Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream
Abstract
:1. Introduction
2. Results and Discussions
2.1. Phytochemical Analysis of the Individual Extracts and of the HM
2.2. Assessment of the Antibacterial Activity of the Individual Extracts and of the HM
2.3. Cytotoxicity and Apoptosis Assay
2.4. QbD Approach
2.4.1. Experimental Design Matrix
2.4.2. Data Fitting and the Validation of the Experimental Plan
2.4.3. The Influence of the Formulation Factors on the Physical Characteristics of the Creams
2.4.4. Optimization—The Optimal Formulation
2.5. General Overview of the Optimal Formulation
3. Materials and Methods
3.1. The Individual Extracts and HM Preparation
- H. virginiana extract was obtained from the dried crushed leaves of H. virginiana, native to Oregon, USA (provided by Galke GmbH, Germany, article no. 60002). The finely chopped leaves were extracted with 50% v/v ethanol in water, in a 1:6 extraction ratio. The cold extraction was performed by maceration under periodical stirring, for 10 days and according to method 1.1.8 of the European Pharmacopoeia, 10th edition [46]. Finally, the extractive solution was decanted and then filtered after five days.
- S. alba extract was obtained from the fresh bark of S. alba collected from Rădaia, Cluj County, Romania (latitude 46°48′05.54″ N, 23°27′51.62″ E, voucher no. 65319). The extraction was performed with 90% v/v ethanol in water. Considering the humidity of the plant material (58.36%), the extraction ratio was 1:1.2 for the fresh herbal material, respectively 1:2 for the dried herbal material. The cold extraction was performed by maceration under periodical stirring, for 10 days, according to method 1.1.5 of the European Pharmacopoeia, 10th edition [46]. Finally, the extractive solution was decanted, and the solid material was pressed to collect the residual extract, followed by the mixing of the two solutions. After five days the tincture was filtered.
- Ratanhia extract was obtained from the dried crushed root of K. lappacea. The plant native Peru was provided by Galke GmbH (Bad Grund, Germany, article no. 101802). The crushed root was extracted with 70% v/v ethanol in water, in a 1:9 extraction ratio. The cold extraction was performed by maceration under periodic stirring for 10 days, according to a method described in the 10th edition of the European Pharmacopoeia [46]. The extract was filtered after five days.
- The vegetal material was verified and identified by Lecturer Irina Ielciu, PhD. For the K. lappacea and H. virginiana species, commercial products were used, whereas for S. alba, voucher specimens of the harvested vegetal material are preserved at the Department of Quality Controle at the PlantExtrakt Ltd. (Rădaia, Cluj-Napoca, northwestern Romania).
- Alcoholic concentration of the HM was measured by using an official method of the 10th edition of the European Pharmacopoeia and was established at 65% and the extraction yield was established at 74.5%.
3.2. LC/MS Method
3.3. Antimicrobial Activity Evaluation
3.4. Cytotoxicity and Apoptosis Assay
3.5. Obtention of the Oil-in-Water Cream
3.5.1. Materials for Cream Preparation
3.5.2. Oil-in-Water Cream Preparation
3.6. Characterization of the Oil-in-Water Cream
3.7. QbD Approach
3.7.1. Definition of QTPP, CQAs
3.7.2. Risk Analysis
3.7.3. Experimental Design
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tucker, D.; Sadia, M. Seborrheic Dermatitis; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Dall’Oglio, F.; Nasca, M.R.; Gerbino, C.; Micali, G. An Overview of the Diagnosis and Management of Seborrheic Dermatitis. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.G.H.; Nijsten, T.; Verlouw, J.; Kraaij, R.; Pardo, L.M. Composition of cutaneous bacterial microbiome in seborrheic dermatitis patients: A cross-sectional study. PLoS ONE 2021, 16, e0251136. [Google Scholar] [CrossRef]
- Tamer, F.; Yuksel, M.; Sarifakioglu, E.; Karabag, Y. Staphylococcus aureus is the most common bacterial agent of the skin flora of patients with seborrheic dermatitis. Dermatol. Pract. Concept. 2018, 8, 80–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, H.A.; Al-Lenjawi, B.; Mendoza, D. Seborrheic Dermatitis Treatment with Natural Honey. Wounds Int. 2018, 5, 28–30. [Google Scholar]
