Comparison between Quality Traits of Solar-Dried and Freeze-Dried Origanum syriacum L. (Za’atar)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Proximate Chemical Analysis
2.3. Color Measurement
2.4. Macro and Microscope Examination
2.5. Microbiological Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis of Za’atar
3.2. Color Measurements
3.3. Macro and Microscopic Evaluation of Structure
3.4. Microbiological Analysis of Origanum syriacum
3.5. Sensory Analysis of Origanum syriacum
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amadio, C.; Medina, R.; Dediol, C.; Zimmermann, M.É.; Miralles, S. Oregano essential oil: A potential food additive. Rev. Fac. Cienc. Agrar. 2011, 43, 237–245. [Google Scholar]
- Cosge, B.; Turker, A.; Ipek, A.; Gurbuz, B.; Arslan, N. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to turkey. Molecules 2009, 14, 1702–1712. [Google Scholar] [CrossRef]
- Meyers, M. Oregano and Marjoram: An Herb Society of America Guide to the Genus Origanum; The Herb Society of America: Kirtland, OH, USA, 2005; pp. 1–66. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Oregano+and+Marjoram+An+Herb+Society+of+America+Guide+to+the+Genus+Origanum#0 (accessed on 15 November 2021).
- Vernin, G.; Lageot, C.; Gaydou, E.M.; Parkanyi, C. Analysis of the essential oil of Lippia graveolens HBK from el salvador. Flavour Fragr. J. 2001, 16, 219–226. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Gastélum-Franco, M.; Camacho-Dávila, A.; Torres-Muñoz, J.; Nevárez Moorillón, G. Extracts of mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food Bioprocess Technol. 2010, 3, 434–440. [Google Scholar] [CrossRef]
- United Nations-Economic and Social Commission for Western Asia. Best Practices and Tools for Increasing Productivity and Competitiveness in the Production Sectors: Assessment of Zaatar Productivity and Competitiveness in Lebanon. 2010. Available online: https://www.unescwa.org/sites/www.unescwa.org/files/publications/files/sdpd-10-tp3.pdf (accessed on 7 May 2020).
- Atallah, S.S.; Saliby, I.E.; Baalbaki, R.; Talhouk, S.N. Effects of different irrigation, drying and production scenarios on the productivity, postharvest quality and economic feasibility of Origanum syriacum, a species typically over-collected from the wild in Lebanon. J. Sci. Food Agric. 2010, 91, 337–343. [Google Scholar] [CrossRef]
- Wakim, L.H.; Beyrouthy, M.E.; Mnif, W.; Dhifi, W.; Salman, M.; Bassal, A. Influence of drying conditions on the quality of Origanum syriacum L. Nat. Prod. Res. 2013, 27, 1378–1387. [Google Scholar] [CrossRef]
- Alwafa, R.; Mudalal, S.; Mauriello, G. Origanum syriacum L. (Za’atar), from Raw to Go: A Review. Plants 2021, 10, 1001. [Google Scholar] [CrossRef]
- Udomkun, P.; Romuli, S.; Schock, S.; Mahayothee, B.; Sartas, M.; Wossen, T.; Njukwe, E.; Vanlauwe, B.; Müller, J. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manag. 2020, 268, 110730. [Google Scholar] [CrossRef]
- Hossain, M.; Barry-Ryan, C.; Martin-Diana, A.; Brunton, N. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Abu-Lafi, S.; Odeh, I.; Dewik, H.; Qabajah, M.; Imam, A.; Dembitsky, V.M.; Hanus, L.O. Natural compounds of Palestine flora. Comparison analysis by static headspace and steam distillation GC-MS of semivolatile secondary metabolites from leaves of cultivated Palestinian Majorana syriaca. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2007, 151, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Awada, F.; Kobaissi, A.; Chokr, A.; Hamze, K.; Hayar, S.; Mortada, A. Factors affecting quantitative and qualitative variation of thyme (Origanum syriacum L.) essential oil in Lebanon. Adv. Environ. Biol. 2012, 6, 1509–1514. [Google Scholar]
- Shehadeh, M.; Jaradat, N.; Al-Masri, M.; Zaid, A.; Hussein, F.; Khasati, A.; Suaifan, G.; Darwish, R. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from Mediterranean wild Origanum syriacum. Saudi Pharm. J. 2019, 27, 612–618. [Google Scholar] [CrossRef]
- Timeanddate. Available online: https://www.timeanddate.com/weather/palestine/tulkarm/historic?month=8&year=2020 (accessed on 15 September 2020).
