An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging
Abstract
:1. Introduction
2. The Challenge of Imaging Hydrated Tissue in a Vacuum
3. Imaging Cell Outlines Using Variable Pressure SEM of Fresh Hydrated Leaf Samples
4. An Overview of Low-Temperature SEM, Commonly Known as cryoSEM
4.1. Sample Freezing
4.2. Manipulations of the Frozen Sample
4.3. Thin Layer Coating
4.4. SEM Imaging on the Cryo Stage
5. CryoSEM Applications in Plant Science
5.1. Plant–Microbe Interactions
5.2. Plant Anatomy, Patterning and Tissue Organisation
5.3. Fluid- and Air-Filled Spaces
5.4. Plant Cell Wall/Apoplast and Cuticle
5.5. Cell Organelles/Endomembranes
5.6. Phase Separated Materials
6. Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumais, J.; Kwiatkowska, D. Analysis of surface growth in shoot apices. Plant J. 2002, 31, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Matthaeus, W.J.; Schmidt, J.; White, J.D.; Zechmann, B. Novel perspectives on stomatal impressions: Rapid and non-invasive surface characterization of plant leaves by scanning electron microscopy. PLoS ONE 2020, 15, e0238589. [Google Scholar] [CrossRef] [PubMed]
- Dusevich, V.M.; Purk, J.H.; Eick, J.D. Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners). Micros. Today 2010, 18, 48–51. [Google Scholar] [CrossRef]
- Griffin, B.J. Variable Pressure and Environmental Scanning Electron Microscopy. In Electron Microscopy, Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; Volume 369, pp. 467–495. [Google Scholar] [CrossRef]
- Talbot, M.J.; White, R.G. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope. Plant Methods 2013, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.W. Ambient Variable Pressure Field Emission Scanning Electron Microscopy for Trichome Profiling of Plectranthus tomentosa by Secondary Electron Imaging. Appl. Microsc. 2013, 43, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-E.; Harada, E.; Wada, M.; Tsuboi, H.; Morita, Y.; Kusano, T.; Sano, H. Detoxification of cadmium in tobacco plants: Formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 2001, 213, 45–50. [Google Scholar] [CrossRef]
- Echlin, P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Boston, MA, USA, 2009; ISBN 9780387857305. [Google Scholar]
- Sansinena, M.; Santos, M.V.; Zaritzky, N.; Chirife, J. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation. Theriogenology 2012, 77, 1717–1721. [Google Scholar] [CrossRef] [Green Version]
- Aston, R.; Sewell, K.; Klein, T.; Lawrie, G.; Grøndahl, L. Evaluation of the impact of freezing preparation techniques on the characterisation of alginate hydrogels by cryo-SEM. Eur. Polym. J. 2016, 82, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, Y.; Shinose, M.; Watanabe, H.; Yamada, S.; Kanda, Y. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc. Natl. Acad. Sci. USA 2019, 116, 7738–7743. [Google Scholar] [CrossRef] [Green Version]
- Nijsse, J.; van Aelst, A.C. Cryo-planing for cryo-scanning electron microscopy. Scanning 2006, 21, 372–378. [Google Scholar] [CrossRef]
- Chang, I.Y.T.; Joester, D. Cryo-planing of frozen-hydrated samples using cryo triple ion gun milling (CryoTIGMTM). J. Struct. Biol. 2015, 192, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xiao, X.; Chou, T.-M.; Libera, M. Freezing and sublimation effects on cryo-SEM imaging and microanalysis. Microsc. Microanal. 2019, 25, 1108–1109. [Google Scholar] [CrossRef] [Green Version]
- Heu, R.; Shahbazmohamadi, S.; Yorston, J.; Capeder, P. Target Material Selection for Sputter Coating of SEM Samples. Micros. Today 2019, 27, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.T.; Goodyear, M.J.; Crewther, S.G. Sequential quantitative X-ray elemental imaging of frozen-hydrated and freeze-dried biological bulk samples in the SEM. J. Microsc. 2012, 245, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.E.; Clode, P.L.; Oliveira, R.S.; Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus-use efficiency. Plant. Cell Environ. 2018, 41, 605–619. [Google Scholar] [CrossRef]