- Ifuku, O. Botanical Ingredients. In Cosmetic Science and Technology: Theoretical Principles and Applications; Sakamoto, K., Lochhead, H., Yuji Yamashita, H.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 305–320. [Google Scholar]
- Thornfeldt, C.R. Botanicals. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; John Wiley & Sons Ltd.: Durham, NC, USA, 2022; pp. 351–365. [Google Scholar]
- Trüeb, R. North American virginian witch hazel (hamamelis virginiana): Based scalp care and protection for sensitive scalp, red scalp, and scalp burn-out. Int. J. Trichol. 2014, 6, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committe on Herbal Medicinal Products (HMPC). Assessment Report on Hamamelis virginiana L., Cortex, Hamamelis virginiana L. Folium, Hamamelis virginiana L., Folium et Cortex Aut Ramunculus Destillatum; European Medicines Agency: London, UK, 2010. [Google Scholar]
- Maistro, E.L.; Terrazzas, P.M.; Perazzo, F.F.; Gaivão, I.O.D.M.; Sawaya, A.C.H.F.; Rosa, P.C.P. Salix alba (white willow) medicinal plant presents genotoxic effects in human cultured leukocytes. J. Toxicol. Environ. Health Part A 2019, 82, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, L.; Schwaiger, S.; Stuppner, H. Quantitative analysis of anti-inflammatory lignan derivatives in Ratanhiae radix and its tincture by HPLC–PDA and HPLC–MS. J. Pharm. Biomed. Anal. 2011, 56, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Savic, S.M.; Cekic, N.D.; Savic, S.R.; Ilic, T.M.; Savic, S.D. ‘All-natural’ anti-wrinkle emulsion serum with Acmella oleracea extract: A design of experiments (DoE) formulation approach, rheology and in vivo skin performance/efficacy evaluation. Int. J. Cosmet. Sci. 2021, 43, 530–546. [Google Scholar] [CrossRef]
- Colobatiu, L.; Gavan, A.; Mocan, A.; Bogdan, C.; Mirel, S.; Tomuta, I. Development of bioactive compounds-loaded chitosan films by using a QbD approach—A novel and potential wound dressing material. React. Funct. Polym. 2019, 138, 46–54. [Google Scholar] [CrossRef]
- Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M.L. Improvement of skin condition in striae distensae: Development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Dev. Ther. 2017, 11, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Phenols, polyphenols and tannins: An overview. In Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A., Clifford, M.N., Ashihara, H., Eds.; Blackwell Publishing: Oxford, UK, 2006; pp. 1–24. [Google Scholar]
- Sivamani, R.K.; Jagdeo, J.R.; Elsner, P.; Maibach, H.I. (Eds.) Cosmeceuticals and Active Cosmetics, 3rd ed.; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- Piątczak, E.; Dybowska, M.; Płuciennik, E.; Kośla, K.; Kolniak-Ostek, J.; Kalinowska-Lis, U. Identification and Accumulation of Phenolic Compounds in the Leaves and Bark of Salix alba (L.) and Their Biological Potential. Biomolecules 2020, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Genovese, C.; D’Angeli, F.; Bellia, F.; Distefano, A.; Spampinato, M.; Attanasio, F.; Nicolosi, D.; Di Salvatore, V.; Tempera, G.; Furno, D.L.; et al. In Vitro Antibacterial, Anti-Adhesive and Anti-Biofilm Activities of Krameria lappacea (Dombey) Burdet & B.B. Simpson Root Extract against Methicillin-Resistant Staphylococcus aureus Strains. Antibiotics 2021, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Martinelli, G.; Vrhovsek, U.; Masuero, D.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Canilli, L.; Terno, M.; Angarano, M.; et al. Anti-Inflammatory and Anti-Acne Effects of Hamamelis virginiana Bark in Human Keratinocytes. Antioxidants 2022, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cruz, S.; Orozco-Covarrubias, L.; Sáez-De-Ocariz, M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front. Cell. Infect. Microbiol. 2022, 12, 834135. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C.; Owens, C.W.; Langfield, R.D.; Comeau, A.B.; Onge, J.S.; Vaisberg, A.J.; Hammond, G.B. Antibacterial activity of some Peruvian medicinal plants from the Callejon de Huaylas. J. Ethnopharmacol. 2001, 79, 133–138. [Google Scholar] [CrossRef]
- Javed, B.; Farooq, F.; Ibrahim, M.; Abbas, H.A.B.; Jawwad, H.; Zehra, S.S.; Ahmad, H.M.; Sarwer, A.; Malik, K.; Nawaz, K. Antibacterial and antifungal activity of methanolic extracts of Salix alba L. against various disease causing pathogens. Braz. J. Biol. 2023, 83, 243332. [Google Scholar] [CrossRef]
