Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.2. MicroRNA Response
2.3. Cyclooxygenase (Cox) Family Response
2.4. Jun N-Terminal Kinases (JNK)
2.5. Assessment of Oxidative Stress
2.6. Mitochondrial Stress Responses
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay
4.4. Reactive Oxygen Species Analyses
4.5. Lactate Dehydrogenase (LDH) Activity
4.6. Mitochondrial Membrane Potential
4.7. Lipid Peroxidation Assessment
4.8. RNA Analysis
4.9. Micro-RNA Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. HIV/AIDS. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 30 November 2021).
- UNAIDS. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global Report: UNAIDS Report on the Global AIDS Epidemic 2021; Global HIV & AIDS Statistics: Fact Sheet; UNAIDS: Geneva, Switzerland, 2021. [Google Scholar]
- UNAIDS. Global HIV & AIDS Statistics—2020 Fact Sheet. 2021. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 11 September 2021).
- Release, S. Mid-Year Population Estimates 2021. Statistics South Africa. Available online: http://www.statssa.gov.za/publications/P0302/P03022021.pdf (accessed on 18 November 2021).
- U.-S. Africa, HIV and AIDS Estimates. 2020. Available online: https://www.unaids.org/en/regionscountries/countries/southafrica (accessed on 11 September 2021).
- National Institute on Drug Abuse (NIDA). What Is HAART? 2012. Available online: https://www.https://www.drugabuse.gov/drugabuse.gov/publications/research-reports/hivaids/what-haart (accessed on 30 November 2021).
- Manda, K.R.; Banerjee, A.; Banks, W.A.; Ercal, N. Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells. Free. Radic. Biol. Med. 2011, 50, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Blas-Garcia, A.; Apostolova, N.; Esplugues, J.V. Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: Clinical implications. Curr. Pharm. Des. 2011, 17, 4076–4086. [Google Scholar] [CrossRef] [PubMed]
- Ngondi, J.L.; Oben, J.; Forkah, D.M.; Etame, L.H.; Mbanya, D. The effect of different combination therapies on oxidative stress markers in HIV infected patients in Cameroon. AIDS Res. Ther. 2006, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Masiá, M.; Padilla, S.; Bernal, E.; Almenar, M.V.; Molina, J.; Hernández, I.; Graells, M.L.; Gutiérrez, F. Influence of antiretroviral therapy on oxidative stress and cardiovascular risk: A prospective cross-sectional study in HIV-infected patients. Clin. Ther. 2007, 29, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Pradhan, L.; Ali, M.; Agrawal, K.C. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells. Cardiovasc. Toxicol. 2004, 4, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Mohan, J.; Ghazi, T.; Chuturgoon, A.A. A Critical Review of the Biochemical Mechanisms and Epigenetic Modifications in HIV- and Antiretroviral-Induced Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 12020. [Google Scholar] [CrossRef]
- Riss, J.; Décordé, K.; Sutra, T.; Delage, M.; Baccou, J.-C.; Jouy, N.; Brune, J.-P.; Oréal, H.; Cristol, J.-P.; Rouanet, J.-M. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem. 2007, 55, 7962–7967. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Inoguchi, T.; Sasaki, S.; Maeda, Y.; McCarty, M.F.; Fujii, M.; Ikeda, N.; Kobayashi, K.; Sonoda, N.; Takayanagi, R. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 304, R110–R120. [Google Scholar] [CrossRef] [Green Version]
- Estrada, J.P.; Bescós, P.B.; del Fresno, A.V. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farm. 2001, 56, 497–500. [Google Scholar] [CrossRef]
- Uma, M.I.; Sophia, A.; Uliyar, V. Glycemic and lipemic responses of selected spirulina-supplemented rice-based recipes in normal subjects. Age Years 1999, 22, 17–22. [Google Scholar]