- AOAC. Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1990; pp. 931–948. [Google Scholar]
- Luo, M.R. CIELAB. In Encyclopedia of Color Science and Technology; Luo, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Balladin, D.A.; Headley, O. Evaluation of solar dried thyme (Thymus vulgaris Linné) herbs. Renew. Energy 1999, 17, 523–531. [Google Scholar] [CrossRef]
- Doymaz, I. Drying of thyme (Thymus Vulgaris L.) and selection of a suitable thin-layer drying model. J. Food Process. Preserv. 2011, 35, 458–465. [Google Scholar] [CrossRef]
- Sárosi, S.; Sipos, L.; Kókai, Z.; Pluhár, Z.; Szilvássy, B.; Novák, I. Effect of different drying techniques on the aroma profile of Thymus vulgaris analyzed by GC-MS and sensory profile methods. Ind. Crops Prod. 2013, 46, 210–216. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Goli, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crops Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Mahdad, E.; Craker, L. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef]
- Mirhosseini, F.; Rahimmalek, M.; Pirbalouti, A.G.; Taghipoor, M. Effect of different drying treatments on essential oil yield, composition and color characteristics of Kelussia odoratissima Mozaff. J. Essent. Oil Res. 2015, 27, 204–211. [Google Scholar] [CrossRef]
- Portillo-Estrada, M.; Copolovici, L.; Niinemets, Ü. Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves. Trees 2015, 29, 1805–1816. [Google Scholar] [CrossRef]
- Lafeuille, J.L.; Lefèvre, S.; Lebuhotel, J. Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process. J. Agric. Food Chem. 2014, 62, 1926–1935. [Google Scholar] [CrossRef]
- Singh, B.; Suri, K.; Shevkani, K.; Kaur, A.; Kaur, A.; Singh, N. Enzymatic browning of fruit and vegetables: A review. Enzym. Food Technol. Improv. Innov. 2018, 63–78. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, J.; Wang, Y.; Ma, Y.; Zhao, X. Effect of drying temperature on sensory and flavor of thyme. Ic3me 2015, 27, 2187–2191. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, B.; Abraham, K.O.; Shankaranarayana, M.L.; Koller, W.D. Studies on Flavor Changes During Drying of Dill (Anethum sowa Roxb.) Leaves. J. Food Qual. 1994, 17, 457–466. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Viñas, M.A.G.; Cabezudo, M.D. Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J. Agric. Food Chem. 2003, 51, 1265–1269. [Google Scholar] [CrossRef]
- Klungboonkrong, V.; Phoungchandang, S.; Lamsal, B. Drying of Orthosiphon aristatus leaves: Mathematical modeling, drying characteristics, and quality aspects. Chem. Eng. Commun. 2018, 205, 1239–1251. [Google Scholar] [CrossRef]
- Deans, S.G.; Svoboda, K.P.; Bartlett, M.C. Effect of microwave oven and warm-air drying on the microflora and volatile oil profile of culinary herbs. J. Essent. Oil Res. 1991, 3, 341–347. [Google Scholar] [CrossRef]
- Malmsten, T.; Pääkkönen, K.; Hyvönen, L. Packaging and Storage Effects on Microbiological Quality of Dried Herbs. J. Food Sci. 1991, 56, 873–875. [Google Scholar] [CrossRef]
- Dereje, B.; Abera, S. Effect of some pretreatments before drying on microbial load and sensory acceptability of dried mango slices during storage periods. Cogent Food Agric. 2020, 6, 1807225. [Google Scholar] [CrossRef]
- Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci Food Saf. 2016, 15, 1056–1066. [Google Scholar] [CrossRef]