- Sulaiman, G.; Hussien, N.N.; Marzoog, T.R.; Awad, H.A. Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salyx alba. Am. J. Biochem. Biotechnol. 2013, 9, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Al-Oqail, M.M. Anticancer efficacies of Krameria lappacea extracts against human breast cancer cell line (MCF-7): Role of oxidative stress and ROS generation. Saudi Pharm. J. 2021, 29, 244–251. [Google Scholar] [CrossRef]
- Namjoshi, S.; Dabbaghi, M.; Roberts, M.S.; Grice, J.E.; Mohammed, Y. Quality by Design: Development of the Quality Target Product Profile (QTPP) for Semisolid Topical Products. Pharmaceutics 2020, 12, 287. [Google Scholar] [CrossRef] [Green Version]
- Duraković, B. Design of experiments application, concepts, examples: State of the art. Period. Eng. Nat. Sci. 2017, 5. [Google Scholar] [CrossRef]
- Iurian, S.M.; Adespei, D.-R.; Pop, A.; Fizeșan, I.; Carpa, R.; Moldovan, M.L.; Loghin, F.; Achim, M.; Bogdan, C. Development of a Mouthwash Using Freeze-Drying Technique: An Optimization Study. Appl. Sci. 2021, 11, 9609. [Google Scholar] [CrossRef]
- Costa, G.M.D.; Alves, G.D.A.D.; Campos, P.M.B.G.M. Application of design of experiments in the development of cosmetic formulation based on natural ingredients. Int. J. Phytocosmetics Nat. Ingred. 2019, 6, 4. [Google Scholar] [CrossRef]
- Ash, M.; Ash, I. Handbook of Cosmetic and Personal Care Additives; Synapse Information Resources; Endicott: New York, NY, USA, 2013; Volume 1–2. [Google Scholar]
- Malkin, R. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2006. [Google Scholar]
- McMullen, R.L.; Gorcea, M.; Chen, S. Section II: Formulation, Processing and Production Techniques. In Handbook of Formulating Dermal Applications: A Definitive Practical Guide; Dayan, N., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2017; pp. 129–154. [Google Scholar]
- SEPIGEL 305TM|SEPPIC. Available online: https://www.seppic.com/en/sepigel-305 (accessed on 26 January 2022).
- Calixto, L.S.; Campos, P.M.M.; Savary, G.; Picard, C. Interactions between UV filters and active substances in emulsion: Effect on microstructure, physicochemical and in-vivo properties. Int. J. Pharm. 2018, 553, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Gore, E.; Picard, C.; Savary, G. Spreading behavior of cosmetic emulsions: Impact of the oil phase. Biotribology 2018, 16, 17–24. [Google Scholar] [CrossRef]
- Terescenco, D.; Picard, C.; Clemenceau, F.; Grisel, M.; Savary, G. Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 10–19. [Google Scholar] [CrossRef]
- Calixto, L.S.; Infante, V.H.P.; Campos, P.M.B.G.M. Design and Characterization of Topical Formulations: Correlations Between Instrumental and Sensorial Measurements. AAPS PharmSciTech 2018, 19, 1512–1519. [Google Scholar] [CrossRef]
- Szymanska, E. Allantoin-Healing and Anti-Inflammatory Properties. Pediatr. Med. Rodz. 2012, 8, 73–77. [Google Scholar]
- Celleno, L. Topical urea in skincare: A review. Dermatol. Ther. 2018, 31, e12690. [Google Scholar] [CrossRef]
- Voegeli, D. Urea Creams in Skin Conditions: Composition and Outcomes. Dermatol. Pract. 2012, 18, 18–20. [Google Scholar]
- Goodman, H. Cosmetic dermatology. JAMA 1926, 86, 736. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Franco, E.D.S.; Barreto, R.R.; Cordeiro, D.P.; de Melo, R.G.; de Aquino, C.M.F.; e Silva, A.A.R.; de Medeiros, P.L.; da Silva, T.G.; Góes, A.J.D.S.; et al. Effect of Semisolid Formulation of Persea Americana Mill (Avocado) Oil on Wound Healing in Rats. Evid. Based Complement. Altern. Med. 2013, 2013, 472382. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z. The uses and properties of almond oil. Complement. Ther. Clin. Pract. 2010, 16, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, D.; Charrouf, Z. Argan oil and other argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Bensouda, Y.; Boucetta, K.Q.; Charrouf, Z.; Aguenaou, H.; Derouiche, A. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity. Clin. Interv. Aging 2015, 10, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Caprylic Capric Triglycerides. Available online: https://www.ingredientstodiefor.com/item/Caprylic_Capric_Triglycerides/464 (accessed on 26 January 2022).
