Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Sample Processing
2.3. Obtaining Spectral Information
3. Results and Analysis
3.1. Disturbance Reduction and Crest Extraction
3.1.1. Extraction of Original Raman Spectral Information
3.1.2. Reduction in Disturbance of Scipy.Signal.Lfilter Method
3.1.3. Reduction in Disturbance of Scipy.Signal.Filtfilt Method
3.1.4. Extraction of Wave Crest by Difference Method of Scipy.Signal.Filtfilt Method
3.2. Extraction of Wave Crest Feature
3.3. Reduction in Dimensionality of Features Information
3.3.1. SKB Method for Dimensionality Reduction
3.3.2. RFE Method for Dimensionality Reduction
3.3.3. SFM Method for Dimensionality Reduction
3.4. Establishment of Recognition Model
3.4.1. Establishment of Logistic Regression Model (LRM)
3.4.2. Establishment of Random Forests Model (RFM)
3.5. Attribution of Spectral Features Information
4. Discussion
4.1. Interpretation of the Result of Reduction in Disturbance of Original Raman Spectral Information
4.2. Interpretation of the Result of Dimensionality Reduction
4.3. Interpretation of the Establishment of Recognition Model
4.4. Interpretation of Attribution of Spectral Features Information
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Wang, Z.C.; Zhao, C.W.; Wang, M.; Ma, H. A Review of Saline-sodic Soil and Tillage Amelioration in Northeast of China. Chin. Agric. Sci. Bull. 2011, 27, 23–31. [Google Scholar]
- Yu, B.L. Remediation Measures of Saline-alkali Land: A Review. Chin. Agric. Sci. Bull. 2021, 37, 81–87. [Google Scholar]
- Zhang, Q.; Chen, F.D.; Feng, G.Y.; Hong, Q.I.; Wang, S.; Liang, Q.; Lei, X.; Wang, Y.; Lin, Y. Literature Review of Saline Soil Improvement and Utilization. Eng. Technol. Res. 2016, 22, 35–39. [Google Scholar] [CrossRef]
- Yuan, B.F.; Ma, Y.T.; Bao, Y.; Zhang, J.; Sun, Q.; Wang, L. Effect of Rice Cultivation on Ameliorating Soil Fertility of Soda Saline-Alkali Soil in Western Jilin Province. J. Soil Water Conserv. 2019, 33, 320–326. [Google Scholar] [CrossRef]
- Teng, F.K.; Zhu, W.; Tang, Z.B.; Niu, T.X.; Han, M.; Lan, P. Comparison of Salt and Alkaline Tolerance of Several Rice Varieties in Seeding Stage. Agric. Technol. 2021, 41. [Google Scholar] [CrossRef]
- Wang, Z.X. Saline-Alkaline Tolerance Evaluation and QTL Mapping of Japonica in The Northeast of China; Northeast Agricultural University: Harbin, China, 2012. [Google Scholar]
- Li, H.Y.; Si, Y.; Li, Y.; Du, C.; Zhou, X.; Liu, M.; Ning, H.; Ye, P. Principal Component Analysis and Comprehensive Evaluation of Saline-Alkaline Tolerance Related Traits of Northern Japonica Rice. J. Nucl. Agric. Sci. 2020, 34, 1862–1971. [Google Scholar] [CrossRef]
- Ma, B.; Liu, C.Z.; Hu, J.F.; Chai, L.; Wang, L. Screening and Selecting of Japonica Germplasm with Saline-Alkali Tolerance in Cold Region. Heilongjiang Agric. Sci. 2011, 6–8. [Google Scholar]
- Liu, J.Y.; Shao, X.Y.; Zhou, D.; Shan, Z.; Mi, T.Z.; Yin, H.D.; Li, J.M. Research Progress on Identification Methods and Evaluation Indexes for Salt-alkali Tolerance in Rice. Hybrid Rice 2019, 34, 1–6. [Google Scholar] [CrossRef]
- Inja, N.B.L.; KIM, B.K.; Yoon, I.S.; Kim, K.H.; Kwon, T.R. Salt Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar]
- Pires, I.S.; Negrão, S.; Oliveira, M.M.; Purugganan, M.D. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiol. Plant 2015, 155, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Hibben, J.H.; Teller, E. The Raman effect and its chemical aplications and physical research. Industrial and Engineering Chemistry. News Ed. 1939, 17, 556. [Google Scholar]
- Herzberg, G. Molecular spectra and molecular structure. In Infrared and Raman Spectra of Polyatomid Molecules; Van Nostrand, R., Ed.; American Journal of Physics: New York, NY, USA, 1945; Volume 2. [Google Scholar]