- McCully, M.E.; Canny, M.J.; Huang, C.X.; Miller, C.; Brink, F. Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: Energy dispersive X-ray microanalysis (CEDX) applications. Funct. Plant Biol. 2010, 37, 1011–1040. [Google Scholar] [CrossRef]
- Narayan, K.; Subramaniam, S. Focused ion beams in biology. Nat. Methods 2015, 12, 1021–1031. [Google Scholar] [CrossRef]
- Kizilyaprak, C.; Bittermann, A.G.; Daraspe, J.; Humbel, B.M. FIB-SEM Tomography in Biology. Methods Mol. Biol. 2014, 1117, 541–558. [Google Scholar] [CrossRef]
- Zachs, T.; Schertel, A.; Medeiros, J.; Weiss, G.L.; Hugener, J.; Matos, J.; Pilhofer, M. Fully automated, sequential focused ion beam milling for cryo-electron tomography. Elife 2020, 9, e52286. [Google Scholar] [CrossRef]
- Schertel, A.; Snaidero, N.; Han, H.-M.; Ruhwedel, T.; Laue, M.; Grabenbauer, M.; Möbius, W. Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 2013, 184, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Hayles, M.F.; De Winter, D.A.M. An introduction to cryo-FIB-SEM cross-sectioning of frozen, hydrated Life Science samples. J. Microsc. 2021, 281, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Joens, M.S.; Huynh, C.; Kasuboski, J.M.; Ferranti, D.; Sigal, Y.J.; Zeitvogel, F.; Obst, M.; Burkhardt, C.J.; Curran, K.P.; Chalasani, S.H.; et al. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci. Rep. 2013, 3, 3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.H.; McCully, M.E.; Huang, C.X. Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: A cryo-analytical scanning electron microscopy study. New Phytol. 2003, 160, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, F.E.; Hayes, P.E.; Orchard, S.; Clode, P.L.; Nazeri, N.K.; Standish, R.J.; Bending, G.D.; Hilton, S.; Ryan, M.H. First Cryo-Scanning Electron Microscopy Images and X-Ray Microanalyses of Mucoromycotinian Fine Root Endophytes in Vascular Plants. Front. Microbiol. 2020, 11, 2018. [Google Scholar] [CrossRef] [PubMed]
- Groth, M.; Kosuta, S.; Gutjahr, C.; Haage, K.; Hardel, S.L.; Schaub, M.; Brachmann, A.; Sato, S.; Tabata, S.; Findlay, K.; et al. Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. Plant J. 2013, 75, 117–129. [Google Scholar] [CrossRef]
- McArthur, D.; Knowles, N.R. Influence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency. Plant Physiol. 1993, 101, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Kemen, A.C.; Honkanen, S.; Melton, R.E.; Findlay, K.C.; Mugford, S.T.; Hayashi, K.; Haralampidis, K.; Rosser, S.J.; Osbourn, A. Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning. Proc. Natl. Acad. Sci. USA 2014, 111, 8679–8684. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Chen, H.; Tong, Y.; Wu, P. Analysis of Rice Root Hair Morphology Using Cryo-Scanning Electron Microscopy. Methods Mol. Biol. 2013, 956, 243–248. [Google Scholar] [CrossRef]
- Sheffield, E.; Cutter, E.G.; Charlton, W.A. Cryo SEM of reproduction in pteridophytes. Proc. R. Soc. Edinburgh. Sect. B Biol. Sci. 1985, 86, 458–459. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, E.; Farrar, D.R. Cryo SEM Examination of Gemma Formation in Vittaria graminifolia. Am. J. Bot. 1988, 75, 894. [Google Scholar] [CrossRef]