- O’Malley, B. European Pharmacopoeia. BMJ 1971, 4, 815. [Google Scholar] [CrossRef] [Green Version]
- Ielciu, I.; Vlase, L.; Frédérich, M.; Hanganu, D.; Păltinean, R.; Cieckiewicz, E.; Olah, N.-K.; Gheldiu, A.-M.; Crişan, G. Polyphenolic Profile and Biological Activities of the Leaves and Aerial Parts of Echinocystis lobata (Michx.) Torr. et A. Gray (Cucurbitaceae). Farmacia 2017, 65, 179–183. [Google Scholar]
- Ielciu, I.; Hanganu, D.; Păltinean, R.; Vlase, L.; Frédérich, M.; Gheldiu, A.-M.; Benedec, D.; Crişan, G. Antioxidant capacity and polyphenolic content of the Echinocystis lobata (Michx.) Torr. et A.Gray flowers. Pak. J. Pharm. Sci. 2018, 31 (Suppl. 2), 677–683. [Google Scholar]
- Buza, V.; Niculae, M.; Hanganu, D.; Pall, E.; Burtescu, R.F.; Olah, N.-K.; Matei-Lațiu, M.-C.; Vlasiuc, I.; Iozon, I.; Szakacs, A.R.; et al. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules 2022, 27, 3560. [Google Scholar] [CrossRef] [PubMed]
- Ielciu, I.; Niculae, M.; Pall, E.; Barbălată, C.; Tomuţă, I.; Olah, N.-K.; Burtescu, R.F.; Benedec, D.; Oniga, I.; Hanganu, D. Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022, 27, 3988. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method; EUCAST: Basel. Switzerland, 2020. [Google Scholar]
- Benedec, D.; Hanganu, D.; Filip, L.; Oniga, I.; Tiperciuc, B.; Olah, N.-K.; Gheldiu, A.-M.; Raita, O.; Vlase, L. Chemical, Antioxidant and Antibacterial Studies of Romanian Heracleum Sphondylium. Farmacia 2017, 65, 252–256. [Google Scholar]
- Cornea-Cipcigan, M.; Bunea, A.; Bouari, C.M.; Pamfil, D.; Páll, E.; Urcan, A.C.; Mărgăoan, R. Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques. Antioxidants 2022, 11, 1126. [Google Scholar] [CrossRef]
- Calixto, L.S.; Campos, P.M.B.G.M. Physical-Mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. Int. J. Cosmet. Sci. 2017, 39, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Huynh, A.; Garcia, A.G.; Young, L.K.; Szoboszlai, M.; Liberatore, M.W.; Baki, G. Measurements meet perceptions: Rheology–texture–sensory relations when using green, bio-derived emollients in cosmetic emulsions. Int. J. Cosmet. Sci. 2020, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Kis, N.; Kovács, A.; Budai-Szűcs, M.; Gácsi, A.; Csányi, E.; Csóka, I.; Berkó, S. Investigation of Silicone-Containing Semisolid in Situ Film-Forming Systems Using QbD Tools. Pharmaceutics 2019, 11, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, A.; Veiga, F.; Vitorino, C.; Figueiras, A. A Tutorial for Developing a Topical Cream Formulation Based on the Quality by Design Approach. J. Pharm. Sci. 2018, 107, 2653–2662. [Google Scholar] [CrossRef]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef]
- Toma, I. Development and characterization of loratadine liposomal gel using qbd approach. Farmacia 2022, 70, 204–213. [Google Scholar] [CrossRef]
Identified Compound | Retention Time (min) | m/z and Main Transition | H. virginiana Leaves Extract | K. lappacea Roots Extract | S. alba Bark Extract | HM |
---|---|---|---|---|---|---|
Caffeic acid | 13.8 | 179.0 > 135.0 | 1.698 ± 0.0248 | 2.310 ± 0.0488 | <LoQ | 1.392 ± 0.0696 |
Carnosic accid | 32.0 | 331.2 > 285 | 0.918 ± 0.0174 | 2232 ± 0.0708 | 0.909 ± 0.0119 | 1.237 ± 0.0630 |