- Shipp, D.W.; Sinjab, F.; Nothingher, I. Raman spectroscopy: Techniques and applications in the life sciences. Adv. Opt. Photonics 2017, 9, 315–428. [Google Scholar] [CrossRef] [Green Version]
- Alian, W.; Randy, L.K.; Bradley, L.; Jolliff, Z.L. Raman imaging of extraterrestrial materials. Planet. Space Sci. 2015, 112, 23–34. [Google Scholar] [CrossRef]
- Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; Van, D.W.D. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Aanlytical. Chem. 2002, 21, 869–877. [Google Scholar] [CrossRef]
- Weng, S.Z.; Zhu, W.X.; Zhang, X.Y.; Yuan, H.C.; Zheng, L.; Zhao, J.L.; Huang, L.S.; Han, P. Recent advances in Raman technology with applications in agriculture, food and biosystems: A review. Artif. Intell. Agric. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Giang, L.T.; Trung, P.Q.; Yen, D.H. Identification of rice varieties speciaties in Vietnam using Raman spectroscopy. Vietnam J. Chem. 2020, 58, 711–718. [Google Scholar] [CrossRef]
- Pezzotti, G.; Zhu, W.L.; Chikaguchi, H.; Marin, E.; Masumura, T.; Sato, Y.; Nakazaki, T. Raman spectroscopic analysis of polysaccharides in popular Japanese rice cultivars. Food Chem. 2021, 354, 129434. [Google Scholar] [CrossRef]
- Pezzotti, G.; Zhu, W.; Chikaguchi, H.; Marin, E.; Boschetto, F.; Masumura, T.; Sato, Y.; Nakazaki, T. Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode. Front. Nutr. 2021, 8, 663569. [Google Scholar] [CrossRef]
- Kong, H.P.; Liu, Z.Q. Implementation of Dimension Reduction Method of On-board Data of High-speed EMU Based on Python. Comput. Eng. Softw. 2020, 41, 114–117. [Google Scholar] [CrossRef]
- Perkel, J.M. Python power-up: New image tool visualizes complex data. Nature 2021, 600, 347–348. [Google Scholar] [CrossRef]
- Cao, S.; Zeng, Y.; Yang, S.; Cao, S. Research on Python Data Visualization Technology. J. Phys. Conf. Ser. 2021, 1757, 012122. [Google Scholar] [CrossRef]
- Martin, L.; Bramkamp, Y.; Köster, T.; Staiger, D. SEQing: Web-based visualization of iCLIP and RNA-seq data in an interactive python framework. BMC Bioinform. 2020, 21, 113. [Google Scholar] [CrossRef] [Green Version]
- Wagle, S.A.; Harkrishnan, R.; Ali, S.H.M. Faseehuddin Mohammad. Classification of Plant Leaves Using New Compact Convolutional Neural Network Models. Plants 2021, 11, 24. [Google Scholar] [CrossRef]
- Song, F.R.; Song, L.Q.; Cao, Z.K.; Song, Z.; Nie Ho Shi, Y. Organosilicon Soil Conditioner: Effect on Soda-type Saline-alkali Soil Improvement and Rice Yield. J. Agric. 2021, 11, 58–63. [Google Scholar]
- Gu, X.; Ren, C.M.; Wang., L.N.; Yang, L.; Zhang, H.Y.; Liu, B.; Sun, X.R.; Xu, H.C.; Zhao, J.R. Effects of humic acid application on soda Saline-alkali soil in Daqing. China Soil Fertil. 2021, 77–82. [Google Scholar] [CrossRef]
- Yi, Y.; Peng, Y.; Song, T.; Lu, S.; Teng, Z.; Zheng, Q.; Zhao, F.; Meng, S.; Liu, B.; Peng, Y.; et al. NLP2-NR Module Associated NO Is Involved in Regulating Seed Germination in Rice under Salt Stress. Plants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinikov, Y.E. Optimal Parameter Estimation of Spatial-Local Signal Filtering Algorithms. Optoelectron. Instrum. Data Processing 2019, 55, 222–229. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, D. Vibration Signal Filtering Algorithm Based on Singular Value Subspace Decomposition. Rev. Téc. Ing. Univ. Zulia 2017, 39, 106–113. [Google Scholar] [CrossRef]
- Tian, F.M. Identification of Rice Based on Analysis of Raman spectrum and Organic Ingredients; Jilin University: Jilin, China, 2018. [Google Scholar]
- Liu, X.H.; Huo, H. Automatic summarization for text based on mutual information. J. Hefei Univ. Technol. 2014, 37, 1198–1203. [Google Scholar] [CrossRef]
- Pradier, L.; Tissot, T.; Fiston-Lavier, A.-S.; Bedhomme, S. PlasForest: A homology-based random forest classifier for plasmid detection in genomic datasets. BMC Bioinform. 2021, 22, 1–17. [Google Scholar] [CrossRef]
