QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean
Abstract
:1. Introduction
2. Results
2.1. The SNP-Based Genetic Map
2.2. Tocopherol Contents Frequency Distribution, Heritability, and Correlation
2.3. Seed Tocopherol Contents QTL
2.4. In Silico Reconstruction of the Tocopherol Biosynthetic Pathway in Soybean
2.5. The Association between the Identified Tocopherol Pathway Candidate Genes and the Identified Tocopherol QTL
2.6. Association between the Identified Candidate Genes and the Previously Reported QTL
2.7. Organ-Specific Expression of the Identified Candidate Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Tocopherols Quantification
4.3. DNA Isolation, SNP Genotyping, and Genetic Map Construction
4.4. Seed Tocopherols QTL Detection
4.5. Tocopherols Candidate Genes Identification
4.6. Expression Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rani, A.; Kumar, V.; Verma, S.K.; Shakya, A.K.; Chauhan, G.S. Tocopherol Content and Profile of Soybean: Genotypic Variability and Correlation Studies. J. Am. Oil Chem. Soc. 2007, 84, 377–383. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Grusak, M.A.; DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef] [PubMed]
- Bramley, P.M.; Elmadfa, I.; Kafatos, A.; Kelly, F.J.; Manios, Y.; Roxborough, H.; Schuch, W.; Sheehy, P.J.A.; Wagner, K.H. Vitamin E: A critical review. J. Sci. Food Agric. 2000, 80, 913–938. [Google Scholar] [CrossRef]
- Kono, N.; Ohto, U.; Hiramatsu, T.; Urabe, M.; Uchida, Y.; Satow, Y.; Arai, H. Impaired α-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 2013, 340, 1106–1110. [Google Scholar] [CrossRef]
- Pagano, M.C.; Miransari, M. 1—The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 1–26. [Google Scholar]
- Park, C.; Dwiyanti, M.S.; Nagano, A.J.; Liu, B.; Yamada, T.; Abe, J. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biol. 2019, 19, 510. [Google Scholar] [CrossRef]
- Seguin, P.; Tremblay, G.; Pageau, D.; Liu, W. Soybean Tocopherol Concentrations Are Affected by Crop Management. J. Agric. Food Chem. 2010, 58, 5495–5501. [Google Scholar] [CrossRef]
- Marwede, V.; Schierholt, A.; Möllers, C.; Becker, H.C. Genotype × Environment Interactions and Heritability of Tocopherol Contents in Canola. Crop Sci. 2004, 44, 728–731. [Google Scholar] [CrossRef]
- Ujiie, A.; Yamada, T.; Fujimoto, K.; Endo, Y.; Kitamura, K. Identification of Soybean Varieties with High α-Tocopherol Content. Breed. Sci. 2005, 55, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Carrera, C.S.; Seguin, P. Factors Affecting Tocopherol Concentrations in Soybean Seeds. J. Agric. Food Chem. 2016, 64, 9465–9474. [Google Scholar] [CrossRef]
- Dwiyanti, M.S.; Maruyama, S.; Hirono, M.; Sato, M.; Park, E.; Yoon, S.H.; Yamada, T.; Abe, J. Natural diversity of seed α-tocopherol ratio in wild soybean (Glycine soja) germplasm collection. Breed. Sci. 2016, 66, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, E.J.; Rajcan, I. Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’ × ‘OAC Shire’. Plant Breed. 2017, 136, 83–93. [Google Scholar] [CrossRef]