Chlorogenic acid | 11.9 | 353.0 > 191.0 | 20.615 ± 0.2478 | 17.145 ± 0.2864 | 0.189 ± 0.0047 | 12.604 ± 0.2898 |
Ferulic acid | 18.4 | 193.0 > 134.0 | <LoQ | <LoQ | 0.339 ± 0.0041 | 0.117 ± 0.0069 |
Gallic acid | 7.0 | 168.0 > 125.0 | 6.790 ± 0.0453 | 0.088 ± 0.0005 | <LoQ | 2.306 ± 0.1120 |
Ellagic acid | <LoQ | 1.119 ± 0.0094 | <LoQ | <LoQ | 0.377 ± 0.0127 | |
Salicylic acid | 23.5 | 137.0 > 93.0 | <LoQ | <LoQ | 11.993 ± 0.0921 | 4.169 ± 0.1459 |
trans-p coumaric acid | 17.4 | 163.0 > 119.0 | 2.480 ± 0.0083 | <LoQ | <LoQ | 0.796 ± 0.0461 |
Apigenin | 28.1 | 269.0 > 117.0 | 0.010 ± 0.0001 | 0.040 ± 0.0001 | 0.760 ± 0.0035 | 0.289 ± 0.0167 |
Catechin | 10.3 | 289.0 > 202.9 | 0.105 ± 0.0009 | <LoQ | <LoQ | 0.038 ± 0.0024 |
Chrysin | 29.7 | 253.0 > 143.0 | 0.117 ± 0.0009 | 0.059 ± 0.0002 | 0.319 ± 0.0051 | 0.172 ± 0.0101 |
Hyperoside | 20.4 | 463.1 > 300.0 | 31.600 ± 0.2481 | 0.300 ± 0.0042 | 0.175 ± 0.0029 | 10.506 ± 0.2206 |
Kaempferol | 27.9 | 285.0 > 187.0 | 1.400 ± 0.0264 | 0.053 ± 0.0004 | 0.070 ± 0.0005 | 0.530 ± 0.0307 |
Luteolin | 26.8 | 287.0 > 153.0 | 0.076 ± 0.0002 | 0.005 ± 0.0001 | <LoQ | 0.026 ± 0.0017 |
Luteolin-7-O-glucoside | 19.9 | 447.0 > 284.9 | 0.225 ± 0.0034 | 0.055 ± 0.0001 | 0.057 ± 0.0001 | 0.105 ± 0.0061 |
Myricetin | 13.6 | 317.0 > 137.0 | 1.639 ± 0.0291 | 6.366 ± 0.0579 | 7.656 ± 0.0943 | 5.164 ± 0.1549 |
Naringenin | 26.3 | 271.0 > 119.0 | 0.240 ± 0.0015 | 0.420 ± 0.0012 | 143.820 ± 2.943 | 49.670 ± 0.5463 |
Pyrocatechol | 11.7 | 109.0 > 90.6 | <LoQ | 0.090 ± 0.0001 | 3.968 ± 0.0721 | 1.470 ± 0.0735 |
Quercetin | 25.4 | 300.9 > 151.0 | 10.112 ± 0.2246 | 0.040 ± 0.0001 | 0.020 ± 0.0001 | 3.242 ± 0.1199 |
Quercitrin | 22.1 | 447.0 > 229.9 | 1.269 ± 0.0397 | <LoQ | <LoQ | 0.455 ± 0.0268 |
Rutoside | 20.2 | 609.0 > 300.0 | 21.525 ± 0.4293 | 0.345 ± 0.0045 | <LoQ | 7.363 ± 0.2208 |
Vitexin | 18.4 | 431.0 > 311.0 | 0.045 ± 0.0001 | 0.055 ± 0.0001 | <LoQ | 0.034 ± 0.0002 |
Zone of Inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|
Reference Strains | S. alba Bark Extract | H. virginiana Leaves Extract | K. lappacea Roots Extract | HM | Amoxicillin- Clavulanic | Gentamicin | Amikacin |
MSSA | 19.67 ± 0.52 | 19.17 ± 0.4 | 18.5 ± 0.84 | 21.33 ± 1.03 a | 29 ± 0.00 a,b | 20 ± 0.00 | 21 ± 0.00 |
MRSA | 14.50 ± 0.55 | 16.83 ± 0.41 | 17 ± 0.63 | 18.25 ± 1.21 a | 28 ± 0.00 a,b | 17 ± 0.00 | 21 ± 0.00 |
Bacillus cereus | 15.17 ± 0.41 | 18.17 ± 0.41 | 18.17 ± 0.41 | 21.00 ± 0.00 a | 17 ± 0.00 | 21 ± 0.00 | 18 ± 0.00 |
Enterococcus faecalis | 18.33 ± 0.52 | 17.67 ± 0.52 | 16.33 ± 0.52 | 18.33 ± 0.52 a | 15 ± 0.00 | 0 | 0 |
Salmonella enterica serovar Enteriditis | 9.67 ± 0.52 | 10.83 ± 0.41 | 8.67 ± 0.52 a | 14.50 ± 0.55 a | 18 ± 0.00 a,b | 18 ± 0.00 a,b | 18 ± 0.00 a,b |
Escherichia coli | 10 ± 0.52 | 8.5 ± 0.52 | 10.75 ± 0.41 | 14.25 ± 0.50 a | 19 ± 0.00 a,b | 19 ± 0.00 a,b | 19 ± 0.00 a,b |
Pseudomonas aeruginosa | 0 | 0 | 0 | 0 | 0 | 18 ± 0.00 | 21 ± 0.00 |
Samples | Parameters | Reference Strains | |||||
---|---|---|---|---|---|---|---|
MSSA | MRSA | Bacillus cereus | Enterococcus faecalis | Salmonella enterica Serovar Enteriditis | Escherichia coli | ||
Salix alba | MIC (mg GAE/µL) | 0.1047 | 0.2094 | 0.1047 | 0.4188 | 0.4188 | 0.4188 |
MBC (mg GAE/µL) | 0.4188 | 0.4188 | 0.4188 | 0.4188 | 0.4188 | 0.4188 | |