- Mirmohammadi, P.; Ameri, A.; Shalbaf, A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys. Eng. Sci. Med. 2021, 44, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Vetter, T.R. Logistic Regression in Medical Research. Anesth. Analg. 2021, 132, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.-H.; Bin, J.; Liu, D.-L.; Xu, L.; Yan, T.-L.; Cao, D.-S.; Xu, Q.-S. A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration. Anal. Chim. Acta 2019, 1058, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chu, X.; Wang, Z.; Xu, Y.; Li, W.; Sun, Y. Optimization of Characteristic Wavelength Variables of Near Infrared Spectroscopy for Detecting Contents of Cellulose and Hemicellulose in Corn Stover. Spectrosc. Spect. Anal. 2019, 39, 743–750. [Google Scholar]
- Huang, X.S.; Xu, G.B. Design of Audio Denoising IIR Filter Based on MATLAB. Mod. Comput. 2016, 22, 48–52. [Google Scholar] [CrossRef]
- Wang, T. Application of digital filter in real speech noise reduction. Inf. Commun. 2018, 3, 30–31. [Google Scholar]
- Wang, C.H.; Luo, X.; Ren, G.P.; Lu, M. On the Management of State-owned Group Enterprises. Mod. Ind. Econ. Inf. 2019, 9, 80–81. [Google Scholar] [CrossRef]
- Available online: https://blog.csdn.net/Galaxy_Robot/article/details/106976165 (accessed on 4 April 2022).
- Available online: https://blog.csdn.net/weixin_45366564/article/details/115122651 (accessed on 4 April 2022).
- Yuan, F. Research on the influence of filter length on filtering results. Internet Things Technol. 2015, 5, 44–46. [Google Scholar] [CrossRef]
- Shang, X.H.; Guo, A.H.; Li, G.Y. Analysis of boundary problem based on zero phase digital filter. Electron. Meas. Technol. 2010, 33, 25–27. [Google Scholar] [CrossRef]
- Yang, S.K.; Liu, H.; Han, G.H.; Yang, L.; Yang, J.X.; Chu, S.B. Application of zero phase filter in power grid traveling wave data processing. Inf. Technol. Informatiz. 2009, 5, 22–23. [Google Scholar]
- Fan, J.Q.; Lv, J.C. Sure Independence Screening for Ultrahigh Dimensional Feature Space. J. R. Stat. Society. Ser. B 2008, 70, 849–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Li, H.P.; Liu, Y.H.; Xiong, S.; Yu, Z.; Zhang, R. Overview of Feature Screening Methods for Ultra-high Dimensional Data. Chin. J. Appl. Probab. Stat. 2021, 37, 69–110. [Google Scholar] [CrossRef]
- Yadav, S.; Ankur, S.B. Genetic Algorithm Based Feature Selection for Extreme Learning Machines. Asian J. Math. Comput. Res. 2016, 13, 34–39. [Google Scholar]
- Artur, M. Review the performance of the Bernoulli Naïve Bayes Classifier in Intrusion Detection Systems using Recursive Feature Elimination with Cross-validated selection of the best number of features. Procedia Comput. Sci. 2021, 190, 564–570. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, H.; Li, W.; Chen, Y. A stacking-based model for predicting 30-day all-cause hospital readmissions of patients with acute myocardial infarction. BMC Med. Inform. Decis. Mak. 2020, 20, 335. [Google Scholar] [CrossRef]
- Chen, Q.; Meng, Z.; Liu, X.; Jin, Q.; Su, R. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE. Genes 2018, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, H.; Smith, C.; Gallagher, M.; Hockings, M. Use of freely available datasets and machine learning methods in predicting deforestation. Environ. Model Softw. 2017, 87, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Z.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with Geo Detector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Wang, T.; Chang, H.W. An overview of hyperspectral image feature extraction. Electron. Opt. Control. 2020, 27, 73–77. [Google Scholar] [CrossRef]
- Wei, X.; Johnson, M.A.; Langston, D.B., Jr.; Mehl, H.L.; Li, S. Identifying Optimal Wavelengths as Disease Signatures Using Hyperspectral Sensor and Machine Learning. Remote Sens. 2021, 13, 2833. [Google Scholar] [CrossRef]