- Liu, H.; Cao, G.; Wu, D.; Jiang, Z.; Han, Y.; Li, W. Quantitative trait loci underlying soybean seed tocopherol content with main additive, epistatic and QTL × environment effects. Plant Breed. 2017, 136, 924–938. [Google Scholar] [CrossRef]
- Muñoz, P.; Munné-Bosch, S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef]
- Norris, S.R.; Shen, X.; Della Penna, D. Complementation of the Arabidopsis pds1 Mutation with the Gene Encoding p-Hydroxyphenylpyruvate Dioxygenase. Plant Physiol. 1998, 117, 1317–1323. [Google Scholar] [CrossRef] [Green Version]
- Falk, J.; Andersen, G.; Kernebeck, B.; Krupinska, K. Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves1. FEBS Lett. 2003, 540, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Sun, X.; Tang, K. Current Opinions on the Functions of Tocopherol Based on the Genetic Manipulation of Tocopherol Biosynthesis in Plants. J. Integrat. Plant Biol. 2008, 50, 1057–1069. [Google Scholar] [CrossRef]
- Valentin, H.E.; Lincoln, K.; Moshiri, F.; Jensen, P.K.; Qi, Q.; Venkatesh, T.V.; Karunanandaa, B.; Baszis, S.R.; Norris, S.R.; Savidge, B.; et al. The Arabidopsis vitamin E pathway gene5-1 Mutant Reveals a Critical Role for Phytol Kinase in Seed Tocopherol Biosynthesis. Plant Cell 2005, 18, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Vom Dorp, K.; Hölzl, G.; Plohmann, C.; Eisenhut, M.; Abraham, M.; Weber, A.P.M.; Hanson, A.D.; Dörmann, P. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis. Plant Cell 2015, 27, 2846–2859. [Google Scholar] [CrossRef] [Green Version]
- Collakova, E.; DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 2001, 127, 1113–1124. [Google Scholar] [CrossRef]
- Schledz, M.; Seidler, A.; Beyer, P.; Neuhaus, G. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett. 2001, 499, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Sattler, S.E.; Cheng, Z.; DellaPenna, D. From Arabidopsis to agriculture: Engineering improved Vitamin E content in soybean. Trends Plant Sci. 2004, 9, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, R.; Ito, T.; Kobayashi, M.; Taji, T.; Nagata, N.; Asami, T.; Yoshida, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J. 2003, 34, 719–731. [Google Scholar] [CrossRef]
- Cheng, Z.; Sattler, S.; Maeda, H.; Sakuragi, Y.; Bryant, D.A.; DellaPenna, D. Highly Divergent Methyltransferases Catalyze a Conserved Reaction in Tocopherol and Plastoquinone Synthesis in Cyanobacteria and Photosynthetic Eukaryotes. Plant Cell 2003, 15, 2343–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porfirova, S.; Bergmuller, E.; Tropf, S.; Lemke, R.; Dormann, P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 2002, 99, 12495–12500. [Google Scholar] [CrossRef] [Green Version]
