50 | A | G | 0.09 | 1.50 × 10−6 |
PG_6 | SNODE_7398_LENGTH_62_COV_214.516129_82 | G | A | 0.16 | 3.50 × 10−7 |
Markers | Gene Names |
---|---|
Contig82855 | Lupinus angustifolius probable polygalacturonase (LOC109360706), mRNA |
Abrus precatorius probable polygalacturonase (LOC113847809), mRNA | |
Prunus dulcis DNA, pseudomolecule Pd05 | |
NODE_38942_length_69_cov_118.768112 | Medicago truncatula uncharacterized LOC11423568, mRNA |
Glycine soja uncharacterized LOC114380151, mRNA | |
Abrus precatorius uncharacterized LOC113852670, transcript variant X3, mRNA | |
Glycine max uncharacterized LOC100810394, mRNA | |
Medicago truncatula clone mth2-17i21, complete sequence | |
Cicer arietinum uncharacterized LOC101512103, mRNA | |
Abrus precatorius uncharacterized LOC113852670, transcript variant X2, mRNA | |
NODE_6662_length_69_cov_474.000000 | Cicer arietinum transcription factor bHLH143-like (LOC101493666), mRNA |
Lupinus angustifolius transcription factor bHLH143-like (LOC109349271), mRNA | |
Medicago truncatula transcription factor bHLH143 (LOC11430352), mRNA | |
NODE_7398_length_62_cov_214.516129 | Cicer arietinum S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC101510252), transcript variant X1, mRNA |
Medicago truncatula S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC11420332), transcript variant X3, misc_RNA | |
Cicer arietinum S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC101510252), transcript variant X3, mRNA | |
Medicago truncatula S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC11420332), transcript variant X1, mRNA | |
Cicer arietinum S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC101510252), transcript variant X2, mRNA | |
Medicago truncatula S-adenosylmethionine carrier 1, chloroplastic/mitochondrial (LOC11420332), transcript variant X2, mRNA | |
NODE_7979_length_116_cov_512.344849 | Medicago truncatula putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC11440721), transcript variant X1, mRNA |
Medicago truncatula putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC11440721), transcript variant X2, mRNA | |
Lupinus angustifolius putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC109335950), mRNA | |
Medicago truncatula clone mth2-123f23, complete sequence | |
Medicago truncatula putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC11440721), transcript variant X3, mRNA | |
Cicer arietinum putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC113783927), mRNA | |
Medicago truncatula putative pentatricopeptide repeat-containing protein At5g08310, mitochondrial (LOC11440721), transcript variant X4, mRNA |
Markers | Gene Names |
---|---|
Hundred seed weight (HSW) | |
Contig16540 | Cajanus cajan uncharacterized LOC109813943, transcript variant X2, mRNA |
Cajanus cajan uncharacterized LOC109813943, transcript variant X1, mRNA | |
Medicago truncatula uncharacterized LOC11425609, mRNA | |
Medicago truncatula clone mth2-173c1, complete sequence | |
Cicer arietinum uncharacterized LOC101492966, transcript variant X1, mRNA | |
Cicer arietinum uncharacterized LOC101492966, transcript variant X2, mRNA | |
NODE_8714_length_71_cov_9.901408 | Quercus suber cilia- and flagella-associated protein 251-like (LOC112012620), partial mRNA |
NODE_9908_length_67_cov_43.895523 | Medicago truncatula clone mth2-176a22, complete sequence |
Medicago truncatula clone mth2-18p3 map mtgsp_014c01, complete sequence | |
Medicago truncatula clone mth2-64j6, complete sequence | |
Number of seeds per plant (NSP) | |
Contig82391 | Cicer arietinum protein NLP8-like (LOC101496898), transcript variant X2, mRNA |
Cicer arietinum protein NLP8-like (LOC101496898), transcript variant X1, mRNA | |
Grain yield per plant (GYP) | |
NODE_14795_length_67_cov_68.791046 | Medicago truncatula uncharacterized LOC25500962, mRNA |
GYP, NSP, NPP, DFLR, DMAT | |
Contig60075 * | photosystem II reaction center PSB28 protein |
Locations | Period of Cropping | Irrigation Pattern | Day Time Max T | Nighttime Max T °C | |
---|---|---|---|---|---|
2015 | Terbol | June–October | Drip irrigation 50 mm/week | 35 °C | 19 °C |
2016 | Terbol | June–October | Drip irrigation basis 50 mm/week | 35 °C | 19 °C |
Hudeiba | November–March | Flood irrigation every 10 days | 36 °C | 19 °C | |
2017 | Terbol | June–October | Drip irrigation basis 50 mm/week | 36 °C | 20 °C |
Hudeiba | November–March | Flood irrigation every 10 days | 40 °C | 20 °C | |
Pullman | April–August | Drip irrigation 10 mm/day | >40 °C | 21 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maalouf, F.; Abou-Khater, L.; Babiker, Z.; Jighly, A.; Alsamman, A.M.; Hu, J.; Ma, Y.; Rispail, N.; Balech, R.; Hamweih, A.; et al. Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS. Plants 2022, 11, 1108. https://doi.org/10.3390/plants11091108
Maalouf F, Abou-Khater L, Babiker Z, Jighly A, Alsamman AM, Hu J, Ma Y, Rispail N, Balech R, Hamweih A, et al. Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS. Plants. 2022; 11(9):1108. https://doi.org/10.3390/plants11091108
Chicago/Turabian StyleMaalouf, Fouad, Lynn Abou-Khater, Zayed Babiker, Abdulqader Jighly, Alsamman M. Alsamman, Jinguo Hu, Yu Ma, Nicolas Rispail, Rind Balech, Aladdin Hamweih, and et al. 2022. "Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS" Plants 11, no. 9: 1108. https://doi.org/10.3390/plants11091108
APA StyleMaalouf, F., Abou-Khater, L., Babiker, Z., Jighly, A., Alsamman, A. M., Hu, J., Ma, Y., Rispail, N., Balech, R., Hamweih, A., Baum, M., & Kumar, S. (2022). Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS. Plants, 11(9), 1108. https://doi.org/10.3390/plants11091108