- Serban, M.-C.; Sahebkar, A.; Dragan, S.; Stoichescu-Hogea, G.; Ursoniu, S.; Andrica, F.; Banach, M. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin. Nutr. 2016, 35, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, M.; Pushparaj, A.; Dheeba, B.; Nageshwari, K.; Kannan, K. Phytochemical screening and antioxidant activity of marine algae Gracilaria corticata and Spirulina platensis. J. Chem. Pharm. Res. 2014, 6, 312–318. [Google Scholar]
- Jaime, L.; Mendiola, J.A.; Herrero, M.; Soler-Rivas, C.; Santoyo, S.; Señorans, F.J.; Cifuentes, A.; Ibáñez, E. Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. J. Sep. Sci. 2005, 28, 2111–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Baky, A.; Hanaa, H.; el Baz, F.; El-Baroty, G.S. Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol. Plant. 2009, 31, 623–631. [Google Scholar] [CrossRef]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef]
- Herrero, M.; Vicente, M.J.; Cifuentes, A.; Ibáñez, E. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract, Rapid Communications in Mass Spectrometry. Int. J. Devoted Rapid Dissem. Minute Res. Mass Spectrom. 2007, 21, 1729–1738. [Google Scholar]
- Hu, Z.; Liu, Z. Determination and purification of beta-carotene in Spirulina maximum. Se Pu=Chin. J. Chromatogr. 2001, 19, 85–87. [Google Scholar]
- Miranda, M.; Cintra, R.; Barros, S.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef]
- Bashandy, S.A.; el Awdan, S.A.; Ebaid, H.; Alhazza, I.M. Antioxidant potential of Spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male rats. Oxidative Med. Cell. Longev. 2016, 2016, 7174351. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, N.K.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and oxidative stress. Environ. Sci. Pollut. Res. 2015, 22, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, D.; Kornicka, K.; Śmieszek, A.; Marycz, K. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in adipose-derived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs), and enhances insulin sensitivity in equine metabolic syndrome (EMS) horses. Mar. Drugs 2017, 15, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadaun, P.; Yadav, D.; Bisen, P.S. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts. Cytotechnology 2018, 70, 523–536. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Hou, Y.-J.; Fu, X.-Y.; Fu, X.-T.; Ma, J.-K.; Yang, M.-F.; Sun, B.-L.; Fan, C.-D.; Oh, J. Selenium-containing protein from selenium-enriched spirulina platensis attenuates cisplatin-induced apoptosis in MC3T3-E1 Mouse preosteoblast by inhibiting mitochondrial dysfunction and ROS-Mediated oxidative damage. Front. Physiol. 2019, 9, 1907. [Google Scholar] [CrossRef] [PubMed]
- Oriquat, G.A.; Ali, M.A.; Mahmoud, S.A.; Eid, R.M.; Hassan, R.; Kamel, M.A. Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl. Physiol. Nutr. Metab. 2019, 44, 357–364. [Google Scholar] [CrossRef]
- Izadi, M.; Fazilati, M. Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti-inflammatory activity. Asian J. Green Chem. 2018, 2, 364–379. [Google Scholar]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Chen, C. MicroRNAs as oncogenes and tumor suppressors. N. E. J. Med. 2005, 353, 1768. [Google Scholar] [CrossRef] [Green Version]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Gusev, Y. Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods 2008, 44, 61–72. [Google Scholar] [CrossRef]
- Maziere, P.; Enright, A.J. Prediction of microRNA targets. Drug Discov. Today 2007, 12, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Chuturgoon, A.A.; Phulukdaree, A.; Moodley, D. Fumonisin B1 modulates expression of human cytochrome P450 1b1 in human hepatoma (Hepg2) cells by repressing Mir-27b. Toxicol. Lett. 2014, 227, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.; Miller, N.; Kerin, M. Role of microRNAs in obesity and the metabolic syndrome. Obes. Rev. 2010, 11, 354–361. [Google Scholar] [CrossRef]