- Kanwischer, M.; Porfirova, S.; BergmüLler, E.; DöRmann, P. Alterations in Tocopherol Cyclase Activity in Transgenic and Mutant Plants of Arabidopsis Affect Tocopherol Content, Tocopherol Composition, and Oxidative Stress. Plant Physiol. 2005, 137, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eenennaam, A.L.; Lincoln, K.; Durrett, T.P.; Valentin, H.E.; Shewmaker, C.K.; Thorne, G.M.; Jiang, J.; Baszis, S.R.; Levering, C.K.; Aasen, E.D.; et al. Engineering vitamin E content: From Arabidopsis mutant to soy oil. Plant Cell 2003, 15, 3007–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwiyanti, M.S.; Yamada, T.; Sato, M.; Abe, J.; Kitamura, K. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol. 2011, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Sui, M.; Jing, Y.; Li, H.; Zhan, Y.; Luo, J.; Teng, W.; Qiu, L.; Zheng, H.; Li, W.; Zhao, X.; et al. Identification of Loci and Candidate Genes Analyses for Tocopherol Concentration of Soybean Seed. Front. Plant Sci. 2020, 11, 539460. [Google Scholar] [CrossRef]
- Knizia, D.; Yuan, J.; Bellaloui, N.; Vuong, T.; Usovsky, M.; Song, Q.; Betts, F.; Register, T.; Williams, E.; Lakhssassi, N.; et al. The Soybean High Density ‘Forrest’ by ‘Williams 82’ SNP-Based Genetic Linkage Map Identifies QTL and Candidate Genes for Seed Isoflavone Content. Plants 2021, 10, 2029. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Cheng, J.; Lai, Y.; Wang, J.; Bao, Y.; Huang, J.; Zhang, H. QTL Analysis of Na+ and K+ Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.). PLoS ONE 2012, 7, e51202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsche, S.; Wang, X.; Jung, C. Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants 2017, 6, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wang, Y.; Han, Y.; Teng, W.; Zhao, X.; Li, Y.; Li, W. Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL × environment effects. Plant Breed. 2016, 135, 208–214. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Han, Y.; Wu, X.; Teng, W.; Liu, G.; Li, W. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor. Appl. Genet. 2010, 120, 1405–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grela, E.R.; Günter, K.D. Fatty acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331. [Google Scholar] [CrossRef]
- Kassem, M.A. Soybean Seed Composition: Protein, Oil, Fatty Acids, Amino Acids, Sugars, Mineral Nutrients, Tocopherols, and Isoflavones; Springer International Publishing AG: Cham, Switzerland, 2021. [Google Scholar]
- Rigotti, A. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects Med. 2007, 28, 423–436. [Google Scholar] [CrossRef]
- Talegawkar, S.A.; Johnson, E.J.; Carithers, T.; Taylor, H.A.; Bogle, M.L.; Tucker, K.L. Total α-Tocopherol Intakes Are Associated with Serum α-Tocopherol Concentrations in African American Adults. J. Nutr. 2007, 137, 2297–2303. [Google Scholar] [CrossRef] [Green Version]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.D.L.; Almeida, F.N.D.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Vinutha, T.V.; Bansal, N.; Kumari, K.; Prashat, G.R.; Sreevathsa, R.; Krishnan, V.; Kumari, S.; Dahuja, A.; Lal, S.K.; Sachdev, A.; et al. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds. J. Agric. Food Chem. 2017, 65, 11054–11064. [Google Scholar] [CrossRef]
- Chennupati, P.; Seguin, P.; Liu, W. Effects of High Temperature Stress at Different Development Stages on Soybean Isoflavone and Tocopherol Concentrations. J. Agric. Food Chem. 2011, 59, 13081–13088. [Google Scholar] [CrossRef]