- Lyczakowski, J.J.; Bourdon, M.; Terrett, O.M.; Helariutta, Y.; Wightman, R.; Dupree, P. Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. Front. Plant Sci. 2019, 10, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charuvi, D.; Nevo, R.; Kaplan-Ashiri, I.; Shimoni, E.; Reich, Z. Studying the Supramolecular Organization of Photosynthetic Membranes within Freeze-fractured Leaf Tissues by Cryo-scanning Electron Microscopy. J. Vis. Exp. 2016, 112, e54066. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, M.; Gaynord, J.; Müller, K.H.; Evans, G.; Wallis, S.; Aston, P.; Spring, D.R.; Wightman, R. Microscopy and chemical analyses reveal flavone-based woolly fibres extrude from micron-sized holes in glandular trichomes of Dionysia tapetodes. BMC Plant Biol. 2021, 21, 258. [Google Scholar] [CrossRef]
- Wightman, R.; Wallis, S.; Aston, P. Hydathode pit development in the alpine plant Saxifraga cochlearis. Flora 2017, 233, 99–108. [Google Scholar] [CrossRef]
- Wightman, R.; Wallis, S.; Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 2018, 241, 27–34. [Google Scholar] [CrossRef]
- Mignot, C. Color (and 3D) for Scanning Electron Microscopy. Micros. Today 2018, 26, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Baccio, D.; Minnocci, A.; Sebastiani, L. Leaf structural modifications in Populus × euramericana subjected to Zn excess. Biol. Plant. 2010, 54, 502–508. [Google Scholar] [CrossRef]
- Marchi, S.; Tognetti, R.; Minnocci, A.; Borghi, M.; Sebastiani, L. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europaea). Trees 2008, 22, 559–571. [Google Scholar] [CrossRef]
- Franks, P.J.; Farquhar, G.D. The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiol. 2007, 143, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Canny, M.J. Vessel contents during transpiration-embolisms and refilling. Am. J. Bot. 1997, 84, 1223–1230. [Google Scholar] [CrossRef]
- McCully, M.E.; Huang, C.X.; Ling, L.E.C. Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol. 1998, 138, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Cochard, H.; Bodet, C.; Améglio, T.; Cruiziat, P. Cryo-Scanning Electron Microscopy Observations of Vessel Content during Transpiration in Walnut Petioles. Facts or Artifacts? Plant Physiol. 2000, 124, 1191–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, K.; Utsumi, Y.; Kuroda, K.; Yamagishi, Y.; Nabeshima, E.; Nakaba, S.; Yasue, K.; Takata, K.; Funada, R. Formation of new networks of earlywood vessels in seedlings of the deciduous ring-porous hardwood Quercus serrata in springtime. Trees 2018, 32, 725–734. [Google Scholar] [CrossRef]
- Mathers, A.W.; Hepworth, C.; Baillie, A.L.; Sloan, J.; Jones, H.; Lundgren, M.; Fleming, A.J.; Mooney, S.J.; Sturrock, C.J. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. Plant Methods 2018, 14, 99. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, P.; Findlay, K.; McCann, M.C.; Roberts, K. Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. J. Exp. Bot. 2007, 58, 2079–2089. [Google Scholar] [CrossRef] [Green Version]
- Haas, K.T.; Wightman, R.; Meyerowitz, E.M.; Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 2020, 367, 1003–1007. [Google Scholar] [CrossRef]
- Lapsley, K.; Escher, F.; Hoehn, E. The Cellular Structure of Selected Apple Varieties. Food Struct. 1992, 11, 339–349. [Google Scholar]
- Jeffree, C.E.; Sandford, A.P. Crystalline structure of plant epicuticular waxes demonstrated by cryostage scanning electron microscopy. New Phytol. 1982, 91, 549–559. [Google Scholar] [CrossRef]
- Adamski, N.M.; Bush, M.S.; Simmonds, J.; Turner, A.S.; Mugford, S.G.; Jones, A.; Findlay, K.; Pedentchouk, N.; von Wettstein-Knowles, P.; Uauy, C. The inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J. 2013, 74, 989–1002. [Google Scholar] [CrossRef]
