Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa
Abstract
:1. Introduction
2. Results
2.1. In-Vitro Regeneration
2.2. In-Planta Transformation
3. Discussion
3.1. Regeneration Response of B. rapa cv. UAF11 and Toria
3.2. In Planta Response of B. rapa cv. UAF11 and Toria
4. Conclusions
5. Materials and Methods
5.1. Optimization of the Regeneration Protocol
5.1.1. In-Vitro Seeds Germination
5.1.2. Callus Induction, Shooting, and Shoot Proliferation
5.1.3. Rooting and Acclimatization
5.1.4. Data Collection and Statistical Analysis
5.2. Optimization of the Floral Dip Transformation Protocol
5.2.1. Preparation of Agrobacterium Infection Culture
5.2.2. Preparation of Infection Culture
5.2.3. In-Planta Transformation via Floral Dip
5.2.4. Screening of Transgenics through Selectable Marker
5.2.5. Confirmation of the Transgenic Plants with PCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labana, K.S.; Banga, S.S.; Banga, S.K. Breeding Oilseed Brassicas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 19. [Google Scholar]
- George, B.; Loeser, E. Oilseeds: World Markets and Trade; United States Department of Agriculture: Washington, DC, USA, 2021.
- Elferjani, R.; Soolanayakanahally, R. Canola responses to drought, heat, and combined stress: Shared and specific effects on carbon assimilation, seed yield, and oil composition. Front. Plant Sci. 2018, 9, 1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Wang, X.; Dai, S.; Cui, X.; Cao, X.; Liu, Z.; Shen, J. The multilocular trait of rapeseed is ideal for high-yield breeding. Plant Breed. 2021, 140, 65–73. [Google Scholar] [CrossRef]
- Ze-wen, L.; Ping, X.; Xiang-xiang, Z.; Bin, Y.; Chao-zhi, M.; Ting-dong, F. Primary study on anatomic and genetic characteristics of multi-loculus in Brassica juncea. Chin. J. Oil Crop Sci. 2012, 34, 461–466. [Google Scholar]
- Zhao, H.; Du, D.; Liu, Q.; Li, X.; Yu, Q.; Fu, Z. Performance in main characteristics of multilocular Brassica juncea. Acta Agric. Boreali-Occident. Sin. 2003, 12, 62–64. [Google Scholar]
- Zhao, Y.-G.; Ofori, A.; Lu, C.-M. Genetic diversity of European and Chinese oilseed Brassica rapa cultivars from different breeding periods. Agric. Sci. China 2009, 8, 931–938. [Google Scholar] [CrossRef]
- Gupta, S. Technological Innovations in Major World Oil Crops, Volume 1: Breeding; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T. In vitro regeneration of eight cultivars of Brassica oleracea var. capitata. Vitr. Cell. Dev. Biol. Plant 2015, 51, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yue, L.; Li, F.; Zhang, S.; Zhang, H.; Qian, W.; Fang, Z.; Wu, J.; Wang, X.; Zhang, S. Research progress on Agrobacterium tumefaciens-based transgenic technology in Brassica rapa. Hortic. Plant J. 2018, 4, 126–132. [Google Scholar] [CrossRef]
- Liu, Z.; Hirani, A.H.; McVetty, P.B.; Daayf, F.; Quiros, C.F.; Li, G. Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Mol. Biol. 2012, 79, 179–189. [Google Scholar] [CrossRef]
- Naing, A.H.; Il Park, K.; Chung, M.Y.; Lim, K.B.; Kim, C.K. Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma. Braz. J. Bot. 2016, 39, 975–984. [Google Scholar] [CrossRef]
- Prasad, B.; Singh, G.; Chandra, R.; Sharma, A. Effect of explant and genotype on shoot regeneration in Indian mustard [Brassica juncea (L.) Czern & Coss]. Pharma Innov. 2022, SP-11, 240–242. [Google Scholar]
- Liu, W.; Yang, Y.; Liu, Q. Establishment of an efficient regeneration system using heading leaves of Chinese cabbage (Brassica rapa L.) and its application in genetic transformation. Hortic. Environ. Biotechnol. 2018, 59, 583–596. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Takahata, Y.; Watanabe, M.; Xu, J.-B. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep. 2000, 19, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Farooq, N.; Nawaz, M.A.; Mukhtar, Z.; Ali, I.; Hundleby, P.; Ahmad, N. Investigating the in vitro regeneration potential of commercial cultivars of Brassica. Plants 2019, 8, 558. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Takahata, Y.; Kaizuma, N. Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.). Plant Cell Rep. 1994, 14, 13–17. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Joshi, N.C. Minor modifications in obtainable Arabidopsis floral dip method enhances transformation efficiency and production of homozygous transgenic lines harboring a single copy of transgene. Adv. Biosci. Biotechnol. 2011, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.M.; Hall, A.; Millar, A.J.; Darrah, C.; Davis, S.J. Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods 2009, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Bent, A.F.; Hou, X.; Li, Y. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biol. 2019, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, X.; Zhao, H.; Liu, F. An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep. 2008, 27, 1369–1376. [Google Scholar] [CrossRef]
- Murata, M.; Orton, T.J. Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Cult. 1987, 11, 111–123. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Rashid, M.; Mahmood, T.; Fatima, N. Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell Tissue Organ Cult. 2010, 102, 129–134. [Google Scholar] [CrossRef]
- Bilal, H.A.; Nisar, A.; Hina, F.; Tariq, M. Conventional and modern propagation techniques in Piper nigrum. J. Med. Plants Res. 2010, 4, 7–12. [Google Scholar]
- Bhalla, P.L.; Singh, M.B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat. Protoc. 2008, 3, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Amutha, S.; Ganapathi, A.; Muruganantham, M. In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell Tissue Organ Cult. 2003, 72, 203–207. [Google Scholar] [CrossRef]
- Sunilkumar, G.; Rathore, K.S. Transgenic cotton: Factors influencing Agrobacterium-mediated transformation and regeneration. Mol. Breed. 2001, 8, 37–52. [Google Scholar] [CrossRef]
- Tang, G.; Zhou, W.; Li, H.; Mao, B.; He, Z.; Yoneyama, K. Medium, explant and genotype factors influencing shoot regeneration in oilseed Brassica spp. J. Agron. Crop Sci. 2003, 189, 351–358. [Google Scholar] [CrossRef]
- Tripathi, L.; Singh, A.K.; Singh, S.; Singh, R.; Chaudhary, S.; Sanyal, I.; Amla, D. Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. 2013, 113, 513–527. [Google Scholar] [CrossRef]
- Abbasi, B.H.; Khan, M.; Guo, B.; Bokhari, S.A.; Khan, M.A. Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tissue Organ Cult. 2011, 105, 337–344. [Google Scholar] [CrossRef]
- Akasaka-Kennedy, Y.; Yoshida, H.; Takahata, Y. Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): The influence of AgNO3 and genotype. Plant Cell Rep. 2005, 24, 649–654. [Google Scholar] [CrossRef]
- Radke, S.E.; Turner, J.C.; Facciotti, D. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 1992, 11, 499–505. [Google Scholar] [CrossRef]
- Rafat, A.; Abd Aziz, M.; Abd Rashid, A.; Abdullah, S.N.A.; Kamaladini, H.; Sirchi, M.T.; Javadi, M. Optimization of Agrobacterium tumefaciens-mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. capitata) cv. KY Cross with AtHSP101 gene. Sci. Hortic. 2010, 124, 1–8. [Google Scholar] [CrossRef]
- Ravanfar, S.; Aziz, M.; Kadir, M.; Rashid, A.; Sirchi, M. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV Green Marvel as affected by plant growth regulators. Afr. J. Biotechnol. 2009, 8, 2523–2528. [Google Scholar]
- Yang, M.-Z.; Jia, S.-R.; Pua, E.-C. High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tissue Organ Cult. 1991, 24, 79–82. [Google Scholar] [CrossRef]
- Cogbill, S.; Faulcon, T.; Jones, G.; McDaniel, M.; Harmon, G.; Blackmon, R.; Young, M. Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of Brassica rapa L. Plant Cell Tissue Organ Cult. 2010, 101, 127–133. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, S.; Zhang, Y.; Shi, F.; Liu, X.; Du, S.; Feng, H. Establishment of an efficient shoot regeneration system in vitro in Brassica rapa. Vitr. Cell. Dev. Biol. Plant 2021, 57, 977–986. [Google Scholar] [CrossRef]
- Goswami, B.; Hoque, M.; Khan, S.; Sarker, R. In vitro regeneration of three varieties of Brassica campestris L. grown in Bangladesh. Bangladesh J. Sci. Ind. Res. 2020, 55, 181–188. [Google Scholar] [CrossRef]
- Naz, S.; Siddiquiland, M.F.; Raza, S. Effect of different growth regulators on in vitro propagation of Brassica napus L. Pak. J. Bot. 2018, 50, 1871–1876. [Google Scholar]