- Wu, X.; Vuong, T.D.; Leroy, J.A.; Grover Shannon, J.; Sleper, D.A.; Nguyen, H.T. Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean. Theor. Appl. Genet. 2011, 122, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Trait | Mean (μg/g) | Range (μg/g) | CV (%) | SE | Skewness | Kurtosis | W Value (p < 0.05) |
---|---|---|---|---|---|---|---|---|
2017 | δ-tocopherol17 | 95.86 | 94 | 19.73 | 1.09 | 0.01 | 2.21 | 0.98 ** |
γ+β-tocopherol17 | 172.44 | 97.1 | 9.78 | 0.97 | 0.48 | 3.18 | 0.98 ** | |
α-tocopherol17 | 4.94 | 40.7 | 83.64 | 0.24 | 4.46 | 32.89 | 0.52 *** | |
Total-tocopherol17 | 271.5 | 150.7 | 8.97 | 1.41 | 0.25 | 2.9 | 0.99 | |
2020 | δ-tocopherol20 | 94.5 | 76 | 14.67 | 0.81 | 0.2 | 3.1 | 0.99 |
γ+β-tocopherol20 | 180.67 | 149.2 | 10.06 | 1.06 | −0.36 | 5.59 | 0.97 *** | |
α-tocopherol20 | 5.13 | 25.7 | 55.49 | 0.16 | 3.13 | 21.28 | 0.71 *** | |
Total-tocopherol20 | 279.44 | 206.4 | 9.13 | 1.48 | 0.16 | 4.32 | 0.98 ** |
Response: δ-tocopherol | ||||
Df | Sum Sq | Mean Seq | H2 | |
Line | 592 | 163,429 | 276.06 | 0.71 |
Year | 1 | 391 | 391.28 | |
Line:Year | 1 | 81 | 80.65 | |
Residuals | 0 | 0 | NA | |
Response: γ+β-tocopherol | ||||
Df | Sum Sq | Mean Seq | H2 | |
Line | 592 | 191,945 | 324.23 | -0.41 |
Year | 1 | 6 | 6.13 | |
Line:Year | 1 | 457 | 456 | |
Residuals | 0 | 0 | NA | |
Response: α-tocopherol | ||||
Df | Sum Sq | Mean Seq | H2 | |
Line | 592 | 7479.9 | 12.635 | −0.61 |
Year | 1 | 20 | 20.041 | |
Line:Year | 1 | 20 | 20.41 | |
Residuals | 0 | 0 | NA | |
Response: Total-tocopherol | ||||
Df | Sum Sq | Mean Seq | H2 | |
Line | 592 | 377,872 | 638.3 | 0.47 |
Year | 1 | 205 | 205.28 | |
Line:Year | 1 | 338 | 337.55 | |
Residuals | 0 | 0 | NA |
A. QTL that Control Seed Tocopherols Contents in Carbondale, IL (2017) | ||||||||
Trait | QTL | Chr. | Marker/Interval | Position (cM) | LOD | R2 | Additive | Environment |
α-Tocopherol | qα-Toc-1 | 6 | Gm06_1537675-Gm06_1570293 | 173.7–178.7 | 6.1 | 9.96 | 1.648195 | Carbondale, IL |
qα-Toc-2 | 6 | Gm06_1858327-Gm06_2048675 | 192.6–197.6 | 6.77 | 9.95 | 1.477826 | Carbondale, IL | |
δ-Tocopherol | qδ-Toc-1 | 1 | Gm01_1887205-Gm01_1653315 | 174.2–179.2 | 3.06 | 3.1 | −3.30536 | Carbondale, IL |
qδ-Toc-2 | 2 | Gm02_1481798-Gm02_9925870 | 133.5–140.2 | 3.4 | 3.57 | 5.481172 | Carbondale, IL | |
qδ-Toc-3 | 6 | Gm06_1674534-Gm06_4447485 | 183.8–207 | 23.01 | 27.9 | 10.14229 | Carbondale, IL | |
γ+ß-Tocopherol | qγ+ß-Toc-1 | 6 | Gm06_1674534-Gm06_4368839 | 185.8–203.2 | 5.13 | 6.16 | 4.161084 | Carbondale, IL |
qγ+ß-Toc-2 | 8 | Gm08_3018731-Gm08_4266625 | 17.8–31.2 | 3.02 | 3.78 | −3.23578 | Carbondale, IL | |
qγ+ß-Toc-3 | 12 | Gm12_3820261-Gm12_3818392 | 0.5–1 | 4.14 | 5.23 | 3.852091 | Carbondale, IL | |
qγ+ß-Toc-4 | 12 | Gm12_3805393-Gm12_3696093 | 2.5–18.5 | 7.18 | 8.86 | 5.050705 | Carbondale, IL | |
qγ+ß-Toc-5 | 13 | Gm13_2587196-Gm13_2048499 | 189.1–210.7 | 3.79 | 5.43 | 3.906039 | Carbondale, IL | |
Total- Tocopherols | qTotal-Toc-1 | 5 | Gm05_3674925-Gm05_3256515 | 29.4–32.2 | 3.63 | 4.42 | 8.695197 | Carbondale, IL |
qTotal-Toc-2 | 6 | Gm06_1739930-Gm06_2073990 | 188.9–197.6 | 4.07 | 5.05 | −5.69939 | Carbondale, IL | |