- Ge, Q.; Brichard, S.; Yi, X.; Li, Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J. Immunol. Res. 2014, 2014, 987285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Włodarski, A.; Strycharz, J.; Wróblewski, A.; Kasznicki, J.; Drzewoski, J.; Śliwińska, A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 6902. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Li, L.; Su, B.; Yang, L.; Fan, W.; Yin, Q.; Chen, L.; Cui, T.; Zhang, J. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: Implications for glomerular endothelial injury. BMC Nephrol. 2014, 15, 142. [Google Scholar] [CrossRef] [Green Version]
- Ayehunie, S.; Belay, A.; Baba, T.W.; Ruprecht, R.M. Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. Off. Publ. Int. Retrovirol. Assoc. 1998, 18, 7–12. [Google Scholar] [CrossRef]
- Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflamm. 2019, 16, 197. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfari, N.; van Waarde, A.; Dierckx, R.A.; Doorduin, J.; de Vries, E.F. Is cyclooxygenase-1 involved in neuroinflammation? J. Neurosci. Res. 2021, 99, 2976–2998. [Google Scholar] [CrossRef]
- Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene 2008, 27, 6245–6251. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, W.; Sudo, K.; Asawa, S.; Konno, K.; Yokota, T.; Shigeta, S. Use of lactate dehydrogenase to evaluate the anti-viral activity against influenza A virus. J. Virol. Methods 1995, 51, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nagiah, S.; Phulukdaree, A.; Chuturgoon, A. Inverse association between microRNA-124a and ABCC4 in HepG2 cells treated with antiretroviral drugs. Xenobiotica 2016, 46, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Pirmohamed, M.; Kitteringham, N.R. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol. Ther. 1995, 68, 385–424. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef]
- Kamble, S.P.; Gaikar, R.B.; Padalia, R.B.; Shinde, K.D. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 2013, 3, 149. [Google Scholar]
- Ali, S.K.; Saleh, A.M. Spirulina-an overview. Int. J. Pharm. Pharm. Sci. 2012, 4, 9–15. [Google Scholar]
- Repetto, M.; Semprine, J.; Boveris, A. Lipid peroxidation: Chemical mechanism, biological implications and analytical determination. Lipid Peroxidation chapter 2012, 1, 3–30. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 1–31. [Google Scholar] [CrossRef]
- Devrukhakar, P.S.; Borkar, R.; Shastri, N.; Surendranath, K. A validated stability-indicating RP-HPLC method for the simultaneous determination of tenofovir, emtricitabine, and a efavirenz and statistical approach to determine the effect of variables. Int. Sch. Res. Not. 2013, 2013, 878295. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic effects of fluoride on organisms. Life Sci. 2018, 198, 18–24. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Zhao, W.; Sun, Z.; Yan, H.; Zhu, J. Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-κB signaling. Mol. Med. Rep. 2016, 13, 1709–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornett, A.L.; Lutz, C.S. Regulation of COX-2 expression by miR-146a in lung cancer cells. RNA 2014, 20, 1419–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Varadharaj, S.; Ganesan, L.P.; Shobha, J.C.; Naidu, M.U.; Parinandi, N.L.; Tridandapani, S.; Kutala, V.K.; Kuppusamy, P. C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H2136–H2145. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-L.; Xu, G.; Chen, T.; Wong, Y.-S.; Zhao, H.-L.; Fan, R.-R.; Gu, X.-M.; Tong, P.C.; Chan, J.C. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int. J. Biochem. Cell Biol. 2009, 41, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Sadek, K.M.; Lebda, M.A.; Nasr, S.M.; Shoukry, M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed. Pharmacother. 2017, 92, 1085–1094. [Google Scholar] [CrossRef]
- Akrami, H.; Karimi, B.; Salehi, Z.; Sisakhtnezhad, S. The effect of ibuprofen on expression of Cox-1/2-related miRNAs in MKN-45-derived cancer stem-like cells. J. Rep. Pharm. Sci. 2019, 8, 18. [Google Scholar] [CrossRef]