- Cardoza, V.; Stewart, C.N. Brassica biotechnology: Progress in cellular and molecular biology. Vitr. Cell. Dev. Biol. Plant 2004, 40, 542–551. [Google Scholar] [CrossRef]
- Gambhir, G.; Kumar, P.; Srivastava, D. High frequency regeneration of plants from cotyledon and hypocotyl cultures in Brassica oleracea cv. Pride of India. Biotechnol. Rep. 2017, 15, 107–113. [Google Scholar] [CrossRef]
- Frick, E.M.; Strader, L.C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 2018, 69, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, L.; Li, C.; Yang, Y.; Duan, Y.; Yang, Y.; Sun, X. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 genome-editing system to Brassica rapa var. rapa. Plant Methods 2022, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, H.; Zhao, Y.; Zong, P.; Zhan, Z.; Piao, Z. Establishment of a simple and efficient Agrobacterium-mediated genetic transformation system to Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Hortic. Plant J. 2021, 7, 117–128. [Google Scholar] [CrossRef]
- Niedbała, G.; Niazian, M.; Sabbatini, P. Modeling agrobacterium-mediated gene transformation of tobacco (Nicotiana tabacum)—A model plant for gene transformation studies. Front. Plant Sci. 2021, 12, 695110. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sparks, C.; Amoah, B.; Jones, H. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 2003, 21, 659–668. [Google Scholar] [CrossRef]
- Suhandono, S.; Chahyadi, A. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production. Pharmacogn. Mag. 2014, 10, S176. [Google Scholar]
- Ye, G.N.; Stone, D.; Pang, S.Z.; Creely, W.; Gonzalez, K.; Hinchee, M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 1999, 19, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.M. Software for Data Analysis: Programming with R; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2. [Google Scholar]
- Murphy, E. Nucleotide sequence of a spectinomycin adenyltransferase AAD (9) determinant from Staphylococcus aureus and its relationship to AAD (3″)(9). Mol. Gen. Genet. MGG 1985, 200, 33–39. [Google Scholar] [CrossRef]
- Chhikara, S.; Chaudhary, D.; Yadav, M.; Sainger, M.; Jaiwal, P.K. A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. Vitr. Cell. Dev. Biol. Plant 2012, 48, 7–14. [Google Scholar] [CrossRef]
Components | Sowing Medium | Callus Induction Medium | Shooting Medium | Shoot Proliferation Medium | Rooting Medium |
---|---|---|---|---|---|
MS | 4.43 g/L | 4.43 g/L | 4.43 g/L | 4.43 g/L | 4.43 g/L |
Sucrose | 20 g/L | 20 g/L | 20 g/L | 20 g/L | 20 g/L |
Phytagel | 4 g/L | 4 g/L | 4 g/L | 4 g/L | 4 g/L |
BAP | - | 0.75 mg/L | Variable | Variable | - |
NAA (1-Naphthalene Acetic Acid) | - | 0.4 mg/L | 0.4 mg/L | - | - |
GA * (Gibberellic acid) | - | 0.01 mg/L | 0.01 mg/L | - | - |
IBA | - | - | - | - | Variable |
AgNO3 * | 5 mg/L | 5 mg/L | 5 mg/L | 5 mg/L | - |
Adenine hemisulfate | - | - | - | 40 mg/L | - |
PVP (Polyvinylpyrrolidone) | - | - | - | 500 mg/L | - |
KI (Potassium Iodide) | - | 0.75 mg/L | 0.75 mg/L | 0.75 mg/L | 0.37 mg/L |
Components | IM-I | IM-II | IM-III |
---|---|---|---|
MS | Half MS | MS | MS |
Acetosyringone | - | - | 100 μM |
Tween 20 | - | - | 0.075% |
Silwet L-77 | 500 μL | - | - |
Sucrose | 5% | 3% | 5% |
BAP | - | 0.5 μM | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, U.M.; Shaheen, N.; Farooq, A.; Maqbool, R.; Khan, S.H.; Azhar, M.T.; Rana, I.A.; Seo, H. Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa. Plants 2023, 12, 161. https://doi.org/10.3390/plants12010161
Khan UM, Shaheen N, Farooq A, Maqbool R, Khan SH, Azhar MT, Rana IA, Seo H. Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa. Plants. 2023; 12(1):161. https://doi.org/10.3390/plants12010161
Chicago/Turabian StyleKhan, Uzair Muhammad, Nabeel Shaheen, Ayesha Farooq, Rizwana Maqbool, Sultan Habibullah Khan, Muhammad Tehseen Azhar, Iqrar Ahmad Rana, and Hyojin Seo. 2023. "Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa" Plants 12, no. 1: 161. https://doi.org/10.3390/plants12010161
APA StyleKhan, U. M., Shaheen, N., Farooq, A., Maqbool, R., Khan, S. H., Azhar, M. T., Rana, I. A., & Seo, H. (2023). Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa. Plants, 12(1), 161. https://doi.org/10.3390/plants12010161