qTotal-Toc-3 | 6 | Gm06_3849946-Gm06_4447485 | 200.1–207 | 5.67 | 6.95 | −6.57105 | Carbondale, IL | |
qTotal-Toc-4 | 7 | Gm07_3635708-Gm07_1829304 | 81.4–88.9 | 2.88 | 3.46 | −5.31938 | Carbondale, IL | |
qTotal-Toc-5 | 9 | Gm09_3483063-Gm09_3544488 | 74.8–78 | 3.13 | 3.78 | −4.56753 | Carbondale, IL | |
qTotal-Toc-6 | 12 | Gm12_3820261-Gm12_3696093 | 2.5–18.5 | 4.84 | 5.94 | 4.753021 | Carbondale, IL | |
B. QTLs that control seed tocopherols contents in Carbondale, IL (2020) | ||||||||
Trait | QTL | Chr. | Marker | Position (cM) | LOD | R2 | Additive | Envt. |
α-Tocopherol | qα-Toc-1 | 1 | Gm01_3466825-Gm01_5255151 | 4.1–10.1 | 5.81 | 0.35 | 2.35 | Carbondale, IL |
qα-Toc-2 | 2 | Gm02_5141136-Gm02_1020061 | 137.1–139.8 | 2.9 | 0.04 | 0.82 | Carbondale, IL | |
qα-Toc-3 | 6 | Gm06_1954068-Gm06_2015292 | 195–197 | 2.01 | 0.03 | 0.5 | Carbondale, IL | |
δ-Tocopherol | qδ-Toc-1 | 1 | Gm01_4912170-Gm01_4852475 | 91.6–93.6 | 2.57 | 0.04 | −2.66 | Carbondale, IL |
qδ-Toc-2 | 8 | Gm08_1810148-Gm08_2201336 | 125.7–130.8 | 2.42 | 0.04 | 2.86 | Carbondale, IL | |
qδ-Toc-3 | 10 | Gm10_3943637-Gm10_3935014 | 79.2–81.4 | 2.4 | 0.03 | −2.53 | Carbondale, IL | |
qδ-Toc-4 | 16 | Gm16_1079308-Gm16_3673245 | 0.5–12.5 | 3.71 | 0.05 | −6.65 | Carbondale, IL | |
qδ-Toc-5 | 20 | Gm20_3665142-Gm20_1046460 | 174.9–176.9 | 2.68 | 0.04 | −5.95 | Carbondale, IL | |
(γ+ß)-Tocopherol | q(γ+ß)-Toc-2 | 2 | Gm02_5155733-Gm02_4311734 | 130.5–132.5 | 2.15 | 0.04 | −9.75 | Carbondale, IL |
q(γ+ß)-Toc-1 | 16 | Gm16_1079308-Gm16_3673245 | 2.5–18.5 | 2.87 | 0.23 | −10.56 | Carbondale, IL | |
Total- Toopherol | qT-Toc-1 | 1 | Gm01_3504836-Gm01_5566630 | 0.1–1.7 | 4.52 | 0.08 | −14.62 | Carbondale, IL |
qT-Toc-2 | 8 | Gm08_2622664-Gm08_2852874 | 12.9–13.3 | 2.11 | 0.03 | −4.44 | Carbondale, IL | |
qT-Toc-3 | 10 | Gm10_3935014-Gm10_3890052 | 79.4–84.4 | 2 | 0.03 | −4.27 | Carbondale, IL | |
qT-Toc-4 | 16 | Gm16_1079308-Gm16_3673245 | 0.5–18.5 | 3.1 | 0.18 | −13.92 | Carbondale, IL | |
qT-Toc-5 | 17 | Gm17_3916734-Gm17_3929518 | 6.2–48.7 | 3.07 | 0.18 | −11.81 | Carbondale, IL | |
qT-Toc-6 | 20 | Gm20_3665142-Gm20_1046460 | 174.9–176.9 | 2.51 | 0.03 | −10.65 | Carbondale, IL |
A. QTLs that Control Seed Tocopherols Contents in Carbondale, IL (2017) | ||||||||
Trait | QTL | Wm82.a4. v1 Gene Models | Glyma1.0 Gene Models | |||||
Gene ID | Start | End | Gene ID | Start | End | Dist. (Mbp) | ||
α-Tocopherol | qα-Toc-1 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 4.8 |
qα-Toc-2 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 4.4 | |
δ-Tocopherol | qδ-Toc-1 | |||||||
qδ-Toc-2 | Glyma.02G002000 | 237,750 | 243,006 | Glyma02g00440 | 237,612 | 245,017 | 1.2 | |
Glyma.02G143700 | 15,253,811 | 15,256,708 | Glyma02g16210 | 14,623,815 | 14,626,862 | 4.6 | ||
qδ-Toc-3 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 2.01 | |
(γ+ß)-Tocopherol | q(γ+ß)-Toc-1 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 2.09 |
q(γ+ß)-Toc-2 | ||||||||
q(γ+ß)-Toc-3 | Glyma.12G014200 | 1,020,484 | 1,023,995 | Glyma12g01680 | 1,020,554 | 1,024,132 | 2.7 | |