MIC index MBC/MIC | 3 | 2 | 3 | 1 | 1 | 1 | |
Hamamelis virginiana | MIC (mg GAE/µL) | 0.2494 | 0.2494 | 0.2494 | 0.4988 | 0.4988 | 0.4988 |
MBC (mg GAE/µL) | 0.4988 | 0.4988 | 0.4988 | 0.4988 | 0.4988 | 0.4988 | |
MIC index MBC/MIC | 2 | 2 | 2 | 1 | 1 | 1 | |
Krameria lappacea | MIC (mg GAE/µL) | 0.1774 | 0.3548 | 0.1774 | 0.3548 | 0.3548 | 0.3548 |
MBC (mg GAE/µL) | 0.3548 | 0.3548 | 0.3548 | 0.3548 | 0.3548 | 0.3548 | |
MIC index MBC/MIC | 2 | 1 | 2 | 1 | 1 | 1 | |
HM | MIC (mg GAE/µL) | 0.12 | 0.25 | 0.25 | 0.49 | 0.49 | 025 |
MBC (mg GAE/µL) | 0.25 | 0.25 | 0.25 | 0.49 | 0.49 | 0.49 | |
MIC index MBC/MIC | 2 | 1 | 1 | 1 | 1 | 2 | |
Gentamicin | MIC (mg/L) | 3 | 4 | 3 | - | 2 | 2 |
Experiment Name | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 |
---|---|---|---|---|---|---|
N1 | 542.8 ± 26.50 | 43.03 ± 4.49 | 24.58 ± 3.36 | 0.49 ± 0.22 | 230.7 ± 69.60 | 68,476 ± 5738.78 |
N2 | 896.8 ± 38.40 | 71.97 ± 3.37 | 35.56 ± 0.64 | 0.65 ± 0.04 | 219.8 ± 20.00 | 92,750 ± 7677.22 |
N3 | 959.0 ± 48.90 | 73.30 ± 4.78 | 35.97 ± 1.70 | 0.67 ± 0.06 | 234.7 ± 3.70 | 112,676 ± 7029.85 |
N4 | 930.7 ± 76.30 | 72.04 ± 6.82 | 36.25 ± 1.38 | 0.70 ± 0.06 | 207.5 ± 0.04 | 124,373 ± 10,774.06 |
N5 | 521.0 ± 35.00 | 41.71 ± 3.94 | 21.97 ± 1.02 | 0.47 ± 0.03 | 184.3 ± 7.80 | 70,884 ± 5110.66 |
N6 | 914.8 ± 14.30 | 70.21 ± 1.29 | 36.01 ± 0.43 | 0.80 ± 0.04 | 224.0 ± 18.30 | 98,778 ± 2251.18 |
N7 | 1042.0 ± 14.90 | 85.33 ± 1.20 | 38.62 ± 0.38 | 0.76 ± 0.06 | 213.5 ± 11.40 | 114,676 ± 3868.28 |
N8 | 1765.0 ± 24.30 | 135.00 ± 7.60 | 50.53 ± 0.58 | 1.01 ± 0.06 | 268.0 ± 17.80 | 92,180 ± 6532.36 |
N9 | 850.5 ± 21.10 | 67.24 ± 6.54 | 32.86 ± 1.56 | 0.66 ± 0.12 | 186.5 ± 15.50 | 74,184 ± 4502.37 |
N10 | 1725.0 ± 45.50 | 124.40 ± 8.77 | 55.08 ± 0.90 | 1.18 ± 0.01 | 305.2 ± 4.30 | 126,573 ± 2399.48 |
N11 | 1518.0 ± 15.60 | 111.4 ± 9.11 | 49.44 ± 1.83 | 1.01 ± 0.06 | 256.8 ± 4.60 | 134,871 ± 3004.35 |
N12 | 2233.0 ± 7.30 | 154.20 ± 7.66 | 64.81 ± 1.62 | 1.31 ± 0.01 | 324.3 ± 23.30 | 138,770 ± 9949.25 |
N13 | 1206.0 ± 20.60 | 91.27 ± 6.65 | 38.09 ± 0.57 | 0.86 ± 0.09 | 249.7 ± 6.30 | 97,479 ± 2099.55 |
N14 | 1841.0 ± 11.70 | 134.90 ± 0.68 | 54.10 ± 0.97 | 1.16 ± 0.06 | 294.2 ± 16.50 | 124,773 ± 4617.45 |
N15 | 1926.0 ± 45.50 | 135.40 ± 9.83 | 53.66 ± 1.00 | 1.13 ± 0.07 | 285.5 ± 17.10 | 130,072 ± 8276.91 |
N16 | 2370.0 ± 77.60 | 171.80 ± 18.22 | 69.95 ± 10.81 | 1.63 ± 0.16 | 556.8 ± 97.40 | 175,163 ± 11,982.43 |
N17 | 1367.0 ± 17.70 | 95.93 ± 6.74 | 45.00 ± 1.35 | 0.98 ± 0.17 | 241.8 ± 21.60 | 130,672 ± 3628.27 |
N18 | 1447.0 ± 20.80 | 111.80 ± 5.25 | 46.35 ± 0.64 | 1.03 ± 0.05 | 231.8 ± 4.30 | 106,926 ± 3488.34 |
N19 | 1711.0 ± 31.00 | 121.70 ± 11.51 | 53.49 ± 3.04 | 0.86 ± 0.06 | 262.3 ± 24.90 | 133,833 ± 2872.86 |
Parameter | Response | R2 | Q2 | p-Value | Lack of Fit | Model Validity | Reproducibility |
---|---|---|---|---|---|---|---|
Firmness | Y1 | 0.92 | 0.82 | 0.00 | 0.581 | 0.86 | 0.89 |
Consistency | Y2 | 0.93 | 0.83 | 0.00 | 0.660 | 0.89 | 0.87 |
Adhesiveness | Y3 | 0.94 | 0.86 | 0.00 | 0.715 | 0.92 | 0.87 |
Stringiness | Y4 | 0.96 | 0.87 | 0.00 | 0.706 | 0.81 | 0.91 |
Spreadability | Y5 | 0.78 | 0.19 | 0.006 | 0.082 | 0.37 | 0.96 |
Viscosity | Y6 | 0.84 | 0.45 | 0.003 | 0.613 | 0.88 | 0.70 |
Composition of the Optimal Formulation | ||||
