The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Phenolic Acids, Flavonoids, and Caffeine Using HPLC
2.2. Oviposition Deterrent Activities of SCG Extract against the Female Moth Spodoptera littoralis
2.3. Insecticidal Effect of the SCG Extract on the Percentage of Mortality of Spodoptera littoralis
2.4. Survey and Population Density of Insects of P. vulgaris in a Field Treated with the SCG Extract
2.5. Evaluation of Molecular Docking
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Solvent Extraction Procedure
3.3. Determination of Phenolic Acids and Flavonoids
3.4. Oviposition Deterrent Activities of the SCG Extract against Female Moths (Spodoptera littoralis)
3.5. Insecticidal Effect of the SCG Extract on the Percentage Mortality of Spodoptera littoralis
3.6. Survey and Population Density of Insects of P. vulgaris in the Field Treated with the SCG Extract
3.7. Molecular Docking
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health—A Structure-Activity Relationship Study. Psyche A J. Entomol. 2016, 2016, 4595823. [Google Scholar] [CrossRef] [Green Version]
- Sabry, B.A.; Farouk, A.; Badr, A.N. Bioactivity evaluation for volatiles and water extract of commercialized star anise. Heliyon 2021, 7, E07721. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowski, G.; Leszczyński, B.; Czerniewicz, P.; Sytykiewicz, H.; Matok, H.; Krzyżanowski, R.; Sempruch, C. Effect of phenolic acids from blackcurrant, sourcherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Prot. 2012, 35, 71–77. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sytykiewicz, H.; Sprawka, I.; Leszczyński, B. Aphidicidal and deterrent activity of phenolic acid extracts from some herbal plants towards myzus persicae sulz. and rhopalosiphum padi L. Fresenius Environ. Bull. 2016, 25, 5714–5721. [Google Scholar]
- Adejumo, I.O.; Adebiyi, O.A. Agricultural Solid Wastes: Causes, Effects, and Effective Management. In Strategies of Sustainable Solid Waste Management; Saleh, H.M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- ICO. Coffee Market Report; International Coffee Organization: London, UK. Available online: https://www.ico.org/trade_statistics.asp (accessed on 11 July 2021).
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- López-Barrera, D.M.; Vazquez-Sanchez, K.; Loarca-Pina, M.G.F.; Campos-Vega, R. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 2016, 212, 282–290. [Google Scholar] [CrossRef]
- Satho, T.; Dieng, H.; Ahmad, M.H.I.; Ellias, S.B.; Hassan, A.A.; Abang, F.; Ghani, I.A.; Miake, F.; Ahmad, H.; Fukumitsu, Y.; et al. Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasit. Vectors 2015, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fajriansyah; Zubir; Zulfikar. Effect of coffee grounds as cockroach repellent. Int. J. Sci. Healthc. Res. 2020, 5, 30–34. [Google Scholar]
- Attia, S.S.; Makled, S.M.; Fawzy, S.T. Egyptian demand for faba beans from the most important international import markets. Arab Univ. J. Agric. Sci. 2019, 27, 1325–1337. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Schwartz, H. Review: Breeding common bean for resistance to insect pests and nematodes. Can. J. Plant Sci. 2011, 91, 239–250. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, K.S.; Gonçalvez, R.T.; Maraschin, M.; Ribeiro-do-Valle, R.M.; Martínez, J.; Ferreira, S.R.S. Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta 2012, 88, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Okur, I.; Soyler, B.; Sezer, P.; Oztop, M.H.; Alpas, H. Improving the Recovery of Phenolic Compounds from Spent Coffee Grounds (SCG) by Environmentally Friendly Extraction Techniques. Molecules 2021, 26, 613. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The Potential Effects of Chlorogenic Acid, the Main Phenolic Components in Coffee, on Health: A Comprehensive Review of the Literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E.; Gatea, F.; Pelinescu, D.R. Bioavailability and Bioactivities of Polyphenols Eco Extracts from Coffee Grounds after In Vitro Digestion. Foods 2020, 9, 1281. [Google Scholar] [CrossRef]