- Binh, B.T.; Hien, T.T.; Chinh, P.D.; Thu, N.T.B. Anti-inflammatory effect of (7R, 8S)-dehydrodiconiferyl alcohol-9′ γ-methyl ether from the rhizome of Belamcanda Chinensis: Role of mir-146a and mir-155. Biomed. Pharmacol. J. 2016, 9, 909–918. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, L.; Ke, T.; Wang, X.; Cao, L.; Liu, S.; He, J.; Rong, W. Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp. Ther. Med. 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Comer, B.S. Does miRNA-155 Promote Cyclooxygenase-2 Expression in Cancer? Drug Dev. Res. 2015, 76, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Tzovenis, I.; Chronis, M.; Krokida, M. Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J. Aquat. Food Prod. Technol. 2021, 30, 498–516. [Google Scholar] [CrossRef]
- Thabethe, K.R.; Adefolaju, G.A.; Hosie, M.J. The effects of HAART on the expression of MUC1 and P65 in a cervical cancer cell line, HCS-2. Biomed. Pharmacother. 2015, 71, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Patel, M.; Sheng, Y.; Mitra, A.K. Design of lipophilic prodrugs to improve drug delivery and efficacy. Curr. Drug Targets 2016, 17, 1773–1798. [Google Scholar] [CrossRef] [PubMed]
- Erickson-Viitanen, S.; Wu, J.-T.; Shi, G.; Unger, S.; King, R.W.; Fish, B.; Klabe, R.; Geleziunas, R.; Gallagher, K.; Otto, M.J. Cellular pharmacology of D-d4FC, a nucleoside analogue active against drug-resistant HIV. Antivir. Chem. Chemother. 2003, 14, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Adefolaju, G.A.; Scholtz, K.E.; Hosie, M.J. Antiangiogenic VEGF165b Expression in Human Breast MCF-7 and MCF-10A Cells Exposed to Reverse Transcriptase and Protease Inhibitors. Int. J. Morphol. 2017, 35, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Nagiah, S.; Phulukdaree, A.; Chuturgoon, A. Mitochondrial and oxidative stress response in HepG2 cells following acute and prolonged exposure to antiretroviral drugs. J. Cell. Biochem. 2015, 116, 1939–1946. [Google Scholar] [CrossRef] [Green Version]
- Vijayarathna, S.; Sasidharan, S. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac. J. Trop. Biomed. 2012, 2, 826–829. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, Y.; Xu, W.; Luo, Y.; Hao, J.; Shen, X.L.; Yang, X.; Li, X.; Huang, K. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A. Toxicol. Appl. Pharmacol. 2013, 268, 123–131. [Google Scholar] [CrossRef]
- Abdul, N.S.; Nagiah, S.; Chuturgoon, A.A. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon 2016, 119, 336–344. [Google Scholar] [CrossRef]
- Chuturgoon, A.; Phulukdaree, A.; Moodley, D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells–An alternative mechanism of action. Toxicology 2014, 315, 65–69. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene | Annealing Temperature | Primer | Sequence |
---|---|---|---|
Cox-1 | 50 °C |
Forward
Reverse | 5′-CGCCAGTGAATCCCTGTTGTT-3′ |
5′-AAGGTGGCATTGACAAACTCC-3′ | |||
Cox-2 | 53 °C |
Forward
Reverse | 5′-TAAGTGCGATTGTACCCGGAC-3′ |
5′-TTTGTAGCCATAGTCAGCATTGT-3′ | |||
JNK | 59.7 °C |
Forward
Reverse | 5′-GACGCCTTATGTAGTGACTCGC-3′ |
5′-TCCTGGAAAGAGGATTTTGTGGC-3′ | |||
GAPDH |
Forward
Reverse | 5′-TCCACCACCCTGTTGCTGTA-3′ | |
5′-ACCACAGTCCATGCCATCAC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibiya, T.; Ghazi, T.; Mohan, J.; Nagiah, S.; Chuturgoon, A.A. Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. Plants 2023, 12, 119. https://doi.org/10.3390/plants12010119
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. Plants. 2023; 12(1):119. https://doi.org/10.3390/plants12010119
Chicago/Turabian StyleSibiya, Thabani, Terisha Ghazi, Jivanka Mohan, Savania Nagiah, and Anil A. Chuturgoon. 2023. "Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells" Plants 12, no. 1: 119. https://doi.org/10.3390/plants12010119
APA StyleSibiya, T., Ghazi, T., Mohan, J., Nagiah, S., & Chuturgoon, A. A. (2023). Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. Plants, 12(1), 119. https://doi.org/10.3390/plants12010119