- Faulkner, C.; Akman, O.E.; Bell, K.; Jeffree, C.; Oparka, K. Peeking into Pit Fields: A Multiple Twinning Model of Secondary Plasmodesmata Formation in Tobacco. Plant Cell 2008, 20, 1504–1518. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Gao, J.; Cui, Y.; Klumpe, S.; Xiang, Y.; Erdmann, P.S.; Jiang, L. Membrane imaging in the plant endomembrane system. Plant Physiol. 2021, 185, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Spehner, D.; Steyer, A.M.; Bertinetti, L.; Orlov, I.; Benoit, L.; Pernet-Gallay, K.; Schertel, A.; Schultz, P. Cryo-FIB-SEM as a promising tool for localizing proteins in 3D. J. Struct. Biol. 2020, 211, 107528. [Google Scholar] [CrossRef] [PubMed]
- Charuvi, D.; Nevo, R.; Shimoni, E.; Naveh, L.; Zia, A.; Adam, Z.; Farrant, J.M.; Kirchhoff, H.; Reich, Z. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant. Plant Physiol. 2015, 167, 1554–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkevičius, M.; Allred, S.; Velev, O.D.; Velikov, K.P. Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocoll. 2018, 82, 89–95. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, R.; Wang, Y.; Xiang, Q.; Qiu, S.; Xu, W.; Bai, Y. Synergistic effect of corn fiber gum and chitosan in stabilization of oil in water emulsion. LWT 2022, 154, 112592. [Google Scholar] [CrossRef]
- Ju, M.; Zhu, G.; Huang, G.; Shen, X.; Zhang, Y.; Jiang, L.; Sui, X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll. 2020, 99, 105329. [Google Scholar] [CrossRef]
- Nishino, Y.; Miyazaki, K.; Kaise, M.; Miyazawa, A. Fine cryo-SEM observation of the microstructure of emulsions frozen via high-pressure freezing. Microscopy 2022, 71, 60–65. [Google Scholar] [CrossRef]
- Conn, S.; Franco, C.; Zhang, W. Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 2010, 231, 1343–1360. [Google Scholar] [CrossRef]
- Zarate, R.; Yeoman, M.M. Studies of the cellular localization of the phenolic pungent principle of ginger, Zingiber officinale Roscoe. New Phytol. 1994, 126, 295–300. [Google Scholar] [CrossRef]
- Yu, M.; Cui, Y.; Zhang, X.; Li, R.; Lin, J. Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci. 2020, 77, 275–287. [Google Scholar] [CrossRef]
- Tang, L.; Li, Y.; Zhong, C.; Deng, X.; Wang, X. Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy. Membranes 2021, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.T.; Wightman, R.; Peaucelle, A.; Höfte, H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf. 2021, 7, 100054. [Google Scholar] [CrossRef] [PubMed]
- Langenaeken, N.A.; Ieven, P.; Hedlund, E.G.; Kyomugasho, C.; van de Walle, D.; Dewettinck, K.; Van Loey, A.M.; Roeffaers, M.B.J.; Courtin, C.M. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: A microstructure study using CLSM and cryo-SEM. Plant J. 2020, 103, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Laza, H.E.; Zhao, B.; Hastert, M.; Payton, P.; Chen, J. High-throughput imaging of fresh-frozen plant reproductive samples in a variable pressure SEM. MethodsX 2021, 8, 101392. [Google Scholar] [CrossRef]
- Usukura, J.; Narita, A.; Matsumoto, T.; Usukura, E.; Sunaoshi, T.; Watanabe, S.; Tamba, Y.; Nagakubo, Y.; Mizuo, T.; Azuma, J.; et al. New cryo-S(T)EM Technique Allowing Simultaneous STEM and SEM Imaging and its Application to Biological Samples. Sci. Rep. 2022. preprint. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wightman, R. An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. Plants 2022, 11, 1113. https://doi.org/10.3390/plants11091113
Wightman R. An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. Plants. 2022; 11(9):1113. https://doi.org/10.3390/plants11091113
Chicago/Turabian StyleWightman, Raymond. 2022. "An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging" Plants 11, no. 9: 1113. https://doi.org/10.3390/plants11091113
APA StyleWightman, R. (2022). An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. Plants, 11(9), 1113. https://doi.org/10.3390/plants11091113