- Lee, M.; Lee, J.H.; Kim, D.H. Gender recognition using optimal gait feature based on recursive feature elimination in normal walking. Expert Syst. Appl. 2022, 189, 116040. [Google Scholar] [CrossRef]
- Li, Q.Q. Effects of Irrigation Practices on Carbohydrate Accumulation and Translocation and Grain Filling in Rice; Yang Zhou University: Yangzhou, China, 2020. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J.Y.; Han, S.Y.; Wang, X.; Ma, H.W.; Yin, Y.B. Study on Saline-alkali Resistance Rice Varieties Screened by Amylase and Amylopectin Accumulation Dynamics. Ningxia Acad. Agric. For. Sci. 2017, 58, 4–6. [Google Scholar]
- He, Q.; Wang, X.; Ma, H.W.; Feng, W.D.; Zhang, Y.M. Effects of Saline-Alkali Stress on Grain Filling and Panicle Traits of Ningxia Rice. J. Northeast Agric. Sci. 2021, 46, 11–16, 69. [Google Scholar] [CrossRef]
Soil Types | AHN (mg/kg) | AP (mg/kg) | RAP (mg/kg) | OM (g/kg) | pH | Salt Content (%) |
---|---|---|---|---|---|---|
Saline–alkali soil Control soil | 146.7 144.7 | 38.6 39.2 | 138.4 138.9 | 30.5 31.8 | 9.2 6.9 | 0.46 0.23 |
Numeral | Name of Sample | Variety of Sample | Number of Samples |
---|---|---|---|
1 2 3 4 | BD6 DF132 KD42 LD12 | 1 1 0 0 | 39 39 39 39 |
Number | Raman Shift/cm−1 | Initial Feature Extraction | SKB | RFE | SFM |
---|---|---|---|---|---|
1 2 3 4 5 6 7 | 480 865 941 1129 1339 1461 2910 | p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd | p\pd p\pd pd pd pd wh w\p | w\pd pd p\wh\pd pd p\wh\pd p\w\pd wh | pd pd pd pd p\wh\pd p\w\pd pd |
Total | 28 | 10 | 14 | 11 |
Feature Selection | Matrix Dimension | Accuracy | Accuracy Improvement | |
---|---|---|---|---|
LRM | RFM | |||
Initial SKB RFE SFM | 156 × 31 156 × 13 156 × 17 156 × 14 | 80.85% 74.47% 76.60% 80.85% | 80.85% 82.98% 89.36% 85.11% | 0 8.51 12.76 4.26 |
Number | Raman Shift/cm−1 | Pattern of Manifestation | Spectral Attribution | Methods | Feature Information | |||
---|---|---|---|---|---|---|---|---|
1 | 480 s | amylum | SKB | p | pd | |||
Skeleton vibration | RFE | w | pd | |||||
SFM | pd | |||||||
2 | 865 s | The vibration of C-H | amylopectn sugar ring | SKB | p | pd | ||
deformation and C-O ring | RFE | pd | ||||||
SFM | pd | |||||||
3 | 941 s | Symmetric stretching | amylopectn | SKB | pd | |||
vibration of C-O-C | RFE | p | wh | pd | ||||
SFM | pd | |||||||
4 | 1129 s | The vibration of C-O | sugar | SKB | pd | |||
stretching and C-O-H | RFE | pd | ||||||
bending deformation | SFM | pd | ||||||
5 | 1339 s | C-O-H bending and | sugar | SKB | pd | |||
the vibration of | RFE | p | wh | pd | ||||
C-C stretching | SFM | p | wh | pd | ||||
6 | 1461 s | C-H bending vibration | sugar | SKB | wh | |||
in-plane | RFE | p | w | pd | ||||
SFM | p | w | pd | |||||
7 | 2910 s | Stretching vibration of | amylum | SKB | p | w | ||
CH2 and NH2 | RFE | wh | ||||||
SFM | pd | |||||||
Total | 8 | 4 | 5 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Liu, C.; Hu, J.; Liu, K.; Zhao, F.; Wang, J.; Zhao, X.; Guo, Z.; Song, L.; Lai, Y.; et al. Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy. Plants 2022, 11, 1210. https://doi.org/10.3390/plants11091210
Ma B, Liu C, Hu J, Liu K, Zhao F, Wang J, Zhao X, Guo Z, Song L, Lai Y, et al. Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy. Plants. 2022; 11(9):1210. https://doi.org/10.3390/plants11091210
Chicago/Turabian StyleMa, Bo, Chuanzeng Liu, Jifang Hu, Kai Liu, Fuyang Zhao, Junqiang Wang, Xin Zhao, Zhenhua Guo, Lijuan Song, Yongcai Lai, and et al. 2022. "Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy" Plants 11, no. 9: 1210. https://doi.org/10.3390/plants11091210
APA StyleMa, B., Liu, C., Hu, J., Liu, K., Zhao, F., Wang, J., Zhao, X., Guo, Z., Song, L., Lai, Y., & Tan, K. (2022). Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy. Plants, 11(9), 1210. https://doi.org/10.3390/plants11091210