- Vu, D.C.; Vu, Q.T.; Huynh, L.; Lin, C.-H.; Alvarez, S.; Vo, X.T.; Nguyen, T.H.D. Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. Int. J. Food Prop. 2021, 24, 1548–1558. [Google Scholar] [CrossRef]
- Chaowuttikul, C.; Palanuvej, C.; Ruangrungsi, N. Quantification of chlorogenic acid, rosmarinic acid, and caffeic acid contents in selected Thai medicinal plants using RP-HPLC-DAD. Braz. J. Pharm. Sci. 2020, 56, e17547. [Google Scholar] [CrossRef] [Green Version]
- Balzano, M.; Loizzo, M.R.; Tundis, R.; Lucci, P.; Nunez, O.; Fiorini, D.; Giardinieri, A.; Frega, N.G.; Paccetti, D. Spent Espresso Coffee Grounds as a Source of Anti-proliferative and Antioxidant Compounds. Innov. Food Sci. Emerg. Technol. 2020, 59, 102254. [Google Scholar] [CrossRef]
- Angeloni, S.; Nzekoue, F.K.; Navarini, L.; Sagratini, G.; Torregiani, E.; Vittori, S.; Caprioli, G. An Analytical Method for the Simultaneous Quantification of 30 Bioactive Compounds in Spent Coffee Ground by HPLC-MS/MS. J. Mass Spectrom. 2020, 55, e4519. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Özcan, M.M.; Uslu, N.; Salamatullah, A.M.; Hayat, K. Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process. Preserv. 2020, 44, e14874. [Google Scholar] [CrossRef]
- Laranja, A.T.; Manzatto, A.J.; de Campos Bicudo, H.E.M. Effects of caffeine and used coffee grounds on biological features of Aedes aegypti (Diptera, Culicidae) and their possible use in alternative control. Genet. Mol. Biol. 2003, 26, 419–429. [Google Scholar] [CrossRef]
- Borges, J.C.M.; Silva, E.A.P.; de Barros, T.C.A.; Soares, I.M.; Ascêncio, S.D.; Fidielis, R.R.; Aguiar, R.W. Chemical composition, oviposition deterrent and larvicidal activities of the wood extracts of Tabebuia avellanedae from the Cerrado of Brazil. J. Med. Plant Res. 2018, 12, 404–414. [Google Scholar] [CrossRef]
- Kovanci, O.B. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella. Chil. J. Agric. Res. 2016, 76, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Basukriadi, A.; Wilkins, R.M. Ovipositation deterrent activities of Pachyrhizus erosus seed extract and other natural production on Plutella Xylostella (Lepidoptera: Plutellidae). J. Insect Sci. 2014, 14, 244. [Google Scholar] [CrossRef]
- Pavela, R. Antifeedant and Larvicidal Effects of Some Phenolic Components of Essential Oils Lasp Lines of Introduction Against Spodoptera littoralis (Boisd.). J. Essent. Oil Bear. Plants 2011, 14, 266–273. [Google Scholar] [CrossRef]
- Marques, T.R.; Caetano, A.A.; Alves, D.S.; Ramos, V.S.; Simão, A.A.; Carvalho, G.A.; Corrêa, A.D. Malpighia emarginata DC. bagasse acetone extract: Phenolic compounds and their effect on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Chil. J. Agric. Res. 2016, 76, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Mkenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally bengin pest control compared to synthestic pesticides. PLoS ONE 2015, 10, e0143530. [Google Scholar] [CrossRef]
- Rahayu, S.E.; Leksono, A.S.; Gama, Z.P.; Tarno, H. The Active Compounds Composition and Antifeedant Activity of Leaf Extract of Two Cultivar Carica papaya L. on Spodoptera litura F. Larvae. AIP Conf. Proc. 2020, 2231, 040085. [Google Scholar] [CrossRef]
- Tavares, W.R.; Barreto, M.D.C.; Seca, A.M.L. Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef]