Glyma.12G014300 | 1,028,051 | 1,031,954 | Glyma12g01690 | 1,028,132 | 1,032,092 | 2.7 | ||
q(γ+ß)-Toc-4 | Glyma.12G014200 | 1,020,484 | 1,023,995 | Glyma12g01680 | 1,020,554 | 1,024,132 | 2.6 | |
Glyma.12G014300 | 1,028,051 | 1,031,954 | Glyma12g01690 | 1,028,132 | 1,032,092 | 2.6 | ||
q(γ+ß)-Toc-5 | ||||||||
Total-Tocopherols | qT-Toc-1 | Glyma.05G026200 | 2,284,067 | 2,286,242 | Glyma05g01000 | 606,481 | 608,812 | 2.6 |
qT-Toc-2 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 4.3 | |
qT-Toc-3 | Glyma.06G084100 | 6,435,516 | 6,441,328 | Glyma06g08850 | 6,460,802 | 6,466,636 | 2.3 | |
qT-Toc-4 | ||||||||
qT-Toc-5 | ||||||||
qT-Toc-6 | Glyma.12G014200 | 1,020,484 | 1,023,995 | Glyma12g01680 | 1,020,554 | 1,024,132 | 2.6 | |
Glyma.12G014300 | 1,028,051 | 1,031,954 | Glyma12g01690 | 1,028,132 | 1,032,092 | 2.6 | ||
B. QTLs that control seed tocopherols contents in Carbondale, IL (2020) | ||||||||
Trait | QTL | Wm82.a4. v1 Gene Models | Glyma1.0 Gene Models | |||||
Gene ID | Start | End | Gene ID | Start | End | Dist. (Mbp) | ||
α-Tocopherol | qα-Toc-1 | |||||||
qα-Toc-2 | Glyma.02G002000 | 237,689 | 243,112 | Glyma02g00440 | 237,612 | 245,017 | 0.7 | |
qα-Toc-3 | Glyma.06G084100 | 6,466,090 | 6,471,839 | Glyma06g08850 | 6,460,802 | 6,466,636 | 4.5 | |
δ-Tocopherol | qδ-Toc-1 | |||||||
qδ-Toc-2 | ||||||||
qδ-Toc-3 | Glyma.10G030600 | 2,658,064 | 2,661,302 | Glyma10g03590 | 2,650,012 | 2,653,309 | 1.28 | |
Glyma.10G070100 | 6,923,409 | 6,931,780 | Glyma10g08080 | 6,888,551 | 6,893,731 | 2.95 | ||
Glyma.10G070300 | 7,023,173 | 7,029,710 | Glyma10g08150 | 6,986,426 | 6,992,505 | 3.04 | ||
qδ-Toc-4 | ||||||||
qδ-Toc-5 | ||||||||
(γ+ß)-Tocopherol | q(γ+ß)-Toc-2 | Glyma.02G002000 | 237,689 | 243,112 | Glyma02g00440 | 237,612 | 245,017 | 4.06 |
q(γ+ß)-Toc-1 | ||||||||
Total-Tocopherol | qT-Toc-1 | |||||||
qT-Toc-2 | ||||||||
qT-Toc-3 | Glyma.10G030600 | 2,658,064 | 2,661,302 | Glyma10g03590 | 2,650,012 | 2,653,309 | 1.23 | |
Glyma.10G070100 | 6,923,409 | 6,931,780 | Glyma10g08080 | 6,888,551 | 6,893,731 | 2.95 | ||
Glyma.10G070300 | 7,023,173 | 7,029,710 | Glyma10g08150 | 6,986,426 | 6,992,505 | 3.05 | ||
qT-Toc-4 | ||||||||
qT-Toc-5 | Glyma.17G061900 | 4,728,685 | 4,734,790 | Glyma17g06940 | 4,998,801 | 5,004,742 | 1.06 | |
Glyma.17G100700 | 7,920,291 | 7,923,450 | Glyma17g10890 | 8,190,830 | 8,194,219 | 4.2 | ||
qT-Toc-6 |
Gene ID | Start | End | QTL | QTL Start | QTL End | Parents | Number Loci Tested | Lod Score | Interval Length | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Glyma.09G222800 | 44,341,974 | 44,346,311 | qαTC-9 | 43,927,286 | 44,366,371 | TK780 X B04009 | ND | 13.1 | ND | [7] |
Glyma.12G014200 | 1,026,615 | 1,029,095 | qαTC-12 | 1,507,927 | 1,790,872 | TK780 X B04009 | ND | 7.8 | ND | [7] |
Glyma.12G014300 | 1,033,151 | 1,037,054 | qαTC-12 | 1,507,927 | 1,790,872 | TK780 X B04009 | ND | 7.8 | ND | [7] |
Glyma.04G082500 | 6,948,445 | 6,954,177 | qδTC-4 | 6,780,105 | 7,188,146 | TK780 X B04009 | ND | 5.5 | ND | [7] |
Glyma.04G082400 | 6,946,447 | 6,947,480 | qδTC-4 | 6,780,105 | 7,188,146 | TK780 X B04009 | ND | 5.5 | ND | [7] |
