Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protective Effects of LRC Extract on Human Keratinocytes through Quenching Activity with Trans-2-Nonenal
2.2. Screening of the Trans-2-Nonenal Quenching Components in LRC Extract
2.3. Effects of KB on Human Keratinocytes trhough Formation of the Trans-2-Nonenal Adducts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of LRC Extract
3.3. Cell Culture
3.4. Cell Viability Assay
3.5. Incubation of Trans-2-Nonenal with LRC Extract
3.6. Quantification of Residual Trans-2-Nonenal by HPLC Analysis
3.7. Identification of Reaction Products by HPLC-DAD-ESI/MS Analysis
3.8. Quantitative Analysis of KB in LRC Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutteridge, J.M.; Halliwell, B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 1990, 15, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal newly found in human body odor tends to increase with aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, S.; Hoshino, K.; Kusuhara, M. Odor associated with aging. Anti-Aging Med. 2010, 7, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K. Aldehyde adducts generated during lipid peroxidation modification of proteins. Free Radic. Res. 2015, 49, 896–904. [Google Scholar] [CrossRef]
- Ishino, K.; Wakita, C.; Shibata, T.; Toyokuni, S.; Machida, S.; Matsuda, S.; Matsuda, T.; Uchida, K. Lipid peroxidation generates body odor component trans-2-nonenal covalently bound to protein in vivo. J. Biol. Chem. 2010, 285, 15302–15313. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, S.; Makita, M.; Denda, M. Effects of trans-2-nonenal and olfactory masking odorants on proliferation of human keratinocytes. Biochem. Biophys. Res. Commun. 2021, 548, 1–6. [Google Scholar] [CrossRef]
- Qian, D.; Zhao, Y.; Yang, G.; Huang, L. Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules 2017, 22, 911. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, J.; Kim, M.-C.; Yeo, S.; Kim, J.; Park, S.; Jo, M.; Choi, C.W.; Jin, H.-S.; Lee, S.W. Anti-osteoporotic effects of kukoamine b isolated from lycii radicis cortex extract on osteoblast and osteoclast cells and ovariectomized osteoporosis model mice. Int. J. Mol. Sci. 2019, 20, 2784. [Google Scholar] [CrossRef] [Green Version]
- Song, M.Y.; Jung, H.W.; Kang, S.Y.; Kim, K.-H.; Park, Y.-K. Anti-inflammatory effect of Lycii radicis in LPS-stimulated RAW 264.7 macrophages. Am. J. Chin. Med. 2014, 42, 891–904. [Google Scholar] [CrossRef]
- Jung, Y.S.; Shin, H.C. The effects of Lycii Radicis cortex on inflammatory response through an oxidative stress and AGEs-mediated pathway in STZ-induced diabetic rats. J. Korean Med. 2016, 37, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Olatunji, O.J.; Zhou, Y. Anti-oxidative, anti-secretory and anti-inflammatory activities of the extract from the root bark of Lycium chinense (Cortex Lycii) against gastric ulcer in mice. J. Nat. Med. 2016, 70, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, L.; Kim, J.H.; Lee, T.H.; Shim, I. Antidepressant-like effects of lycii radicis cortex and betaine in the forced swimming test in rats. Biomol. Ther. 2013, 21, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.-W.; Atanasov, A.G.; Guo, D.-A.; Malainer, C.; Zhang, J.-X.; Zehl, M.; Guan, S.-H.; Heiss, E.H.; Urban, E.; Dirsch, V.M. Activity-guided isolation of NF-κB inhibitors and PPARγ agonists from the root bark of Lycium chinense Miller. J. Ethnopharmacol. 2014, 152, 470–477. [Google Scholar] [CrossRef]
- Jeong, J.C.; Kim, S.J.; Kim, Y.K.; Kwon, C.H.; Kim, K.H. Lycii cortex radicis extract inhibits glioma tumor growth in vitro and in vivo through downregulation of the Akt/ERK pathway. Oncol. Rep. 2012, 27, 1467–1474. [Google Scholar]
- Gao, D.; Li, Q.; Liu, Z.; Li, Y.; Liu, Z.; Fan, Y.; Li, K.; Han, Z.; Li, J. Hypoglycemic effects and mechanisms of action of Cortex Lycii Radicis on alloxan-induced diabetic mice. Yakugaku Zasshi 2007, 127, 1715–1721. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-Y.; Di, R.; Baibado, J.T.; Cheng, Y.-S.; Huang, Y.-Q.; Sun, H.; Cheung, H.-Y. Identification of kukoamines as the novel markers for quality assessment of Lycii Cortex. Food Res. Int. 2014, 55, 373–380. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, L.; Zhu, Y.; Hou, D.; Li, Y.; Guo, X.; Wang, Y.; Olatunji, O.J.; Wan, P.; Gong, K. Kukoamine B ameliorate insulin resistance, oxidative stress, inflammation and other metabolic abnormalities in high-fat/high-fructose-fed rats. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1843–1853. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Chen, B.; Xie, H.; Chen, D. Antioxidant and cytoprotective effects of kukoamines A and B: Comparison and positional isomeric effect. Molecules 2018, 23, 973. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, P.; Wang, D.; Tao, M.; Xu, W.; Olatunji, O.J. Anti-inflammatory activities of kukoamine A from the root bark of Lycium chinense miller. Nat. Prod. Commun. 2020, 15, 1934578X20912088. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guan, S.; Sun, J.; Liu, T.; Chen, P.; Feng, R.; Chen, X.; Wu, W.; Yang, M.; Guo, D.-a. Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 581–595. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.M.; Kim, J.Y.; Kim, J.H.; Kim, C.Y. Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal. Plants 2023, 12, 163. https://doi.org/10.3390/plants12010163
Kim HM, Kim JY, Kim JH, Kim CY. Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal. Plants. 2023; 12(1):163. https://doi.org/10.3390/plants12010163
Chicago/Turabian StyleKim, Hye Mi, Jae Yong Kim, Ji Hoon Kim, and Chul Young Kim. 2023. "Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal" Plants 12, no. 1: 163. https://doi.org/10.3390/plants12010163
APA StyleKim, H. M., Kim, J. Y., Kim, J. H., & Kim, C. Y. (2023). Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal. Plants, 12(1), 163. https://doi.org/10.3390/plants12010163