- Ghongade, D.S.; Sangha, K.S. Efficacy of biopesticides against whitefly, Bemicia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on pathenocarpic cucumber grown under protected environment in India. Egypt. J. Biol. Control 2021, 19, 31. [Google Scholar]
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking softwares for virtual screening against dihydropteroate synthase. J. Chem. Inform. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Bonesi, M.; Menichini, F.; Loizzo, M.R.; Conforti, F.; Statti, G.; Pirisi, F.M.; Menichini, F. Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts and isolated constituents. Nat. Prod. Commun. 2012, 7, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ramos, R.; da Silva Costa, J.; Silva, R.C.; da Costa, G.V.; Rodrigues, A.B.L.; de Menezes Rabelo, É.; Souto, R.N.P.; Taft, C.A.; de Paula da Silva, C.H.T.; Rosa, G.M.C.; et al. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, D.; Mutero, A.; Pralavorio, M.; Bride, J.M. Drosophila acetylcholinesterase: Mechanisms of resistance to organophosphates. Chem. Biol. Interact. 1993, 87, 233–238. [Google Scholar] [CrossRef]
- Chigurupati, S.; Selvaraj, M.; Mani, V.; Selvarajan, K.K.; Mohammad, J.I.; Kaveti, B.; Bera, H.; Palanimuthu, V.R.; The, L.K.; Salleh, M.Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chem. 2016, 67, 9–17. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. PyMOL. Available online: http://www.pymol.org/pymol (accessed on 10 June 2021).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurik, E.; Huchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phenolic Acid Contents of the SCG Extract | |||||
Compound | Rt (min.) | Quantities (µg/g) a | Compound | Rt (min.) | Quantities (µg/g) |
Gallic acid | 2.224 | 32.51 ± 2.08 | Sinapic acid | 20.523 | 10.1 ± 1.24 |
Protocatechuic acid | 5.771 | 2.07 ± 0.74 | (S)- (-)-Rosmarinic acid | 20.534 | 0.53 ± 0.22 |
p-Hydroxybenzoic acid | 8.609 | 4.37 ± 0.88 | Ferulic acid | 23.739 | 0.37 ± 0.14 |
Gentisic acid | 9.351 | 0.26 ± 0.05 | Salicylic acid | 26.793 | 7.61 ± 1.05 |
Chlorogenic acid | 12.500 | 8.74 ± 1.05 | p-coumaric acid | 30.072 | 0.16 ± 0.11 |
Caffeic acid | 13.070 | 6.41 ± 0.74 | Cinnamic acid | 37.365 | 979.38 ± 4.78 |
Syringic acid | 13.067 | 3.41 ± 0.41 | (R)- (+)-Rosmarinic acid | 37.363 | 163.1 ± 3.74 |
Vanillic acid | 17.659 | 2.08 ± 0.56 | - | - | |
Flavonoid Contents of the SCG Extract | |||||
Compound | Rt (min.) | Quantities (µg/g) | Compound | Rt (min.) | Quantities (µg/g) |
Catechin | 11.141 | 14.55 ± 1.47 | |||
Epicatechin | 13.494 | 10.08 ± 2.37 | Apigenin-7-glucoside | 36.828 | 1534.22 ± 7.74 |
Naringin | 34.906 | 86.94 ± 3.15 | Chrysin | 53.646 | 1.01 ± 0.14 |
Alkaloid Contents of the SCG Extract | |||||
Compound | Rt (min.) | (µg/g) | |||
Caffeine | 13.989 | 1322.2 ± 5.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.; Abouamer, W.; Ali, H.; Elkhadragy, M.; Yehia, H.; Farouk, A. The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field. Plants 2022, 11, 1124. https://doi.org/10.3390/plants11091124
Hussein H, Abouamer W, Ali H, Elkhadragy M, Yehia H, Farouk A. The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field. Plants. 2022; 11(9):1124. https://doi.org/10.3390/plants11091124
Chicago/Turabian StyleHussein, Hany, Waleed Abouamer, Hatem Ali, Manal Elkhadragy, Hany Yehia, and Amr Farouk. 2022. "The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field" Plants 11, no. 9: 1124. https://doi.org/10.3390/plants11091124
APA StyleHussein, H., Abouamer, W., Ali, H., Elkhadragy, M., Yehia, H., & Farouk, A. (2022). The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field. Plants, 11(9), 1124. https://doi.org/10.3390/plants11091124