Glyma.04G082300 | 6,945,685 | 6,946,469 | qδTC-4 | 6,780,105 | 7,188,146 | TK780 X B04009 | ND | 5.5 | ND | [7] |
Glyma.06G084100 | 6,466,090 | 6,471,839 | Seed tocopherol, alpha 1-2 | 16,106,296 | 16,256,544 | OAC Bayfield X Hefeng 25 | 107 | ND | ND | [35] |
Glyma.14G030400 | 2,204,142 | 2,206,424 | Seed tocopherol, alpha 2-1 | 675,214 | 2204,996 | Hefeng 25 X OAC Bayfield | 606 | ND | ND | [34] |
Glyma.02G143700 | 14,826,295 | 14,829,286 | Seed tocopherol, gamma 1-5 | 13,316,369 | 37,285,448 | OAC Bayfield X Hefeng 25 | 107 | ND | ND | [35] |
Seed tocopherol, gamma 2-5 | 14,288,241 | 45,267,040 | Hefeng 25 X OAC Bayfield | 606 | ND | 56.73 | [34] | |||
Glyma.02G002000 | 237,689 | 243,112 | Seed tocopherol, gamma 1-5 | 13,316,369 | 37,285,448 | OAC Bayfield X Hefeng 25 | 107 | ND | ND | [35] |
Seed tocopherol, gamma 2-5 | 14,288,241 | 45,267,040 | Hefeng 25 X OAC Bayfield | 606 | ND | 56.73 | [34] | |||
Glyma.13G097800 | 21,299,008 | 21,305,797 | Seed tocopherol, delta 1-3 | 15,248,933 | 15,306,234 | OAC Bayfield X Hefeng 25 | 107 | ND | ND | [35] |
Glyma.17G061900 | 4,728,685 | 4,734,790 | qαγR-17 | 8,786,113 | 9,025,866 | TK780 X B04009 | ND | 4.1 | ND | [7] |
Glyma.17G100700 | 792,0291 | 7,923,450 | Seed tocopherol, gamma 3-6 | 5,891,979 | 36,718,722 | OAC Bayfield X OAC Shire | 550 | 2.6 | 67.66 | [13] |
Glyma.12g161500 | 30,805,424 | 30,815,155 | Seed tocopherol, total 3-5 | 24,129,662 | 37,556,592 | OAC Bayfield X OAC Shire | 550 | 3.4 | 29.62 | [13] |
Glyma.12g205900 | 38,082,220 | 38,086,113 | Seed tocopherol, alpha 3-3 | 24,129,662 | 37,556,592 | OAC Bayfield X OAC Shire | 550 | 3.5 | 29.62 | [13] |
Seed tocopherol, total 3-5 | 24,129,662 | 37,556,592 | OAC Bayfield X OAC Shire | 550 | 3.4 | 29.62 | [13] | |||
Glyma.13g295000 | 38,800,738 | 38,805,839 | Seed tocopherol, delta 3-2 | 37,603,911 | 40,131,770 | OAC Bayfield X OAC Shire | 550 | 2.6 | 17.11 | [13] |
Seed tocopherol, delta 3-3 | 31,449,060 | 43,325,731 | OAC Bayfield X OAC Shire | 550 | 3.8 | 52.94 | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knizia, D.; Yuan, J.; Lakhssassi, N.; El Baze, A.; Cullen, M.; Vuong, T.; Mazouz, H.; T. Nguyen, H.; Kassem, M.A.; Meksem, K. QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean. Plants 2022, 11, 1258. https://doi.org/10.3390/plants11091258
Knizia D, Yuan J, Lakhssassi N, El Baze A, Cullen M, Vuong T, Mazouz H, T. Nguyen H, Kassem MA, Meksem K. QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean. Plants. 2022; 11(9):1258. https://doi.org/10.3390/plants11091258
Chicago/Turabian StyleKnizia, Dounya, Jiazheng Yuan, Naoufal Lakhssassi, Abdelhalim El Baze, Mallory Cullen, Tri Vuong, Hamid Mazouz, Henry T. Nguyen, My Abdelmajid Kassem, and Khalid Meksem. 2022. "QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean" Plants 11, no. 9: 1258. https://doi.org/10.3390/plants11091258
APA StyleKnizia, D., Yuan, J., Lakhssassi, N., El Baze, A., Cullen, M., Vuong, T., Mazouz, H., T. Nguyen, H., Kassem, M. A., & Meksem, K. (2022). QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean. Plants, 11(9), 1258. https://doi.org/10.3390/plants11091258