- Eze, J.; Agbo, K. Comparative studies of sun and solar drying of peeled and unpeeled ginger. Am. J. Sci. Ind. Res. 2011, 2, 136–143. [Google Scholar] [CrossRef]
- Cardelle-Cobas, A.; Moreno, F.J.; Corzo, N.; Olano, A.; Villamiel, M. Assessment of initial stages of Maillard reaction in dehydrated onion and garlic samples. J. Agric. Food Chem. 2005, 53, 9078–9082. [Google Scholar] [CrossRef] [PubMed]
- Mudalal, S.; Abu-Khalaf, N. Electronic nose to differentiate between several drying techniques for Origanum syriacum leaves. Food Res. 2021, 5, 260–265. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, Á. Effects of Drying Methods on the Composition of Thyme (Thymus vulgaris L.) Essential Oil. Dry Technol. 2013, 31, 224–235. [Google Scholar] [CrossRef]
Date | Temperature °C | Humidity % | Barometer atm | Wind mph |
---|---|---|---|---|
9 August 2020 | 31/29 | 56 | 0.994 | 13.671 |
10 August 2020 | 31/30 | 54 | 0.995 | 14.914 |
11 August 2020 | 31/29 | 57 | 0.996 | 13.671 |
12 August 2020 | 31/30 | 58 | 0.994 | 12.428 |
13 August 2020 | 32/30 | 58 | 0.993 | 11.185 |
14 August 2020 | 32/30 | 59 | 0.992 | 11.185 |
15 August 2020 | 32/30 | 60 | 0.991 | 11.185 |
Fresh Mean ± STD | Solar Mean ± STD | Freeze Mean ± STD | p-Value | |
---|---|---|---|---|
Moisture% | 81.32 ± 0.83 a | 13.20 ± 0.29 b | 12.59 ± 2.05 b | <0.05 |
Protein% | 2.08 ± 0.30 | 1.81 ± 0.69 | 2.04 ± 0.31 | 0.636 |
Fat% | 1.82 ± 0.32 a | 1.10 ± 0.06 b | 1.64 ± 0.07 a | <0.05 |
Ash% | 2.11 ± 0.12 | 2.12 ± 0.03 | 2.16 ± 0.09 | 0.735 |
Fiber% | 4.13 ± 0.28 | 4.37 ± 0.16 | 4.38 ± 0.23 | 0.205 |
Total carbohydrates% | 8.78 ± 0.63 | 9.52 ± 0.79 | 8.70 ± 0.28 | 0.146 |
Fresh Mean ± STD | Solar Mean ± STD | Freeze Mean ± STD | p-Value | |
---|---|---|---|---|
Protein% | 11.05 ± 1.79 | 10.03 ± 3.08 | 10.78 ± 1.65 | 0.747 |
Fat% | 9.61 ± 1.76 a | 6.28 ± 0.79 b | 8.47 ± 0.0.47 a | <0.05 |
Ash% | 11.17 ± 0.35 | 11.18 ± 0.16 | 11.50 ± 0.58 | 0.306 |
Fiber% | 21.81 ± 0.10 b | 22.95 ± 0.68 a | 23.33 ± 0.98 a | <0.05 |
Total carbohydrate% | 46.36 ± 1.27 b | 50.31 ± 4.18 a | 45.98 ± 1.48 b | 0.05 |
Fresh Mean 1 ± STD | Solar Mean ± STD | Freeze Mean ± STD | p-Value | |
---|---|---|---|---|
TPC day 1 | 5.98 ± 0.12 a | 5.23 ± 0.23 b | 4.92 ± 0.05 c | <0.05 |
TPC day 30 | - | 4.84 ± 0.59 b | 5.84 ± 0.03 a | <0.05 |
Yeast and mold day 1 | 4.18 ± 0.62 b | 5.36 ± 0.34 a | 4.59 ± 0.13 b | <0.05 |
Yeast and mold day 30 | - | 5.01 ± 0.46 | 4.41± 0.35 | 0.254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwafa, R.A.; Mudalal, S.; Shraim, F.; Mauriello, G. Comparison between Quality Traits of Solar-Dried and Freeze-Dried Origanum syriacum L. (Za’atar). Plants 2022, 11, 1110. https://doi.org/10.3390/plants11091110
Alwafa RA, Mudalal S, Shraim F, Mauriello G. Comparison between Quality Traits of Solar-Dried and Freeze-Dried Origanum syriacum L. (Za’atar). Plants. 2022; 11(9):1110. https://doi.org/10.3390/plants11091110
Chicago/Turabian StyleAlwafa, Reem Abu, Samer Mudalal, Faisal Shraim, and Gianluigi Mauriello. 2022. "Comparison between Quality Traits of Solar-Dried and Freeze-Dried Origanum syriacum L. (Za’atar)" Plants 11, no. 9: 1110. https://doi.org/10.3390/plants11091110
APA StyleAlwafa, R. A., Mudalal, S., Shraim, F., & Mauriello, G. (2022). Comparison between Quality Traits of Solar-Dried and Freeze-Dried Origanum syriacum L. (Za’atar). Plants, 11(9), 1110. https://doi.org/10.3390/plants11091110