---|---|---|---|---|
X1 | X2 | X3 | X4 | |
2.566 | 0.066 | 0.253 | 20.67 | |
Results of analysis of optimal formulation | ||||
Y1 | Y2 | Y3 | Y4 | |
Predicted values | 599.61 | 49.02 | 25.96 | 77,662.4 |
Experimental values | 515.3 | 42.6 | 24.55 | 68,365 |
Difference % | 14.06 | 13.09 | 5.43 | 11.97 |
Compound | Company Name | Brand Name | Article No. |
---|---|---|---|
Caffeic acid | Phytolab GmbH | Phyproof standards | 89547 |
Carnosic acid | Phytolab GmbH | Phyproof standards | 89171 |
Chlorogenic acid | Phytolab GmbH | Phyproof standards | 89175 |
Ferulic acid | Phytolab GmbH | Phyproof standards | 89663 |
Gallic acid | Phytolab GmbH | Phyproof standards | 89198 |
Ellagic acid | Phytolab GmbH | Phyproof standards | 89141 |
Salicylic acid | Merck Group | Sigma-Aldrich | S7401 |
trans-p coumaric acid | Phytolab GmbH | Phyproof standards | 89498 |
Apigenin | Phytolab GmbH | Phyproof standards | 89159 |
Catechin | Phytolab GmbH | Phyproof standards | 89172 |
Chrysin | Merck Group | Supelco | 95082 |
Hyperoside | Phytolab GmbH | Phyproof standards | 89227 |
Kaempferol | Phytolab GmbH | Phyproof standards | 89235 |
Luteolin | Phytolab GmbH | Phyproof standards | 89245 |
Luteolin-7-O-glucoside | Phytolab GmbH | Phyproof standards | 89724 |
Myricetin | Phytolab GmbH | Phyproof standards | 89252 |
Naringenin | Phytolab GmbH | Phyproof standards | 89738 |
Pyrocatechol | Phytolab GmbH | Phyproof standards | 82372 |
Quercetin | Phytolab GmbH | Phyproof standards | 89262 |
Quercitrin | Phytolab GmbH | Phyproof standards | 89346 |
Rutoside | Phytolab GmbH | Phyproof standards | 89270 |
Vitexin | Phytolab GmbH | Phyproof standards | 89290 |
Name of Standard | Retention Time (min) | m/z and Main Transition | MRM | Secondary Transitions |
---|---|---|---|---|
Caffeic acid | 13.8 | 179.0 > 135.0 | Negative | 179.0 > 134.0 179.0 > 89.0 |
Carnosic acid | 32.0 | 331.2 > 285.1 | Negative | |
Chlorogenic acid | 11.9 | 353.0 > 191.0 | Negative | |
Ferulic acid | 18.4 | 193.0 > 134.0 | Negative | 193.0 > 178.0 |
Gallic acid | 7.0 | 168.9 > 125.0 | Negative | |
Ellagic acid | 27.2 | 301.0 > 185.0 | Negative | 301.0 > 257.0 |
Salicylic acid | 23.5 | 137.0 > 93.0 | Negative | 137.0 > 75.0 137.0 > 65.0 |
trans-p-coumaric acid | 17.5 | 163.0 > 119.0 | Negative | 163.0 > 93.0 |
Apigenin | 28.1 | 269.0 > 117.0 | Negative | |
Catechin | 10.3 | 289.0 > 202.9 | Negative | |
Chrysin | 29.7 | 253.0 > 143.0 | Negative | 253.0 > 119.0 253.0 > 107.0 |
Hyperoside | 20.3 | 463.1 > 300.0 | Negative | 463.1 > 301.0 |
Kaempferol | 27.9 | 285.0 > 187.0 | Negative | 285.0 > 151.0 285.0 > 133.0 |
Luteolin | 26.8 | 287.0 > 153.0 | Positive | |
Luteolin-7-O-glucosid | 19.9 | 447.0 > 284.9 | Negative | |
Myricetin | 13.6 | 317.0 > 179.0 | Negative | 317.0 > 151.0 317.0 > 137.0 |
Naringenin | 26.2 | 271.0 > 119.0 | Negative | 271.0 > 107.0 |
Pyrocatechol | 11.7 | 109.0 > 90.6 | Negative | 109.0 > 52.9 |
Quercetin | 25.4 | 300.9 > 151.0 | Negative | 300.9 > 121.0 |
Quercitrin | 22.1 | 447.0 > 229.9 | Negative | |
Rutoside | 20.2 | 609.0 > 300.0 | Negative | 609.0 > 301.0 609.0 > 271.0 |
Vitexin | 18.4 | 431.0 > 311.0 | Negative |
Cosmetic Dosage Form | Cream | - | Emulsion-Based Product for Topical Delivery of Cosmetic Ingredients |
---|---|---|---|
Application site | Topical | - | |
Cream design | Oil-in-water emulsion | - | Impact on consumer acceptability |
Appearance | Smooth cream | - | Impact on consumer acceptability |
Colour | The specific colour of the HM | - | Impact on consumer acceptability; characteristic for the HM content |
Odour | Specific for the ingredients; fragrance-free | - | Impact on consumer acceptability; the product is designed for fragilized skin |
Physical properties: Texture attributes
| 500–1000 g 40–100 mJ <30 mJ 0.5–2 mJ <00 g <100,000 cP Homogenous product | Yes Yes Yes - Yes Yes Yes | To ensure the performance of the delivery system and the sensory performance Impact on the sensorial profile of the cream, the handling of the product Impact on the sensorial profile of the cream, influences the residence time on the application site Influences the ease of pick-up from the recipient Impact on consumer acceptability Impact on the sensorial profile of the cream, influences the residence time on the application site Influences the performance of the formulation |
Container | Appropriate for the application | - | Influences the stability and safety |
Independent Variable | Function |
---|---|
X1: Sucrose polystearate & hydrogenated polyisobutene (Emulgade® Sucro) | Oil-in-water emulsifier |
X2: Cetearyl glucoside | Co-emulsifier |
X3: Polyacrylamide & C13-14 Isoparaffin & Laureth-7 (Sepigel™305) | Thickening and texturizing agent, stabilizer |
X4: Cetylstearyl alcohol, caprylic/capric triglycerides, coco-caprylate, avocado oil, almond oil, argan oil | Oily phase of the oil-in-water emulsion |
Exp Name | X1 | X2 | X3 | X4 |
---|---|---|---|---|
N1 | 2.5 | 0 | 0.2 | 20 |
N2 | 3.5 | 0 | 0.2 | 20 |
N3 | 2.5 | 1 | 0.2 | 20 |
N4 | 3.5 | 1 | 0.2 | 20 |
N5 | 2.5 | 0 | 0.4 | 20 |
N6 | 3.5 | 0 | 0.4 | 20 |
N7 | 2.5 | 1 | 0.4 | 20 |
N8 | 3.5 | 1 | 0.4 | 20 |
N9 | 2.5 | 0 | 0.2 | 30 |
N10 | 3.5 | 0 | 0.2 | 30 |
N11 | 2.5 | 1 | 0.2 | 30 |
N12 | 3.5 | 1 | 0.2 | 30 |
N13 | 2.5 | 0 | 0.4 | 30 |
N14 | 3.5 | 0 | 0.4 | 30 |
N15 | 2.5 | 1 | 0.4 | 30 |
N16 | 3.5 | 1 | 0.4 | 30 |
N17 | 3 | 0.5 | 0.3 | 25 |
N18 | 3 | 0.5 | 0.3 | 25 |
N19 | 3 | 0.5 | 0.3 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safta, D.A.; Ielciu, I.; Șuștic, R.; Hanganu, D.; Niculae, M.; Cenariu, M.; Pall, E.; Moldovan, M.L.; Achim, M.; Bogdan, C.; et al. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants 2023, 12, 248. https://doi.org/10.3390/plants12020248
Safta DA, Ielciu I, Șuștic R, Hanganu D, Niculae M, Cenariu M, Pall E, Moldovan ML, Achim M, Bogdan C, et al. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants. 2023; 12(2):248. https://doi.org/10.3390/plants12020248
Chicago/Turabian StyleSafta, Diana Antonia, Irina Ielciu, Raffaela Șuștic, Daniela Hanganu, Mihaela Niculae, Mihai Cenariu, Emoke Pall, Mirela Liliana Moldovan, Marcela Achim, Cătălina Bogdan, and et al. 2023. "Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream" Plants 12, no. 2: 248. https://doi.org/10.3390/plants12020248
APA StyleSafta, D. A., Ielciu, I., Șuștic, R., Hanganu, D., Niculae, M., Cenariu, M., Pall, E., Moldovan, M. L., Achim, M., Bogdan, C., & Tomuță, I. (2023). Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants, 12(2), 248. https://doi.org/10.3390/plants12020248